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PREFACE 

Methods for solving network transportation problems were already 

proposed by L. R. Ford & D. R. Fulkerson [1], M. Iri [2] and T. Fuji­

sawa [6]. The basic idea of these methods, were primal dual method 

[3]. 

A new algorithm for solving network transportation problem is 

proposed. It is basically the dual method [4] from the view point of 

linear programming theory, but from the view point of network topology 

the idea of tree is the essential feature of our algorithm. 

Applying our algorithm to the Hitchcock transportation problem, 

we get a new simple algorithm for solving this problem. 

§ 1. THE NETWORK TRANSPORTATION PROBLEM 

Formulation 

Fig. 1 shows an example of the network transportation problem we 

shall treat. Node 1 and 2 are sources, and their supplies are 15 and 12 

respectively. Node 6 and 7 are sinks and their demands are 6 and 18 

respectively. The number with parentheses on each arc shows the 

capacity and the number without parentheses the cost per unit flow. 

The problem IS to find the transportation program minimizing the total 

cost. 
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194 Iwaro Takahashi 

We may formulate the problem in general as follows. Let ai be the 

supply of source i, b j the demand of sink I, Cij the unit cost on arc 

(ij), and Mij the capacity of arc (ij). 

~(9) 
, (7~ 

9 

6 ~~ 

110 ~ ~ V's 122 
-.:cv~. -4-(14) 7 18 

Fig. 1. A Network Transportation Problem. 

We wish to minimize 

(1. 1) L CijXij 
(ij)eA 

subject to 

conservation constraints: 

(1. 2) 

capacity constraints: 

(1. 3) 

1 
ai=LlXil 

LIXlj=b j 

LIXli= LkXik 

nonnegativityconstraints: 

(1. 4) 

and 

(1. 5) 

for iES, 

for JET, 

for (ij)EA, 

for (ij)EA, 
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The Tree Algorithm for Solving Network Transportation Problems 195 

where S is the set of sources, T the set of sinks, I the set of intermediate 

nodes, and A the set of arcs on the given network. 

We insert slack variables Xji such that 

(1. 3') 

0.4') 

for (ij)EA, 

for (ij)EA. 

The problem now becomes to minimize (1. 1) subject to (1. 2), (1. 3'), 

(1.4') and (1.4). 

Dual Problem 
The dual problem of (1.1), 0.2), 0.3'), 0.4), 0.4') is to maximize 

(1. 6) 

subject to 

0.7) 

(1. 8) Vij;;;;;O. 

Since Mds are ~O, the optimal values of Vij (under the given value 

of Ui) are determined such that 

(1. 9) 
if Cij-(Uj-Ui)~O, 

if Cij-(Uj-Ui)<O. 

So we consider hereafter only Ui/S which satisfy condition (1. 9). 

Further we call Ui node potentials, and 

(1. 10) 

the imputed cost of arc (ij). 

§ 2. TREE ALGORITHM 

The Concept of a Tree 

A tree is a minimum set of arcs which connects (without considering 

direction) all of nodes. In other words, a tree is a set of arcs which 
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196 [waro Takahaahi 

connects all of nodes and has no loops. We call a cotTee a set of arcs 

which are not on a tree. 

Two important properties of trees and cotrees are 

( i ) One arc on a tree divides the nodes on the network into two 

groups, 

(ii) One arc on a cotree determines one loop which consists of 

the arc and some arcs on the tree. 

For example in Fig. 4 (i) solid arcs constitute a tree and dotted 

arcs a cotree. Arc (3,5) on the tree divides all nodes into labelled and 

unlabelled nodes. And arc (4,6) on the cotree determines a loop (4, 

6,3,5,7,4) which consists of arcs (6,3), (3,5), (5,7) (7,4) on the tree and 

(4,6) itself. 

Tree Algorithm 

Our algorithm consists of three main parts. 

I. Determination of the Initial Tree 

We select a tree on the given network such that the imputed costs 

of the arcs on the tree are all =0 and the imputed costs on the cotree 

are all ~O. Detailed procedure is as follows: 

First set the potentials of all the nodes equal to zero, draw all the 

arcs with dotted line (see Fig. 2 (i» and label an arbitrary node, and 

then repeat the following iterative process. 

