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ABSTRACT

This paper gives a method for counting the number of feasible
subsets of a finite set P={1,2,.--,n} with a partial ordering<expressing
the precedence relations among the elements, where a subset $={i,1s,
.-+,i,} of P is said to be feasible with respect to P if i,e8 and i;<i,
imply i;eS.

The method is as follows;

Step 1: Assign a 2x2 index matrix to each arrow in the diagram
which corresponds to the set P.

Step 2: Reduce the diagram to a single arrow by applications
of rules for series, parallel, etc.

Then we can calculate the number from the last index matrix of the
reduced arrow.
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1. INTRODUCTION

Let us consider a finite set P={1,2, ---,n} with a partial ordering
< expressing the precedence relations among the elements,

A subset S={i;,i,---,2,} of P is said to be feasible with respect
to P if 1,68 and i;<i, imply i,sS.

The problem to count the number of feasible subsets of a partially
ordered finite set, arises whenever sequencing problems with precedence
constraints, e.g., a line-balancing problem, are treated. This paper gives

a method for counting the number of feasible subsets.

2. METHOD

It is convenient to introduce some concepts associated with the
partial ordering.

Connected elements: Two elements ¢ and j of P are said to be
connected if there exist elements k;,k:, -, k. of P such that 1 1s
comparable to k,, k; is comparable to ks, ---, k. is comparable to j.

Disjoint subsets: Two subsets P; and P, with no common elements
are said to be disjoint if there exist no connected elements (i, j) such
that i<P; and jeP;.

Direct predecessor or successor: If i<j and there is no third
element £ such that i<k<(j, it is said that ¢ is a direct predecessor of
J or that j is a direct successor of i.

Let [ P] be the number of feasible subsets of a set P.

THEOREM 1. If P is empty, [ P]=1.

THEOREM 2. If P consists of a single element, [ P]=2.

THEOREM 3. If P is divisible to two or more subsets Py, Py, -+,

P,, which are disjoint each other, [P]=f[ [P.].
a=1

When P consists of two or more elements, let us represent Pin a
convenient diagram D (P) as follows ; node i corresponds to element ¢ and

an arrow is drawn from node ¢ to node j if ¢ is a direct predecessor of j.
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[Procedure A}

Step 1: Assign the index matrix 10 to each arrow in D(P).
g 11

Step 2: Apply the following rules which are illustrated in Fig. 1,
successively until D(P) is reduced to a signal arrow.

Rute 1: @-M—»(D = ®<—M—T—@

M' is the transposed matrix of M,

Rule 2: @ My ® Mz @ = @ MiMz @

Rule 3: M,

Mi®M
= O"F:Q

@ () W, (2, (D _(2)
M (moo 'mm> MooMgo Mor Mos
0=l o @ ) and Mi®Mz=|_,_ (@ (M@

10 My MigMyg MigMyy

we s Q@D = 00

%

Rule 5. ® = OO0

Fig. 1. Illustration of Rules.

Rule 1: When we change the direction of an arrow, transpose
its index matrix.

Rule 2: Reduce two sequent arrows to an arrow whose index
matrix is the product of their index matrices.
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Rule 3: Reduce two parallel arrows to an arrow whose index
matrix is the element-wise product of their index matrices.

Rule 4: When there exist an arrow from i to £ with the index
matrix M,, an arrow from % to j with the index matrix M,, and arrows
m$a) mled

00 Mol

from /. to k£ with the index matrices M«:< )(a: 1,2, ---,v), reduce

m<y m<P
them to an arrow from ¢ to j whose index matrix is M=M M ;Ms,- - -
a a
Rule 5: If necessary, we make divide a node into two nodes and
an arrow between them whose index matrix is <(1) ?) Then connect
the arrows connected to the old node to either of the new nodes.
THEOREM 4. If D(P) is reduced to a single arrow whose index

matrix iS (moo m01> N then [P]=m00 +m01+m10+‘m11 .
Myg My

NI %

O

Fig. 2. Division of P into P, and P;.
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If D(P) is not reducible to a single arrow, divide P into two
subsets Py and P, satisfying the conditions of THEOREM 5, and calculate
[Pi], [Q4] and the index matrix of D(Py).

