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§o. PREFACE 

A new algorithm is proposed" for solving resource allocation problem 

(§ I). It is basically dual method (I) in linear programming theory. 

But in view of network topology the idea of tree or forest plays essential 

role in our algorithm, as in (ll). E. Balas and P.L. Ivanescu, K. Eisemann 

and J.L. Lourie have treated the same problem. The me hods are 

basically primal method (IV), (V), (VI). 

§ 1. RESOURCE ALLOCATION PROBLEM 

Definition 

Let us call the following problem resource allocation without slack 

(1·1) 

(1.2) 

(1·3) 

(1·4) 

m n 

L: L: CijXij -c> Min., 
;=1 j=1 

n 

L: Xij=ai (i= I-m), 
j=1 

m 

L: rijxij=b, (j=I-n), 
;=1 

Xi'~O (i=l-m, j=l-n). 

(a;, bj , Ci'~O, ri,>O). 

For example each of m resources is to be allocated to produce n 

products. Let ai denote the available amount of i th resource (i=l-m), 

and bj the demand of jth product (j=I-n). Unit amount of ith 
172 
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Tree Algorithm for Solving Resource Allocation Problem 173 

resource produces rij of j th product at a cost of Cij. Find allocation 

program minimizing total cost. 

Instead of (1. 2) we have often inequality constraints 

(1. 2)' 
• I: Xij~ai (i= I-m). 

j=1 

Let problem (1.1) (1.2), (1·3) (1.4) be called resource allocation with 

slack, which we treat in § 5. 

Network Representation 

We represent resource allocation without slack (1.1)-(1.4) in 

network figure as Fig. 1 (a). It shows that the resource allocation 

problem is the same as transportation problem except that when a 

commodity flows from node i to node j its amount is multiplied by ri}. 

Let the coefficient rij be called trancemitance. Of course each source may 

not connect with every sink directly, so in general we have a network 

shown in Fig. I (b). 

(~ (hl 

Fig. 1. Network representation 01 resource allocation 

Dual Problem 

Resource allocation (without slack) in general network (Fig. I (b» 
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174 [ward Takahaahi 

is formulated as follows: 

(1·5) 

(1·6) 

(1·7) 

(1·8) 

L CijXij ----> Min., 
(i, j)EA 

ai= LXi~, iES, 
Jl 

Lrakxak=bk , kET, 
a 

X ij;;;; 0 , (i,j)EA, 

where S denotes the set of source nodes, T the set of sink nodes, and A the 

set of arcs. Dual problem of above is: 

(1·9) 

(1·10) 

L bkuk- L aiU; ----> l\1ax. 
kET iES . 

Cij+Ui-rUUj;;;;O, (i,j)EA. 

Let us call Ili node potential of node i and 

(1·11) 

imputed cost of arc (i,j). 

§ 2. GENERAL ALGORITHM BASED ON DUAL METHOD 

We reinterpret dual method (1) as follows. Let us consider a 

primal linear program 

(2·1 ) C'X ----> Min., Ax=b, x;;;;O 

and its dual program 

(2·2) by ----> Max., c;;;;A'y. 

Select linear independent column vectors PI,'" , Pm of A, such 

that y determined by 

(2·3) y'Pi=Ci (i= I-m) 

is dual feasible (where Cl, •• " Cm are components of C corresponding PI , 

.. " Pm respectively). 

If some of XI , ••. ,Xm determined by 
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Tree Algorithm lor Solving lle.ource Allocation Problem 175 

(2·4) 

are negative, then select one of them, say XI. Delete the equation for 

i = 1 from (2·3) to get a relaxed system of equation 

(2.5) 

The solution of (2·5) has one parameter 0 to be arbitrarily chosen, 

so we denote it 

(2·6) 

where Yi (i=l-m) is the solution of (2·3). 

Then we can see easily that r; (whose components are Tji (i=l-m» 

is orthogonal to Pi (i=2-m), that is 

(2·7) Tj'Pi=O (i=2-m). 

Further from (2·4) we have 

(2·8) 

The objective function of dual program for y is 

(2·9) 

Let us select 

(2·10) { 
0<0 if Tj'PI>O, 

0>0 if r/PI<O 

then we can increase the objective function of dual program (because 

XI<O), and 11 is also dual feasible for small* (absolute) value of 0. 