Let X be the set of nodes which have been labelled, and X be the 

set of nodes which have been unlabelled. Raise up the potentials of 

all the nodes in X by 

(2. 1) 

where ~ij IS the imputed cost of arc (ij) (see (1.10». 

When arc (ij) (iEX, JEX) does not exist (see Fig. 2 (v», 

decrease the potentia Is of all the nodes in X by 

(2.2) O'=Min (~ij: iEX, JEX). 
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(i) 

0,t-------.{ 

10 , 
" " 

0'r----~1 

(ii) 

(iV) 

(Vi) 

I~ 

" " Glr----~ 

Fig. 2. Determination of Initial Tree 

Draw the arcs, whose newly determined imputed costs are zero, 

with solid lines, and label the nodes having been connected with the 

solid lines (see Fig. 2 (ii)). 

When all nodes have been labelled, the set of arcs with solid is 

the desired tree (see Fig. 2 (vi)). We will show the treatment or the 

degenerate case later in this ~. 
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198 lwaro Takahashi 

11. Determination of Flows on the Initial~Tree 

Let Xij=O for (ij) on the initial cotree. (see Fig. 3 (i)). 

Next determine flows Xij on the initial tree so that Xij satisfy the 

conservation constraints 0.2), neglecting the capacity constraints 0.3) 

and the nonnegativity constraints (1. 4). The actual procedures are as 

follows: Let T denote the set of arcs on the initial tree. Select an 

arbitrary end node* of T, and determine the flow value of the arc incident 

to the end node to satisfy the conservation constraints on the mode. 

Then delete the arc from T. Repeat above process until the values of 

15 
9 

(j) 

12 18 

15 

(ii) 

12 18 

Fig. 3. Determination of Flows on Initial Tree 

* All end node of a tree is a node incidenl to unly one arc of the tree 
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The Tree Algorithm for Solving Network Transportation Problems 199 

the arcs on the tree a:re all determined (see Fig. 3 (i». 

Next determine the slack variables Xji by 0.3'), neglecting 0.4') 

(see Fig. 3 (ii». 

Hereafter let Xij denote both flow and slack variables. For example 

X41( = -6) in Fig. 4 (ii) shows the slack variable in the arc 0,4). 

Ill. Iterative Process 

We have determined all Xij m proccss 11. On the initial cotrcc 

Xij are all = O. If Xij on the initial trec are all ~O, then these con­

stitute an optimum solution. If not, we go into the following iteration. 

In iterative process let Xij denote the given flow and slack variables, 

and let X'ij denote the newly determined flow and slack variables. Wc 

use 'ij and " ij by the same rule. 

Select a Xkl<O on the tree (where Xkl may be a flow or a slack), 

the node pair (k, I) devides all nodes on the network into two groups, 

K and L, where K is the set of all nodes connected with node k on 

the tree arcs, and L is tae set of all nodes connected with node l on 

the tree arcs. (In Fig. 4 (iv), (k,/)=(6,3), K=(6,4,7,5), L=(3,1,2». 

Raise up potentials of all nodes in K, until for the first time the 

newly determined imputed cost for an arc of the cotree becomes zero. 

That is, let 

(2.3) 

where 

O=Min{(~;j: ~;j~O, 

(I i;;n I : ~ij;:SO, 
(ij)EA r,,,) , 

(ij)EAK!.)} , 

(2.4) {ALK=the set of arcs (ij)",,(l k), iEL, jEK, (ij)EA, 

AK!.=the set of arcs (ij)~,(k I), JEL, iEk, (ij)EA. 

When the arc which meets the conditions of the right hand ~ide 

of (2.3) does not exist, the given primal problem is infeasible (the dual 

optimum solution is infinite). (In Fig, 4 (iv), .11./,= {(l4), (25), (35)}, 

AKK= {(43)}, 0= 1). 
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200 I waro TakahaBhi 

Let (m, Il) denote an are which attains Mill. in (2.3), then (m, n) 

which is an arc on the cotree determines a loop (mn i l i2 •• ·kl·· ·i,m), 

where Cn, i l ) (il, i2)· •. (k, 1)· .. (i" m) are on the tree. (In Fig. 4 (iv), (m, n) 

=(35), (mni1 i2 ,,·kl ... i,m)=(3 5 7463). 

