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PREFACE

Methods for solving network transportation problems were already
proposed by L.R. Ford & D.R. Fulkerson [1], M. Iri [2] and T. Fuji-
sawa [6]. The basic idea of these methods, were primal dual method
[31.

A new algorithm for solving network transportation problem is
proposed. It is basically the dual method [4] from the view point of
linear programming theory, but from the view point of network topology
the idea of tree is the essential feature of our algorithm.

Applying our algorithm to the Hitchcock transportation problem,

we get a new simple algorithm for solving this problem.

§1. THE NETWORK TRANSPORTATION PROBLEM

Formulation

Fig. 1 shows an example of the network transportation problem we
shall treat. Node 1 and 2 are soimes, and their supplies are 15 and 12
respectively. Node 6 and 7 are sinks and their demands are 6 and 18
respectively. The number with parentheses on each arc shows the
capacity and the number without parcntheses the cost per unit flow.
The problem is to find the transportation program minimizing the total

cost.
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194 Iwarée Takahashi

We may formulate the problem in general as follows. Let a; be the
supply of source i, b; the demand of sink i, ¢;; the unit cost on arc
(ij), and M,; the capacity of arc (ij).

y
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3

14) 18
3 (10) 5 7

Fig. 1. A Network Transportation Problem.

We wish to minimize

1€n 2 Gy

(ij)ed
subject to

conservation constraints :

ai=Y1%u for ies,
(1.2) szlj=bj for jET,
&= Y kTik

capacity constraints :
(1.3 Ti=M; for (ij)e4,

nonnegativityconstraints :

(1.4’) .z'ing for (IJ)EA,
and
(1.5) Ya=xb;,
= JET
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The Tree Algorithm for Solving Network Transportation Problems 195

where S is the set of sources, 7 the set of sinks, I the set of intermediate
nodes, and A the set of arcs on the given network.

We insert slack variables x;; such that
(1.3 T+ vi=M,;; for (ij)eA4,
(1.4 z;=20 for (ij)eA.

The problem now becomes to minimize (1.1) subject to (1.2), (1.3,
(1.4) and (1.4).

Dual Problem
The dual problem of (1.1), (1.2), (1.3, (1.4), (1.4') is to maximize

(1.6) (ngbjuj_iEZSaiui)‘l"(ij)ZéAMijvij
subject to

1.7n Cry—(uy—ui)=vij

(1.8) 0i;=0.

Since M;/s are =0, the optimal values of v;; (under the given value

of u;) are determined such that

if ci,-—(uj—ui)go s

(1.9 vij=
) ! { cir—(u,—ui) lf cij—(uj—ui)<0.

So we consider hereafter only u;’s which satisfy condition (1.9).
Further we call u; node potentials, and

(1.10) Ciy=coy—(uj—us)

the imputed cost of arc (ij).

§2. TREE ALGORITHM

The Concept of a Tree
A tree is a minimum set of arcs which connects (without considering
direction) all of nodes. In other words, a tree is a set of arcs which
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196 Iwars Takahashi

connects all of nodes and has no loops. We call a cofree a set of arcs
which are not on a tree.

Two important properties of trees and cotrees are

(1) Onme arc on a tree divides the nodes on the network into two
groups,

(i) One arc on a cotree determines one loop which consists of
the arc and some arcs on the tree.

For example in Fig. 4 (i) solid arcs constitute a tree and dotted
arcs a cotree. Arc (3,5) on the tree divides all nodes into labelled and
unlabelled nodes. And arc (4,6) on the cotree determines a loop (4,
6,3,5,7,4) which consists of arcs (6,3), (3,5), (5,7) (7,4) on the tree and
(4,6) itself.

Tree Algorithm

Our algorithm consists of three main parts.

1. Determination of the Initial Tree

We select a tree on the given network such that the imputed costs
of the arcs on the tree are all =0 and the imputed costs on the cotree
are all =0. Detailed procedure is as follows:

First set the potentials of all the nodes equal to zero, draw all the
arcs with dotted line (see Fig. 2 (i)) and label an arbitrary node, and
then repeat the following‘ iterative process.

Let X be the set of nodes which have been labelled, and X be the
set of nodes which have been unlabelled. Raise up the potentials of
all the nodes in X by

2.1 0=Min (;;:ieX, jeX)

where {;; is the imputed cost of arc (ij) (see (1.10)).
When arc (i) (i€X, jeX) docs not exist (see Fig. 2 (v)),
decreasc the potentials of all the nodes in X by

2.2) 0=Min (52 icX, jeX).
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Fig. 2. Determination of Initial Tree

Draw the arcs, whose newly determined imputed costs are zero,
with solid lines, and label the nodes having been connected with the
solid lines (see Fig. 2 (i1)).