(*If a column vector Pk of A which does not belong to [PI,···, Pm] 

satisfy Y' Pk=Ck, that is degenerate occurs, then for any non zero 0,11 
breaks feasibility. However we can avoid the case by purterbation 

procedure (Ill». 

Consideirng as above, we have the following general algorithm; 

Step 1: Selcct lincr independent basc vectors PI,···, Pm such 

that y determined by (2·3) is dual feasible. 
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178 twaro Takalaa.lai 

Step 2: If Xl> ... , Xm determined by (2·4) are all non-negative, 

then these are optimum. If some of them are negative, then select one 

of them, say Xl. 

Step 3: Delete equation for i= I from (2·3) to get (2·S), then (2·S) 

relaxes the constraints by one parameter. In (2·S) the solution can 

move freely (by one parameter) and the direction is r; (see (2·6». 

Step 4: Move the solution from y in the direction (according to 

rule (2·10» and stop not until feasibility of dual program is broken 

somewhere, to get new better solution y, and a new base vector Pk • 

Return to Step 2 with new basis [P2 •• ·PmPk ). 

§ 3. PRELIMINARY CONCEPTS AND GENERAL 

DESCRIPTION OF TREE ALGORITHM 

O-tree, I-tree, forest and path characteristic 

On a given network (such as Fig. I (b) or Fig. 2), let us call a 

sub network, which contain no loops, O-tree and a sub network which 

contain only one loop, I-tree. Further let a sub network be calledforest 

if components of the sub network are O-trees or I-trees and every nodes 

of the given network is contained in the sub network. 

In Fig. 2, for example, Tl={(l,2), (1,4), (1,6), (3,2), (3,6), (S,6)} 

is a I-tree and T 2= {(7, 8), (7,10), (9,8), (9,12)} is a O-tree, and the 

set of all solid arcs {Th T 2} is a forest whose components are Tl and T 2 • 

A path characteristic is the product of trancemitances of arcs with 

same direction as the path and reciprocals of trancemitances of arcs 

with opposite direction on the path. In Fig. 2 characteristic of path 

(S,6,3,2)=2x(1(3)x4=8(3. Loop characteristic is defined same way. In 

Fig. 2 characteristic of loop (1,2,3,6, 1)=3x(l(4)x3x(l(1)=9(4. 

Several Propertier 

Property I: Flows on a I-tree which satisfy conservation con­

straints are uniquely determined if and only if the loop characteristic 

is not unity. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Tree Algorithm for Solving Ilesource Allocation Problem 177 

In Fig. 2, Tl has non unity loop characteristic and flows of T1 

which satisfy conservation constraints are as follows; X12= -4.6, xu=7.5, 

X16=6.l, xS2=6.7, X86= 1.3, XS6= 10. 

Property ll: Node potentials on a I-tree which yield zero 

imputed cost to all arcs on the I-tree are uniquely determined if and 

only if the loop characteristic is not unity. 

In Fig. 2, node potentials on Tl which yield zero imputed cost 

to all arcs on Tl are as follows; Ul=--O.l, u2=0.3, ua=-0.8, u,=1.2, us= 

-2.2, u6=0.9. 

Property Ill: Node potentials on a O-tree which yield zero imputed 

cost to all arcs on the O-tree has one parameter () to be arbitrarily 

chosen. 

In Fig. 2, node potentials on T:l which yield zero imputed cost 

13 

30 

17 

Fig. 2. O-Tree, l-Tree, Forest 
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178 Iwaro Takahashi 

on T2 are as follows; U7=(), us=6+29, U9= 1/2+28/3, ulo=2/3+9/3, UI2 

=9/10+20/15. 

Gain of O-tree 

Consider a O-tree Z. The increasing amount of the function 

L: biui- L: a,Ui (a part of dual objective function) by raising up 
iETnZ lESnZ 

node potentials of Z, with imputed costs of arcs on Z to be invariant, 

play an important role, and let the amount be called gain of the O-tree 

Z. More precisely, we call the increasing amount (above mentioned) 

per unit increasing amount of Ui (iEZ) gain of Z to node i. For example 

in Fig. 2,gainof T2 to node 7 is 2Q.x2+17xl/3+16x2/15-9xl-7x2/3 

=512/15. 

General Description of Tree Algorithm 

( i) Initial Treatment 

Choosing appropriate node potentials, construct an initial forest 

F composed of I-trees such that every arc of F has zero imputed cost, 

every remaining arc has positive imputed cost and the characteristics 

of loops contained in F are not unity.* 

Let flows on arcs which are not contained in F be zero, then 

determine flows on arcs in F so that conservation constraints are satisfied 

(see Property I). (F is corresponds to initial basis in general dual 

method). 