Let 

(2.5) 

X;,m ==Xi,.m +x, 

where 

(2.6) X=IXkll, 

then these and otheJ' X'ij=Xij are new improved flows and slacks. 

Raise up potentials of all nodes in K by 0, that IS 

(2.7) 11';=11;+0 for iEK 

and compute "ij from (1.10). 

Taking (m, n) into and deieting (k, l) from the tree, we get the new 

improved tree (In Fig. { (ii) is the newly improved tree from (i». 

Continue above iteration process until all Xij (flows and slacks) 

bccomc non-negative (Fig. 4 (v». 

Optimum solutions are Xi} on (ij)EA (Fig. 5). 

Treatment of the Degenerate Case [ 5 1 

When 1110l'C than onc al'CS minimizc (2. I) (2.2) or (2.3), which arc 

of these should be taken into the trec.J 

Number the arcs in an arbitrary order, for example like Fig. 2 Ca). 

Consider arbitrary small 2>0, 
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(iV) 

12 

15 

(v) 

12 

15 
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Fig. 4. Iterative Process 

9 

12 18 

Fig. 5. Optimum Solution 
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18 
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_2 

~ 1 

~--

~_3 ___ 4 ___ ._~10 )---11~ 
Fig. 2 (a). Numbering of Arcs 

and let 

(2.8) 

be the imaginary cost coefficient of arc (ij)=L-. Then in every iterative 

step imaginary imputed costs on any two arcs do not take the same 

value. 

Actual procedures are as fol1ows: 

(i ) Case (2. I) or (2. 2) 

If for example ~ij=~kl mInImIZe (2.1) or (2.2), the numbers of arc 

(ij) and (kl) are p and I) respectively and 11>1), then take arc 11 into 

the tree. 

(ii) Case (2.3) 

Prefer (r,s)EA r,/\ to (p, q)EAKL , higher arc-number within A LK, and 

lower arc-number within AKL. For example; if i:T3= I I;pq I minimize 

(2.3) and (r, 5) ,=ALK, (p, q)EAKL' then take (r, 5); if I;r.,=(pq minimize 

(2.3), (r,s), Cp, q) EALK, and the arc number of (r,s» the arc number 

of Cp, q) then take (r, s); if !;;rs= ~pq minimize (2.3), (r, s), (p, q)EAKL' and 

the arc number of ~,s» the arc number of (P, q), then take (P, q). 
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§ 3. VALIDITY OF THE TREE ALGORITHM 

Here we show that tree algorithm terminates in a finite number of 

iterations and that we get the optimum solution in its final stage. 

We consider Ili and Vi} satisfying (1. 9) as dual variables, and set 

conditions 

(3.1) {
X;j=o 

Xji=O 

if Cij=Cij-(71j-71i»O, 

if Cij<O, 

then we call flows and slacks Xij which satisfy (3.1) contact to Ui and Vij. 

Theorem 1. 

Primal feasible Xi} (flows and slacks), which are contact to dual 

feasible Ui, Vij, are optimum. 

Proof. 

Construct the following formula from (1. 1), (1. 2) and (1. 3'). 

(3.2) L: CijXij- L: Il,(ai-L:,x;,) 
(ij)EA iES 

- L: u;(L:"Xl'i-L:,X/,) 
iEI 

+ L: vij(Mij-xij-Xj;) 
(ij)EA 

== L: (Cij-(Uj-71i)-Vij)Xij+ L: (-V;j)Xji 
(ij)E'A (ij)EA 

+ L: bill i - L: aiui+ L: Mijv/j. 
iET iES (ij)EA 

From (1. 9) and (1. 10), (3.1) is equivalent to 

(3.3) {Xij=O 

Xj;=O 

if Cij-(Uj-Ui)-Vij>O, 

-Vij>O. 

So for Xij contact to Ui,Vij the right hand side of (3.2) 

which is the objective function of the dual problem. Further for feasible 
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Xij the left hand side of (3.2) 

which is the objective function of the primal problcm. 

Therefore from the basic dual theorem the primal feasihle ,1:,j con­

tact to Ui, Vi; are optimum. q.e.d. 

Theorem 2. 

(i) In every iteration of thc trce algorit hm (~2, 11 n £10\\', ;l1ld 

slacks Xij satisfy the conservation constraints (1,2) ;\11d the modified 

capacity constraints (1. 3'). 