THEOREM 5. If P is divisible into two subsets P; and P, such
that (1) only one element 4 is the direct successor in P, of any element
of Pi, (2) there exist no successors of A in Py, and (3) by applications
of Rules, D(P,) is reducible to a single arrow from # with the index

matrix (7200 701) | then [P1={P1] (oo +mor) +[Qu] (mio-+my).
Here Q, is the set consisting of all the elements in P; which don’t
precede £ and having the partial ordering between them. (See Fig. 2.)
The proof of these theorems is shown in §4.
If we cannot apply THEOREMS 1-4 for counting [P,] or [Q,],

continue to divide P; or Q.
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3. EXAMPLES

Example 1:
D@

Hence (P)=1+0+40+]=42,
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Example 2:

D ™M /M
o=y :

™M ~—
1 ™
™
Mo (2t
@< O
T~

Dy

(Rute 1)

(Rule 2)

Dp y @ (égLN
@

Ds (J §> Dy (3(1) g)
o

Hence (Pl=1{+U+30+3=34,
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Example 3:

D(P) @\

Put h=11 and divide P into P, and P,

D
M

®

D1 D
(1 0> M 2 10
@_0_. @ . <2 2) @
(Rule 5) M (Rute 1)
D(P,)

O~

e
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Example 3 {continued):

Dy }/@

(Rules 1, 2 and 3

D, Ds
8 0
(14 8)
——@®
11
(2 3) (Py)=8+0+14+18=40
MW O o (13)

o
9 (QyJ=1+1+1+2=5

Hence (Pl=40x1+5x4=60;

4, MATHEMATICAL JUSTIFICATION
THEOREMS 1-3 can be easily verified.

163

Before we prove THEOREM 4, let us consider what each element

of the index matrix means.
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Now it is convenient to represent a subset S of P in (x, &3, *--,
x,) where x;=0 if i¢S and ;=1 if izS. Obviously (0,0, - - -, 0) is an empty
set and (1,1, ---,1) is the whole set P. We define ¢(x;, &z, *+, Tiu) as
follows ;

I if (z4y, %2y« -» &1,) Is a feasible subset,
¢(xilaxi‘2"""z’.i”): v
0 if not so,

when the set {i;,i,---,i.} is considered as if the whole set.

Then L ¥« N¢(xy, 22, -« -, Zn) gives the number of feasible subsets
in P. e

LEMMA 1. Let F={fi, fe,+**,/f:} be a subset which separates
two subsets G={g,,gs,*+,0:} and H={h,h,---, h.}, as shown Fig. 3.
Then

Fig. 3. Relation of F, G and H in LEMMA 1.

¢(xf1,xf2, crey Lre sy Loy s Lgay Thy s "'9xh#)
=¢(‘r.flaxf2’ co s Tre s Loy s "'ix!'li)
X‘/”'(xfl,-rfia Ty Ty, "’,x’l/‘)'

Proof. If a subset (a;,x;, -, &) is feasible wat. P, a subset (ri, 2,
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«ee, %) is also feasible wat. Q={i;,i5,-++,4}. So, if ¢(xsy---,Lse,
Zgis oty TgasTigs 5 Tna)=h, O (Xpyy ooy Bpe s Tasy * 2+, B)=G(Xpyy 20 Tpey
Tnyy oy Tnu)y=1.

IF @(Tryy s ooy Xpay Lyyyt s Lgas Ty s« =+ Tnp)=0, there exists a pair
(1, j) such that i, j:FuGuH, i<j, 2;=20, z;=1.

If i, j:FuG, then ¢ (L sy ++, Ty y Loy, *+ 5 Lg2)=0.

If ¢, j:FuH, then ¢ (s, - s Ly Tngy =y Tup)=0.

If is<G and j:H(or i H and j:G), then there exists an element k:F such
that i<k<j, because F separates G and H. Hence, ¢(xys,, -, Tre, Lg;,
ceoy 2)=0 if 2x=1 (or £x=0), or ¢(Lyy, s TresLhyy 22y Tnpy=0if 2,=0
(or xz=1).

Consequently, ¢(Xy, s Lre, Lary ooy Lyas gy =+ *y L) =@ (Lrysoee,y
Lfey Ly * - ',$y1)>(¢(x'/1 st s ey Thyy e .,x,“‘).

LEMMA 2. Let <;Z;’g Z‘K) be the index matrix of an arrow from
ito j, and let K={k,,k;,--+,%) be the elements absorbed in the arrow
when some of the Rules are applied. Then

* mab=¥¢(xi=a, Liys Ligy vy Tins Li=b) (a=0,1; 6=0,1).