(ii) Iterative Process 

If flows on F are all non negative, then optimal solution attains. 

Otherwise select one of arcs with negative flows and delete it out of F, 

to get F'. Then one component of F' becomes a O-tree which we denote 

Z. 

Raise (or lower according to rule (2·10)) the node potentials of Z 

with imputed cost of arcs on Z to be invariant (see Property Ill), until 

for the first time an imputed cost of an arc which is not contained in 

* We assume such initial forest exist for convenience to illustrate but detail~d 
algorithm in § 4 (or § 5) i, valid in the case lacking in the' assumption. 
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Tree Algorithm (or Solving Resource Allocation Problem 179 

F become zero. 

Adding the arc with newly zero imputed cost to F' we get a new 

forest. 

Repeat above procedures. 

§ 4. TREE ALGORITHM FOR RESOURCE 

ALLOCARION WITHOUT SLACK 

We state tree algorithm for resource allocation without slack 

(1.1)-(1.4) through an example shown in Table 1. 

Table I 

Cij Tij 

5 6 7 4 5 6 7 a. 

6 7 10 

I 
2 3 1 9 

2 5 3 17 3 2 2 1 4 3 15 
I 

3 14 11 2 15 
, 

3 3 2 5 10 
! 

--~~----

bj 13 15 30 20 

In table-from such as Table 1 or Table 2, a row number corres­

ponds to a source node, a column number to a sink node and an entry 

to an arc. 

( i) Determination of Initial Forest 

Step 1: Select a sink, say sink 7. Set 

U7=0, Ul= -C17 u4=Min.i «Ui+ci4)/ri4) 

U2= -C27 u.=Min.i «Ui+ci.)/ri.) 

Us= -C37 us=Min.i «Ui+ciS)/riS), 

and compute c:.ij=Cij+u,-rijuj. Square entries with zoro imputed costs 

(Table 2). (When more than onc zeros in a column, except column 7, 

select one with highest row number of these zeroes-sec treatment 011 
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180 'lwarfJ Takaha.hi 

degenerate case). Then squared entries construct a O-tree. 

Step 2: Set Yj, = 1 and Yji to be reciprocal of characteristic of the 

path on the O-tree f!"Om node 7 to node i for each i, and compute 

~ij=Yji-rijYjj for all entries-of course ~ij on the O-tree are zero. 'ij/~ij 

is shown in each entry without square in Table 2. 

Step 3: If for all arcs (i,j) ~ij=O then let initial forest F to be 

the O-tree and go to Step 4. If some ~ij>O then select 0 to be negative 

and determine a magnitude of 0 to be the maximum value which 

satisfy 

(4·1 ) 

for all entries (i,j). In our example 8= ---':'4/5* for which arc (2,5) 

satisfies (4·1) with equality sign. 

Add the arc to the O-tree to get initial forest F which is itself 

I-tree and does not contain loops with unity-characteristics. (Of course 

more than one such arcs exist we select one with highest arc number). 

Step 4: Compute new node potentials u/ = Ui + (h}i and imputed 

costs 'i/='ij+8~ij (Table 3 (i». Set flows on arcs not contained in F 
to be zero, and determine flows on F to satisfy conservation constraints** 

(Table 3 (i ). 

( ii ) Iterative Process 

Step 1: If all flows on F are non negative, optimum solutions 

attain. Otherwise select one arc (m,ll) of arcs with negative flows on 

F, and delete it from F to get F', then further to get a O-tree z. 
(In Fig. 3 (i), (m,n)=(l,7), 7= {(l,4i}. In Fig. 3 (ii), (m,n)=(3,7), Z= 
{(3,4), (3,5), (3,6), (1,4), (2,5), (2,7)}). 

* Of course in our example we can select 11 to be positive and set 0= 17/2. 
Generally if ~ij;:;;O for all arcs then we must set 11 to be negative and if ~ij~O for 
all arcs then we must set 11 to be positive, otherwise we can arbitrarily select sign 

of 11. 

** When F is O-tree such flows may not exist. In this case feasible solution does 

not exist. 
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Step 2: 

In case mEZ, 1I$Z: 

Raise up potentials of Z with imputed cost on Z to be invariant. 

(4.2) The gain of Z to node m= -Xmll • 

In case 1IEZ, m$Z: 

Lower potentials of Z with imputed cost on Z to be invariant. 