(ii) In every iteration of the tree algorithm (~2, Ill) flO\\s and 

slacks Xij are contact to Ili and Vu satisfying (1. 9). Hcnce from (i) 

(3.3) 

Proof. 

Xij=O 

xij=Mij 

if ~ij>O. 

if ~ij<O. 

(i) is clear from procedures in § 2 II and formula 12.5). 

(ii) In the initial step all (ij arc ~O, if ~ij>O then arc (ij) IS on 

the cotree, so Xij=O from § 2 11. Therefore thc initial flows and slacks 

arc contact to dual variables. 

In the iterative process, the potential-up proccc!1ll'CS (2.7) al1d thc 

flow-computation (2.5) assert that the ncwly dctcrmined f1oll's and slilcks 

Xij are contact to the newly determined dual variablcs /I, and V'i' q.c,d. 

Theorem 3. 

Every iteration of the algorithm (~2, IlIl illCl'eilSeS the \';i1nf' 01' thc 

objective function of the dual problem by 1J;r:, \\'!tCIT 11 is to he deter­

mined by (2.3) and x by (2.6). 

Proof. 

Case (i): .r" IS a flow (In Fig. 4 0\ (kl)c-c(35)), 
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From Theorem 2 (i), the total flows into K is equal to the total 

flow out of K. That is 

L: :Cij+ L: a =x,,+ L: xu+ L: bj 
(ij)E.1LK, ~;j<" iESnK (ij)EAKL, C;j<o· jETnK 

which we can rewrite by (3.3) as 

(3.4) 

So we hayc 

The left hand side of (3.5) is equal the increase of the objective 

function of the dual problem due to (2.7). q.e.d. 

Case (ii): X<l is a slack (in Fig. 4 (ii), (kl)=(l4» 

K L 

Fig. 5. b 

By the same reasoning as (3.4), we have 

So we have 
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=-(}X,I. 

The left hand side of (3.7) is equal to the increase of the objective 

function of the dual problem due to (2.7) q.e.d. 

To summarize Theorems I 'lnd 2 assert that, if in our tree algorithm 

Xi) (flows and slacks) are all ~D, then we have attained the optimal 

solution, and Theorem 3 asserts that our tree algorithm (with treatment 

on degenerate case) terminates in a finite number of iterations; {The 

number of different trees on the given network is finite. Each tree in 

our algorithm determines a value of rhe dual objective function. The 

values st rictly increase (in imaginary imputed cost) because of Theorem 

3, so that the trees which appear in our algorithm are all different. 

Therefore iteration terminates in a finite number}. 

§ 4. NOTES ON COMPUTERIZING THE TREE ALGORITHM 

To determine the loop (!Il1I i1 i~· .. kl· .. i. m) in our algorithm in § 2 

II I would be rather difficult to program for digital computers. It has 

connection with determining the sets of nodes ]( and L. So here we 

shall make a remark on these procedures. 

Determination of K and L 

In Fig. 6 let 1.:=3, 1=5. Label \\-ith number 1.:=3 the nodes con­

nected with node k=3 on just one arc of the tree (except node 1=5). 

Select a node, say node 4, of labelled nodes, and label with nurnber 4 

the unlabelled nodes connected with node 4 on just onc arc of the tree. 

Continue above process until no nodes remain to be labelled. Then 

thc set of all the 1,1bcllcd nodes is K. 

Starlillg \I·ill! 1=5, the same pl'()I:euurcs as above detcrmines the 

set L 
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Determination of the Loop Cm n it i2 • •• kt· .. irm) 

Let the labelled number on node n be ib and let labelled number 

on node it be i2,"', then i,=k for some number s, and we get the 

path (n it i2 •• ·k). Similaly starting with node m, we get the path 

Cm ir ir_t · •. [). Then the loop Cm Il it i2 ... kt ••• i,-m) is the desired one. 

In Fig. 6, (m Il it i2 ... kl ... i,m)=(lO, 9, 4, 3, 5,11,10). 

K L 

Fig. 6. Determination of the loop 

§ 5. APPLICATION TO THE HITCHCOCK 

TRANSPORTATION PROBLEM 

Table 1 shows the well-known Hiteheoek Transportation Problem. 