When all nodes have been labelled, the set of arcs with solid is
the desired tree (sec Fig. 2 (vi)). We will show the trcatment of the
degenerate case later in this §.
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II. Determination of Flows on the Initial{Tree

Let z:;=0 for (i) on the initial cotree. (see Fig. 3 (i)).

Next determine flows x;; on the initial tree so that x;; satisty the
conservation constraints (l.2), neglecting the capacity constraints (1.3)
and the nonnegativity constraints (1.4). The actual procedures are as
follows: Let T denote the set of arcs on the initial tree. Select an
arbitrary end node* of T, and determine the flow value of the arc incident
to the end node to satisfy the conservation constraints on the mode.
Then delete the arc from T. Repeat above process until the values of

(i)

Fig. 3. Determination of Flows on Initial Tree

* An end node of a wree is a node incident to only one arc of the tree
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The Tree Algorithm for Solviny Network Transportation Problems 199

the arcs on the tree are all determined (see Fig. 3 (i)).

Next determine the slack variables x;; by (1.3, neglecting (1.4
(see Fig. 3 (i1)).

Hereafter let x:; denote both flow and slack variables. For example
zy(=—6) in Fig. 4 (ii) shows the slack variable in the arc (1,4).

III. Iterative Process

We have determined all z;; in process II. On the initial cotree
x;; are all =0. If x;; on the initial tree are all =0, then these con-
stitute an optimum solution. If not, we go into the following iteration.
In iterative process let x;; denote the given flow and slack variables,
and let 2';; denote the newly determined flow and slack variables. We
use §;; and {';; by the same rule.

Select a zw<0 on the tree (where Zu may be a flow or a slack),
the node pair (k,0) devides all nodes on the network into two groups,
K and L, where K is the set of all nodes connected with node £ on
the tree arcs, and L is the set of all nodes connected with node [ on
the tree arcs. (In Fig. 4 (iv), (k,D=(6,3), K=(6,4,7,5), L=(3,1,2)).

Raise up potentials of all nodes in K, until for the first time the
newly determined imputed cost for an arc of the cotree becomes zero.
That is, let

2.3 O=Min{({;;:%:,;=0, (INEArk),
(ICm|:£=0, (ifyedxn)},

where

Arx=the set of arcs (i j)x(k), i€L, jeK, (ij)ed,

@.4) {
Axr=the set of arcs (ij)2:=(k!), jEL, ick, (1j)ed.

When the arc which meets the conditions of the right hand side
of (2.3) does not exist, the given primal problem is infeasible (the dual
optimum solution is infinite). (In Fig. 4 (iv), A4,.x={(14), (25), (35)},
Axx={43)}, 0=1).
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Let (m,n) denote an are which attains Min. in (2.3), then (m,n)
which is an arc on the cotree determines a loop (mniy iy« -ki---im),
where (n, 1) (iy, )+ -k, [)- - -(i,,m) are on the tree. (In Fig. 4 (iv), (m,n)
=(35), (mniyizge--ki--i;m=357 46 3).

Let

x;"n:-rmn'{_x, x;m:xnm—l’
;vmil :xnil—%x y xil,l:xiln—x

(2.5) , ,
x“=$k1+xq X =Tu—2x

o v
Z, = Lim+T, X, = Lmi,— T,
where
(2.6) x:].l'/;]],

then these and other 2';;=x;; are new improved flows and slacks.

Raise up potentials of all nodes in K by 6, that is

(2.7 wi=u; 40 for K

”

and compute {';; from (1. 10).
Taking (m,n) into and deleting (£,/) from the tree, we get the new
improved tree (In Fig. 4, (ii) is the newly improved tree from (i)).
Continue above iteration process until all x;; (lows and slacks)
beccome non-negative (Fig. 4 (v)).

Optimum solutions are x;; on (ij)ed (TFig. 5.

Treatment of the Degenerate Case [ 5]

When more than one arcs minimize (2. 1) (2.2) or (2.3), which arc
of these should be taken into the tree?

Number the arcs in an arbitrary order, for example like Fig. 2 (a).

Consider arbitrary small >0,
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The Tree Algori

(i

(i3}

(iii)
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(iv)

V)

Fig. 4. [Tterative Process

Fig. 5. Optimum Solution

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



The Tree Algorithm for Solving Network Transportation Problems 203

1
3
2
Fig. 2(a). Numbering of Arcs
and let
(28) Cijte

be the imaginary cost coefficient of arc (ij)=v. Then in every iterative
step imaginary imputed costs on any two arcs do not take the same

value.