Here ; represents XEEZ---E, and
%}gb(xi:a, Ty s Tazy * s T, Ti=0)=0(2i=a, x;=0b) if K is empty.
Proof. We shall prove it inductively.

If i is a direct predecessor of j, ¢(0,0)=¢(1,0)=¢(1,1)=1 and
#(0,1)=0. The relation (*) is true for the elemental matrix G (1)) which
is assigned to every arrow at first.

Next we shall show that if the relation (*) is true now, then it
is so after we apply one of the rules.

For Rule 1: Let (n{}’) be the index matrix of the arrow from j
to ¢ whose direction is changed.

NG w
=X ¢(xi=byTr, y Lhay +*+y Thuy Tj=0a)

The relation (*) is true since there is no absorption of elements.
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For Rule 2: Let G={g,,0:,--,9.} be the elements absorbed in
an arrow from ¢ to & whose index matrix is M,:(mf,},)), and let H= {4,
hy,+--,h,} be the elements absorbed in an arrow from £ to j whose
index matrix M,=(m}).

Then the element m:; of the index matrix M of the reduced arrow
from i to j is as follows;

_ D @)
Map= kagxz mi)

:;%:95(551:“,1'1119 <oy Xyga s Tie) X §¢(.Z‘;.-,&Cm, . 'axhy,x/’:b)

:Zk%:§¢(xi=a’ Lgyy =2 s Lgiy Licy Lryy * "y Lip szb)

The relation (*) is true, since the elements absorbed in the reduced
arrow are {g,, 0,k My, Y.
For Rule 3. Let G={¢,,0:,+-+,9:} be the elements absorbed in
an arrow from ¢ to j whose index matrix M;=(m{}), and let H={h, , h;,
--+,h,} be the elements absorbed in another arrow from ¢ to j whose
index matrix My=(m.}).
Then the elements ma of the index matrix M of the reduced
arrow from i to j is as follows;
map=my) ms;)
= %)qﬁ(x,-:a, Loyt s Lyr, Ty=b)X §¢(xi=a, Ly ry Ly, Li=bh)
:)C::]I);gb(xi:a,x,“, Sy Ly Ly sty L, Li=b)
(from LEMMA 1)
The relation (*) is true.
For Rule 4: Denote F., G and H as follows;
Fo={f%, £, -+, fit)} : the elements absorbed in the arrow from /,
to k whose index matrix is M,=(nl}),

G={¢1,09:,---,¢:}: the elements absorbed in the arrow from i to &

m
ab

whose index matrix is M,=(m}}!"), and
H=A{lhy,---, .} : the elcments absorbed in the arrow from £ to j
whose index matrix is M, =(n{}").

ab
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Let M=(mq) be the index matrix of the reduced arrow from i to j.

Map= :{;m(lz) { H (m(a) +m("))} m

axs Tx/ S Mxy
=N X¢(Ti=a, Ty **s Tz s T)
xll}{%;agb(x/",x_f(f), ---,xfggg),xk)}x}Z{)q&(m,th--',xh,,,szb)
:Zng)(x,-:a,x,,‘,---,xw,xk)
; Z¢(x, T .,_Z-[”xfll), . ’xf(ll)’ f$2), .. "xf?fz))
gjgb(xk,x;,,, ce oy Tns X;=5)

=LY N (Ti=a, Ly s Zga s Ty Tirs ** 5 Tty
k G H LUFa

B0, B Ty s B, 3y=b)
where L={l;,l;,---,01.} and UF.=F,UF,U---UF,.
The relation (*) is true.

For Rule 5: It is obvious that we may divide a node into two
nodes and an arrow between them whose index matrix is <(l) (1)>, because
feasible subsets neither increase nor decrease in number by adding an
element ¢ to P such that ¢(xy, -, @i, Xi=a, Li=b, Lis1, <+ s Ln)

¢(-7/'1 sty L1y XiT= Ay Ligry* -,x,,) if a=b

0 if a=xb.
. Consequently this LEMMA is true after rulcs are applied suc-
cessively. The proof is accomplished.

For example, that the index matrix of the arrow from 3 to 9 in
Example 2-D2 is <i (1)> implies that when {3,5,7,9} 1s considered as if
the whole subset, the number of feasible sub sets which contain neither 3
nor 9, contain 9 but not 3, contain 3 but not 9, or contain both 3 and
9 is 1,0,4 or 1 respectively.