This is a special case of the network transportation problem in § 1-

110 intermediate nodes, no capacity constraint, no arcs among sources 

and no arcs among sinks. So we can apply our tree algorithm to the 

Hitcheoek problem, and get a new simple algorithm. 
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We use the table-forms such as Table 2, 3, ... to represent the 

algorithm, since these are more convenient than network figures. In a 

table-form a row number coresponds to a source, a column number to 

a sink, and an entry to an arc. 

Table 1 C ji 

~k souce 5 6 7 8 9 
supplies ai 

1 4 9 8 10 12 24 
2 6 10 3 2 3 18 
3 3 2 7 10 3 20 
4 3 5 5 4 8 16 

demands bi 10 20 10 18 20 78 

1. Determination of Initial Tree 

(i) Select a sink (:,ink 9 in Table 2 (i)) and set its potential to be 

zero, and set the potentials of all sources so that the imputed costs of 

all entries in the selected column are zero. Set the potentials of all 

sinks to be zero, and compute the imputed costs of all entries (Table 

2 (i)). 

(ii) Set a potential of each sink to be the minimum of the imputed 

costs of the column coresponding to the sink. Enclose by squares the 

entries with zero-imputed cost (Table :2 (ii)). 

When there are more than one zero in a column (except the selected 

column in tep (i)), select one with lower row number of these zeros 

(see treatment on degenerate case). 

Then squared entries constitute an initial tree. 

H. Determination of Flows on Initial Tree 

Set the flows on the entries enclosed with the squares so that each 

column sum equals to its demand and eaeh row sum equah to its supply. 

(Table 3 (i). 
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Table 2 5 6 7 8 9 

U, 0 0 0 0 0 

1 -12 - 8 - 3 - 4 - 2 0 

(j) 2 - 3 3 7 0 - 1 0 

3 - 3 0 - 1 4 7 0 

4 - 8 - 5 - 3 - 3 - 4 0 

5 6 7 8 9 

Ui -8 -3 -4 -4 0 

-12 01 ID 2 0 
(ji) 2 - 3 11 10 4 3 Cl 

3 - 3 8 2 8 11 Cl 
4 - 8 3 0 1 I ID 

Ill. Iterative Process 

When no negative flows exist' on entries enclosed with the square, 

the optimum solution is attained. 

( i ) Determination of the Sets K and L. 
Select an entry with negative flow out of the entries enclo.ed with 

the squares and mark it with IJ. Let its row number be k and column 

number l (In Table 3 (i), k=l, 1=9). 

Label sinks, connected with the source k on the tree arcs (the entries 

enclosed with the squares), with @.. Next label unlabelled sources, 

.connected with each labelled sink> on the tree arcs, with @ and its 

sink number (Table' 3 (i)). Continue above proce,s until no nodes to 
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be labelled exist. The set of labelled exist. The set of labelled nodes 

with @ is K. 

Starting with smk t, repeat the same process as above, using 0 
instead of @. The set of labelled nodes with 0 is L. 

(ii) Determination of the Loop (n il i2 ... kl ... i,-mn) 

Let 

(5. 1) 

(S is the set of sources and T the set of sinks). 

And let (m,ll) denote the arc minimizing (5.1) (In Table 3 (iii), 

m=2, n=8), and L(i) denote the labelled number of node i. Let m set 

(5.2) { L(n)=i~, L(~l)=l!, ... , L(is).=k 

L(m)=l,-, L(lr)=l'_l>"', L(z,)=l 

Then (11 il i2 ... kt ... i,mll) is the desired loop. (In Table 3 (iii), 

(11 i l i2 ••• kl··· i,mn)=(8,4,6,3,9,2» 

(iii) Potential Up and Modifing Flow Values 

Up the potentia Is of nodes EK, and calculate imputed costs. Enclose 

the entry (mu) with a square, and delete the square of (kl). Further 

calculate new flow values X'ij from old flow values Xij by 

(5.3) 

In Table 3 (iii), 

x'lfLu=Xmn -t-j XId I, 

X' mi,= Xmir ---I Xt.;( I . 

X'26=X26+ I x361 =0+2=2 

X/ 48=x46-1 :V36 I = 18-2= 16 

':C/46=X46 + I x361 = -2+2=0 

X/ 36=x36-1 :ra61 = 18-2= 16 
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Other X'ij=.1Jij. 