Actual procedures are as follows:
(i) Case (2.1) or (2.2)

If for example {;;=¢» minimize (2.1) or (2.2), the numbers of arc
(tj) and (k) are p and v respectively and p>v, then take arc g into
the tree.

(i) Case (2.3)

Prefer (r,5)€A.x to (p,q)=Ax1, higher arc-number within 4.x, and
lower arc-number within Ag;. For example; if (=] | minimize
2.3) and (r,s)=Aik, (p,q)E Ak, then take (7,5); if {;s=C, minimize
2.3), (1,9, (p,)=ALx, and the arc number of (r,5)>> the arc number
of (p,¢) then take (r,s5); if {rs={p, minimize (2.3), (r,5), (p, 9 =Axz, and
the arc number of (r,5)> the arc number of (p,q), then take (p,¢).
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§3. VALIDITY OF THE TREE ALGORITHM

Here we show that tree algorithm terminates in a finite number of
iterations and that we get the optimum solution in its final stage.

We consider u; and v, satisfying (1.9) as dual variables, and set
conditions

(3. 1) {xi]:O if Ci]'=6‘ij—(uj—uz)>0 N
.’I/'j,:—‘ZO if Cij<0 .
then we call flows and slacks x;; which satisfy (3.1) contact io u; and vy;.

Theorem 1.

Primal feasible x;; (flows and slacks), which are contact to dual
feasible ui, v:; are optimum.

Proof.
Construct the following formula from (1.1), (1.2) and (1.3").
(3, 2) . cijx,vj——Z ul(a[—zuixill)
(ijyed €S

_2 ul(z;x x;li_val'v)
iel
= X udX, 2u—by)
ieT
+ T vifMiy—2i—250)
Gij)e4d
= ¥ (ey—(w—u)—vi)ziy+ T (—vi)xs
(iped (ij)ed
+ ¥ baui— Y auw+ Y, M.
ieT H=RY (iped
From (1.9) and (1.10), (3.1) is equivalent to

(3. 3) {.’L'ij'-:O if cij—(uj—ui)—v;j>0 )
xj,~=0 —vij>0.

So for x;; contact to u;v;; the right hand side of (3.2)

= Z b(lli“ Z au;+ Z M,;jvij
1 ieS

ieT (ijyed

which is the objective function of the dual problem. Further for feasible

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



The Tree Algorithm for Solving Network Transportation Problems 205

z;; the left hand side of (3.2)

= Y ci;Ti;
(ined

which is the objective function of the primal problem.

Therefore from the basic dual theorem the primal feasible x; con-
tact to ui, vi; are optimum. q.e.d.

Theorem 2.

(i) In every iteration of the tree algorithm (§2, 111 flows and
slacks x;; satisfy the conservation constraints (1.2} and the modified
capacity constraints (1.3).

(i1) In every iteration of the tree algorithm (32, I1I) flows and
slacks x;; are contact to u; and vy, satisfying (1.9). Hence from (i)

3.3 zi;=0 it 2i;>0,
Zij=M;; it Z;;<0.

Proof.

(1) is clear from procedures in §2 1T and formula (2.5).

(i) In the initial step all {;; are =0, if Z;;>0 then arc (/) is on
the cotree, so z;;,=0 from §2 II. Therefore the initial flows and slacks
arc contact to dual variables.

In the iterative process, the potential-up procedures (2.7) and the
flow-computation (2,5) assert that the newly determined flows and slacks

xi; are contact to the newly determined dual variables u; and vi). q.ed.

Theorem 3.

Every iteration of the algorithm (§2, [TT) increases the value ol the
objective function of the dual problem by #x, where # is to be deter-

mined by (2.3) and x by (2.6).

Proof.
Case (i): xo is a flow (In Fig. 4 (1), (KD=(35).
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From Theorem 2 (i), the total flows into K is equal to the total
flow out of K. That is

Zij+ L a=%ua+ by Zii+ z b;

(iyeALK, §i;<i iesnk (ieAKL, 5;ij<0 jeTnk

which we can rewrite by (3.3) as

3.4 ¥ M+ ¥ a=x.+ = M+ ¥ b;.
(ieALK, §i3<0 eSSk ) (ij)edAKL, L;;<0 jeTyk
So we have
3.5 0 X b— % a+ b M;;— b3 M} = 0.
ieTnk ieSyL (i))EAKRL, i< (i)DEALK, ;<0

The left hand side of (3.5) is equal the increase of the objective
function of the dual problem due to (2.7). q.e.d.
Case (ii): zq is a slack (in Fig. 4 (i), (k})=(14))

Fig. 5. b
By the samc reasoning as (3.4), we have

(3.6) h M+ ¥ ai+Mp—rg= > M+ T ob;.