Proof of THEOREM 4,

The fact that D(P) is reduced to a single arrow from ¢ to j means
that all the elements but ¢ and j arc absorbed in the arrow. Hence
ng”,j: ¥q’; (1,29, -+, 2.)=[P], which completes the proof.

Before we prove THEOREM 5, we shall present LEMMA 3, easily

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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verified.

LEMMA 3. If & has no successor in G={g;,0z,-*,4.}, then
B (Zg1 5 Tz, =+ *5 Toz s Tn=0)=¢ (Zgy, Tga, * + *, Tg2)-

If f has no predecessor in G, then
$(Zr=1, 201, oz * * +5 L)) =B (Tay Loz * * *5 Ta)s

Proof of THEORAM 5.

Let the elements of Py,Q, or Py be {fi, fas+ s SfrsG1s-*

{fisSos s fi} or {hhy, by, ---, b} respectively.
[P]:§l§¢(x_f1’ ...’xf"xg”...,xgl’xh’xh“...,xhﬂ)
=§¢(xfl,xf2,---,xf,,xgl,---,qu,xn=0)
XPZZ:_EIS("I)n:O,xm,"',.Z‘h,;)
+QE[¢($IU-Z']‘2,"',xfx,-rqn_—‘mm:“'-_—'qu:xh:l)
XPE? (n=1, Bri, Tna, * * 5 Try)
From LEMMA 3,
B(ErisTyey s Bres Loy =5 Taay Ln=0) ’
=G(Ly1 s Tyas v vy Les Lyt s =+ *5 T2), and

B(Lr1sZras oy Brey Tn=Tn ="+ =Ta=Tn=1)
=¢(Zy1, Lrzy e s L fe)-
Consequently

[P1=[Py] (moo+mor)+1Q4] (myio+myy),
which completes the proof.

5. FINAL REMARKS

M gl};

If D(P) is a series-parallel diagram, e.g. Example 1, the number

can be counted more easily by Procedure B and THEOREM 4B.

{Procedure B]

Step 1: Assign the index number 1 to each arrow in D(P).
Step 2: Apply the following Rules, which are illustrated in Fig. 4,

until D(P) is reduced to a single arrow.
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Rule 2B: @ M @mz @ (:)___.m"‘“m2®

Rule 3B: (i) - (1) @—m’—m~@

Fig. 4. Illustration of Rules (B).

Rule 2B: Reduce two sequent arrows to an arrow whose index
number is the sum of their index numbers.

Rule 3B: Reduce two parallel arrows to an arrow whose index
number is the product of their index numbers.

THEOREM 4B. If D(P) is reduced to a single arrow whose index
number is m by Procedure B, then [P]=m+>2.

The index number in Procedure B corresponds to my, of the index
matrix in Procedure 4. When D(P) is series-parallel diagram, by

applications of Rule 2 or 3, the index matrix always retains the form

of (rlz (l)>
Surely

<ﬂ£1 (1)> <n£2 (1)> = (ml ~}1-m2 (1)> (Rule 2)
and

<"11 (1)>®<"£2 ?> = <m1 >l< my (l)) . (Rule 3)

. Hence it is enough to calculate only m,, of the index matrix. Note
that D(P) is always reducible to a single arrow by applications of Rule
2B or 3B in this case.

Held, Karp and Shareshian® introduced the concepts of basic
complement and component of P, and proved that

- (1) [P] is equal to the sum of the numbers of feasible subsets

of the basic complements and that

(2) [P]is equal to the product of the numbers of feasible subsets
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Example 1B:

D(P) @‘\’»@\1_‘

N
N

(Rule 2B)
Dy
D
d 4
0w ®©
Ds

(Rule 38 O—E—@

Hence [PJ)=40+2=42.

of the components of P. (This corresponds to THEOREM 3 in this
paper.)
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They presented a method for counting the number by applying
these theorems and a procedure in a special case when D(P) is a tree.

However Procedure 4 is applicable in much wider case. In many
practical cases, D(P) is reducible to a single arrow by Procedure 4, and
necessity of separating P rarely occurs.

In a line-balancing problem, the number of feasible subsets gives
the total number of storage locations and a rough measure of the time
required for the calculation by the computer. So we can see whether
it is practically possible to apply an exhaustive procedure like Jackson’s?
or Gutjahr’s®,
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