Table 3 

Iwaro Takahashi 

X'3\1=X39 + 1 x361 =2+2=4-

x'29=x29-1 x3s1 = 18-2= 16. 
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5 6 7 8 9 

-6 - 1 -·2 -1 0 

-10 0CJ0 1 2 

2 - 3 9 8 2 00 
- 3 6 ~J 6 8 D 

(iV) 

3 

4 - 5 4 1 2 0 3 

Treatment of the Degenerate Case 
In the Hitchock transportation problem, treatment of the degenerate 

case is very simple because of non-negative imputed costs. \Ne have 

only to obey the rule that the entry with lowest row or column number 

out of entries minimizing (5.1) should be taken into the new tree. For 

example if (23 = (25 minimize (5. 1), then let (mn) = (23); if (23 = (43 minimize 

(5.1), then let (mn)=(23); if (23=(57 roinize (5.1), then let (mn)=(23). 

§ 6. TWO DIRECTIONAL CASE AND NO DIRECTIONAL CASE 

So far we have considered one directional case, where every node 

pair had at most on arc. Here we note about two directional case and 

no-directional case. 

Fig. 7. Two-Directional Network Transportation 
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(i) Two-directional Case 

Fig. 7 shows a two-directional case, to which we can apply our tree 

algorithm directly. Fig. 8 show~ determination of the initial tree, awl 

Fig. 9 the iterative process. 

1 

1//(~r~:" ____ -_-_-_________ 0, 6 
/,,\.1 I~' / / \ I"" 

/ / \ \2 11 / ' 
// ,,/ \ \ 1 I .... , 

,," ,," \ \ 1 1 " 
" ;/1 \ \ /' , o ---- 1 \ \ I / 2 0' _ --... \ \ / I _-r 2 

2" - _ - - _2 \. \' ,2 _ - - - 0 
-___ -_~ v ,_---- _------

- 0. --- ...... - 0 _----....... :""-4 

/0 ----~---: 0" 
1// "\ \ 1~6 
,," /" \ \2 /", 

// // \ \ I " 
/ / \ \ / "-
"" 1 \ \ '3 "-

./ ;/1 \ \ ' 0' tQ\ --__ \ \' _-r ~ \:::...J -__ 2 \ \ I 1_--- ~ 
~-- -- '\.. \ / --- ---2--__ --~ ,--- _-----------0------ 5 

III 

d
0,...---------0,,6 
",\2 '~ " \ I, 

// \ \ I " 
/ \ \2 / , 

/~ \ \ / " 
~" 1\ \ /3 ' o -----_ '\ / _1----- 0 ,-- --~- \ \ i ----- ---

3-- __ ...... -.:1 --- _------ ~ ------_~ ... ---5 

Fig I). D"lerrnltUIWIl ut" Initial Tree 
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(ii) No-directional Ca,e 

For a node pair (ij) to have a no-directional arc with capacity M 

means that; we can transport eitheJ' from node i to node j or from 

(i) 

;p;f
0 __ ~_:(!h~ 

3 2",/"\ '\2 21; / 3 """ 
'" \ \ I " 

"'~ \ \ 1 "" 
__ fn\ ;'" \ \ 0 / ~I" 

3~ ----11.2; 1\ \ /3 _2- 0--3 
.,............. - ....... _" \ ; ---- -

3 .......... ..... ._-- _--------- 0 --5-----

(ij) "",0 ~-~-'0', 
~ 

,,"'\ \. 2 I ~" 
1 '" '" ,\ I 3 ,6 
'" /'" \ \2 I " 

'" /'" \ , " '" ,3 \ \ I 

CV 1 \ \ I~ 1 - -- 0 ,\ J _--1\-- _---- ---
CV ------_ 2 ....--:5 

Fig. 9. Iteratine Process 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



216 Iwaro Takahashi 

to j, but Xij'Xj;=O, O;:;;;x;j;:;;;M, O;:;;;xji;:;;;M. 

Let denote CD--C--(M)--~(J) no-directional arc with capacity 

M and cost coefficient C, then (j) C . (M)--- (J) IS equivalent 

C --·(M)---. 
CD (J) in our algorithm. 

<-·-CM)-C-
to two-directional arc 
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