(i)eATL, 2 i<h ieSn kK (ine. KL, Zi<0
So we have
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3.7 0 ¥ bj— L a+ )N M;;— N M;y— M.}

jeTnk eS|k (ijyedKL, ;<0 G HeALK, Lij<0
n u J J
=—0xq.

The left hand side of (3.7) is equal to the increase of the objective
function of the dual problem due to (2.7) q.e.d.

To summarize Theorems 1 and 2 assert that, if in our tree algorithm
z:; (lows and slacks) are all =0, then we have attained the optimal
solution, and Theorem 3 asserts that our tree algorithm (with treatment
on degenerate case) terminates in a finite number of iterations; {The
number of different trees on the given network is finite. Each tree in
our algorithm determines a value of rthe dual objective function. The
values strictly increase (in imaginary imputed cost) because of Theorem
3, so that the trees which appear in our algorithm are all different.

Therefore iteration terminates in a finite number}.

§4. NOTES ON COMPUTERIZING THE TREE ALGORITHM

To determine the loop tmniyiz---kl---i.m) in our algorithm in §2
111 would be rather difficult to program for digital computers. It has
connection with determining the sets of nodes K and L. So here we

shall make a remark on these procecures.

Determination of X and L

In Fig. 6 let =3, {=5. Label with number £=3 the nodes con-
nected with node £=3 on just one arc of the tree (except node [=5).
Select a node, say node 4, of labelled nodes, and label with number 4
the unlabelled nodes connected with node 4 on just one arc of the tree.
Continue above process until no nodes remain to be labelled. Then
the set of all the labelled nedes is K.

Starting with /=5, the same procedures as above determines the

set /..
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Determination of the Loop (mni, is---kl---i,m)

Let the labelled number on node n be i, and let labelled number
on node iy be iy ---, then i,=k for some number s, and we get the
path (ni i;--+k). Similaly starting with node m, we get the path
(mi ir_y+++1L). Then the loop (mniyiy---k, ---i;m) is the desired one.

In Fig. 6, (mniyig -+ ki -+ i:m)=(10,9,4, 3,5, 11, 10).
K

Fig. 6. Determination of the loop

§5. APPLICATION TO THE HITCHCOCK
TRANSPORTATION PROBLEM

Table 1 shows the well-known Hitchcock Transportation Problem.
This is a special case of the network transportation problem in §1—
no intermediate nodes, no capacity constraint, no arcs among sources
and no arcs among sinks. So we can apply our trec algorithm to the
Hitchcock problem, and get a new simple algorithm.
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We use the table-forms such as Table 2, 3,..- to represent the
algorithm, since these are more convenient than network figures. In a
table-form a row number coresponds to a source, a column number to
a sink, and an entry to an arc.

Table 1 cij
souce snik 5 6 7 8 9 supplies a:
1 4 9 8 10 12 24
2 6 10 3 2 3 18
3 3 2 7 10 3 20
4 3 5 5 4 8 16
demands ;| 4 20 10 18 20 | 78

I. Determination of Initial Tree

(i) Select a sink (sink 9 in Table 2 (i)) and set its potential to be
zero, and set the potentials of all sources so that the imputed costs of
all entries in the selected column are zero. Set the potentials of all
sinks to be zero, and compute the imputed costs of all entries (Table
2 ().

(ii) Set a potential of each sink to be the minimum of the imputed
costs of the column coresponding to the sink. Enclose by squares the
entries with zero-imputed cost (Table 2 (ii)).

When there are more than one zero in a column (except the selected
column in tep (i)), select one with lower row number of these zeros
(see treatment on degenerate case).

Then squared entries constitute an initial tree.

I1. Determination of Flows on Initial Tree

Set the flows on the entries enclosed with the squares so that each
column sum cquals to its demand and cach row sum cquals to its supply.

(Table 3 (i)).
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Table 2 5 6 7 8 9

u 0 0 0 0 (;

1) —12 - 8 -3 — 4 -2 0

(i) 2y —3 3 7 0 -1 0

3 -3 0 -1 4 7 0

4 — 8 -5 -3 -3 - 4 0

5 6 7 8 9

u; —8 -3 —4 —4 0
oo | L L : [ ]

(i) 2| — 3 11 10 4 3

3 -3 8 2 8 11 :
4 -8 3 0 1 L IL l

III. Iterative Process

When no negative flows exist 'on entries enclosed with the squares
the optimum solution is attained.