(4·3) The gain of Z to node n= -TmnXmn• 

In case both m and nEZ: 

Raise up (Lower) potentials of Z with imputed cost on Z to be invariant 

if the gain of Z to node m is positive (negative) 

(4·4) The gain of Z to node m=(7J"-I)x.,,,. 

(The gain does not vanish because F does not contain loop with unity­

characteristic). (In Fig. 3 (i), m=IE:Z={(l,4)}, so set}jl=I,1j4=1 other 

7Ji=O. In Table 3 (ii), both m=3, n=.,7EZ, so set 1ja=l, /'}.=1/3, 1j'.=1/2, 

7J6=1/5, 7/2= 1/2;"7J7 = 1/6, and the gain of Z to node 3=13/3+15/2+30/5 

+20/6-9/3-15/2-10=2/3.) 

Step 3: Continue to raise (tJ>O) or lower (0<0) the potentials 

until for the first time an imputed cost of an arc EZ (complement of 

Z) becomes newly zero. That is, the amount to be raised 

(4·5) 

(RepLacing ~ij>O instead of ~ij<O in (4·5) we get the amount to be 

lowered) 

Let (k, 1) denote a minimizing arc in (4·5).* In Fig. 3 (i), {)=31/5, 

(k, 1)=(3,4). 

Step 4: Compute new node potentials u/ on Z by 

U/=Ui+(}1ji (iE:Z) 

* If there arc more than one such arcs then let (k, \) be an arc with the hi~hcst 

arc llumUer. -See treatment on degenerate case. 
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182 IwariJ Takalaa.1ai 

and new imputed costs Ci/ on Z by 

I;,;/=I;,ij+fi~ij «i,j)EZ) 

Step 5: Add (k,l) to F', we get a new forest and compute flows 

satisfying conservation constraints on the new forest. Go to Step 1. 

Table 2 

e = - ~ 

Table 3 

6 7 
69 --±--2"5 5 e- R 

0 0 - 5 

0 9 

( i ) 

G 2 15 

3 
-3 

13 15 30 20 
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(ii) 

2 

3 

(iji) 

2 

3 

(iV) 

z 

3 
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Ut 

~i 
_23 

5 
1 

3" 
27 -5 

1 
""2 

75 -5 

Ui 

~i 

-3 
1 

4 
-3 

1 
2 

-11 

Ui 

-2 

-/ 

-7 

Table 3 

4 5 6 7 

-~ }{ 69 -..1.. 
5 
~ 

-25" 1 5 1 
3 5 6"" 

Q 2 31 n67 1 31 
5 2 25 4 T 1 9 

-3 -15 6 
2A-

(121 I y566 r 104\ 5 
1 25 3 15 

6 
15 --TO 15 

IT] IT] G [IJ 10 
15 

13 15 30 20 

4 5 6 7 

0 __ 4.. 0 5 1 1 I I 
4 2 5 73 

G X 
3 47 7 5 9 

-3 _....'L -L 
4 20 12 

D r~1 % r ~o 11 15 . 5 
-~ 

10 

r- i It ~6 I:=JY4 
g 1

'0 
13 15 30 20 

4 5 6 7 

2 z -/ % 

r ~7 I r ~ I 
:;/ 1Y22 

8 3 
9 

r 2: I ( 5iJ 4/ L!J / 

20 15 

Y D 0 YZ2 1 3 
10 

13 15 30 20 

e - 24 - 5 

e=4-

Optimum 
Solution 

188 
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(i) IUJa,1'O Taka,/ra._"i 

(iiJ 

--{]]----@-13 

13 

--<1(-'3 1 , 
9 -<])-9 

9
1

. / 

, -4 / 

IS 

1S ,-
,-.-

/'m 
~'5 

15 .lP.!i 
IS 30 

30 I 

/4 
~..g 

~~ 
~6 _3' 0 

3 -4-

10 

20 
10 S-

(iii) 20 

(iV) 

13 

13 ~Z2' 1 8 

9 f 

IS 

l!j 20 
9 

~2i 2 9 
15 20 

-:r-30 

30 ::± 16 
33" 

4 IO-~\) 
20 !O __ ~6 

7' 
Fig. 3 20 
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Treatment on Degenerate Case (Ill) 

We can imagine, unit cost of an arc (i,j) is CiJ+ .. i +j where .. >0 

is arbitrary small number. Thus even if for some values PiJ 

we have 

for i+ j>k+l. 

This is the reason why we select an arc with highest row (or 

column) number when tie occur in minimum imputed costs. 

§ 5. TREE ALGORITHM FOR RESOURCE 

ALLOCATION WITH SLACK 

Arbitrary Amount oj Demand 

Consider the case that we are free from the constraints on derrands 

at some sink nodes in resource allocation without slack. For example 

constraint at sink node k is 

L: rikXik=Yk 
i 

and Yk is an arbitrary amount. 

Now imagine that node k has a loop (consisting of only one arc) 

with characteristic smaller than unity. 

(00<1) 

This imaginery loop absorbs the discrepancy of conservation 

constraint at node k and plays the same role as arbitrary amount of 

demand. And we can treat it as though it be an actual loop considered 

in §4. 
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Resource Allocation with Slack 

Consider problem (l.I) (1·2), (1·3) (1·4) and insert slacks Xi, n+1 

(i=l-m) to (1·2') to obtain 

(5·1 ) 
.+1 
EXij=ai (i=l-m). 

j=1 

Let Yn+1 denote total of slacks, that is 

(5·2) 
m 

E Xi, n+1 =Yn+l. 
;=1 

The problem (l.I) (1·2), (1·3) (1.4) is equivalent to (5.1) (5·2) (5·3) (5·4) 

(5 ·5) with Yn+l arbitrary. 

(5·3) 

(5·4) 

(5·5) 

m 

L: rijXij=b j (j=l-n), 
i=1 

Xij~O (i=l-m, j=l-n+l), 

For example resource allocation with slack shown in Table 4 is 

equivalent to a network shown in Fig. 4. And the algorithm for solving 

it is completely same as in § 4 except that we should not delete the 

imaginary loop out of basis forest. Determination of initial forest is 

simpler than that of without slack type. 

Table 4 

Cif rij 

3 4 5 3 4 5 ai 
----~-

1 4 6 7 i 1 I 1 2 3 1::;10 
I I 

I ~15 21 5 4 17 
I 

:'i 
2 4 I 
13 15 30 I 

I 
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Fig. 4 

Numerical Example 

We trace tree algorithm through an example shown in Table 5. 

We insert slacks and set necessary informations in Table 6, where node 

o is slack node. Iterative procedures are same as that of without-slack 

type, so we have only to explain initial treatment. 

Set 

and compute 

uo=O, 

Ui=O for every source node i, 

uj=Min. (cij!rij) for every sink node j 

And square entry with zero imputed cost. (Of course if more than one 

zeroes in a column, square the arc with highest arc number, except 

slack column). Then squared entry and arc (0,0) construct initial forest 

(Table 6 (i), Fig. 5 (i ». 
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Table 5 

Cij r(1 

6 7 8 9 10 II 6 7 8 9 10 II al. 
---------------_. - _ .. _------, 

4 6 7 10 8 9 I 2 3 I 2 3 9 
2 5 3 3 4 2 2 I 3 2 1 8 
3 14 II 2 2 3 3 2 3 2 10 
4 10 I 8 4 2 4 3 9 
5 3 4 8 3 12 5 2 3 3 4 7 

I 

hj ! 13 15 30 20 17 16 
, - ---
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Table 6 
4 6 ~ 10 12 

± ~ 
.3 4 8=2 

( i ) 

5 

7 

9 

11. 
8=3 

~i 

0 
9 

8 

(jD 
5 

0 

0 
7 9 

2 
9 7 
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Table 6 
0 4- 6 s c 10 12 

0 
'i~ 

1 8 -4- e=g 

0 
9 

3 

:ii j) 
0 

5 

0 
7 9 

5 
9 7 

30 17 

0 2 4 6 8 to 12 

0 
14- 22 28_ 2 -3 8 9 8=T 

9 

3 8 

0 
5 

0 
7 9 

19 YJ9 
9 3" :0 7 

13 1.5 20 
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Table 6 

8=1 

9 

8 

CV) 
10 

9 

'1 

0 2 6 6 10 12 

0 5 
j 8 10 

T T T 

7 7 73 19 
9 '9 9 9 9 

.5 5 25 
3 6"" 6 

(Vi) 

5 

0 9 '1 

7 
7 9 

20 17 16 
Opti ma.l ! 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



192 IwarfJ Takalaa8hi 

6 

(iii) 

(Vi) 

o 

6 6 
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