(i) Determination of the Scts K and L.

Select an entry with negative flow out of the entries enclo.ed with
the squares and mark it with v. Let its row number be £ and column
number [ (In Table 3 (1), k=1, [=9).

Label sinks, connected with the source % on the tree arcs (the entries
enclosed with the squares), with @.. Next label unlabelled sources,
«connected with cach labelled sinks on the tree avcs, with @ and its

sink number (Table 3 (i)). Continue above process until no nodes to
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be labelled exist. The set of labelled exist. The set of labelled nodes
with @ is K.
Starting with sink /, repeat the same process as above, using O
instead of ©@. The set of labelled nodes with O is L.
(i1) Determination of the Loop (nijis -« kl --- i,mn)
- Let
(GA}] O0=Min{{i;: icS-L, jTnK}

(S is the set of sources and T the set of sinks).
And let (m,n) denote the arc minimizing (5.1) (In Table 3 (iii),
m=2, n=8), and L(i) denote the labelled number of node i. Let us set
5.2 fHod=iv, Li=in o, L=k
Limy=1,, L(i,)=1,.y, -+, L(i,)=1
Then (niyig--- ki . immn) is the desired loop. (In Table 3 (iii),
(niyiyg oo kl---1,mn)=(8,4,6,3,9,2)
(i) Potential Up and Modifing Flow Values
Up the potentials of nodes €K, and calculate imputed costs. Enclose
the entry (mn) with a square, and delete the square of (kl). Further

calculate new flow values &';; from old flow values x:; by
xlmu=$mn '+'| Lt | )
x’iln-'_—l'[w"‘l Zet |y
5.3) .
x/xlz-r:l+| Lxi | )
-Z',mirlenir"'l it I .
In Table 3 (iii),

T'2s=Tog+ | T35 | =0+2=2

'y =Tis—| 36 |=18—2=16
L =g+ | L3s | =—24+2=0
Iy =236 — | L3 | =18—2=16
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T'ag= T+ | Tgs | =2+2=4
xizg:xgg“‘] Zis {: 18-2=186.

Other Z'ij=Zig
Table 3

®
0
O - [0 |[2][w]| ¢
@9 -3 1 10 4 ;‘
@9 ~ 3 8 2 8
@ -8 3 @ 1 8 || -2
9
® 0, 0 0 6
~8 -3 —4 -4 0
~1z {10”4“10] 2 0o
@ -3 i 10 ‘ 3
9
@9 —3 8 ¥ 8 1
- 8 3 1 I 18 t **-IBV

©loJoI10

-10 { lﬂ I 4 1 f 10 i 2
- 3 g 8 2 @ 18
5
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5 6 7 8 9

—~6 - 2 -1 0

1 -
NN e e
2 -3 9 8 2

IR A ]
4 -5 4 1 2 3

Treatment of the Degenerate Case
In the Hitchock transportation problem, treatment of the degenerate

(iv)

(=2}
oo

case is very simple because of non-negative imputed costs. We have
only to obey the rule that the entry with lowest row or column number
out of entries minimizing (5.1) should be taken into the new tree. For
example if {3 ={ss minimize (3. 1), then let (mn)=(23); if {;3=_{4 minimize
(5. 1), then let (mn)=(23); if {;3={;; minize (3. 1), then let (mn)=(23).

§6. TWO DIRECTIONAL CASE AND NO DIRECTIONAL CASE

So far we have considered one directional case, where every node
pair had at most on arc. Here we note about two directional case and

no-directional case.

Fig. 7. ‘Two-Dircctional Network Transportation
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(i) Two-directional Case
Fig. 7 shows a two-directional case, to which we can apply our tree
algorithm directly. Fig. 8 shows determination of the initial tree, and

Fig. 9 the iterative process.

Fig 8. Determimanon of Initial Tree
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(ii) No-directional Caze
For a node pair (ij) to have a no-directional arc with capacity M
means that; we can transport either from node i to node j or from i

(i)

(i}

Fig. 9. [Iteratine Process
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to j, but x,;j'.l‘j,‘:O, OéxijéM, OéxﬂéM.

Let denote (@ ¢ M) @ no-directional arc with capacity

M and cost coefficient C, then @—C (M) @ is equivalent

C_
to two-directional arc @) @ in our algorithm.
——{(M) —
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