Journal of the Operations Research Society of Japan

VOLUME 8

September 1966

NUMBER 4

A METHOD FOR COUNTING THE NUMBER OF FEASIBLE SUBSETS OF A PARTIALLY ORDERED FINITE SET

TAKASHI KOBAYASHI

Faculty of Engineering, University of Tokyo (Received Oct. 15, 1965)

ABSTRACT

This paper gives a method for counting the number of feasible subsets of a finite set $P = \{1, 2, \dots, n\}$ with a partial ordering < expressing the precedence relations among the elements, where a subset $S = \{i_1, i_2, \dots, i_{\nu}\}$ of P is said to be feasible with respect to P if $i_{\mu} \in S$ and $i_{\lambda} < i_{\mu}$ imply $i_{\lambda} \in S$.

The method is as follows;

- Step 1: Assign a 2×2 index matrix to each arrow in the diagram which corresponds to the set P.
- Step 2: Reduce the diagram to a single arrow by applications of rules for series, parallel, etc.

Then we can calculate the number from the last index matrix of the reduced arrow.

1. INTRODUCTION

Let us consider a finite set $P = \{1, 2, \dots, n\}$ with a partial ordering \leq expressing the precedence relations among the elements.

A subset $S = \{i_1, i_2, \dots, i_{\nu}\}$ of P is said to be feasible with respect to P if $i_{\mu} \in S$ and $i_{\lambda} < i_{\mu}$ imply $i_{\lambda} \in S$.

The problem to count the number of feasible subsets of a partially ordered finite set, arises whenever sequencing problems with precedence constraints, e.g., a line-balancing problem, are treated. This paper gives a method for counting the number of feasible subsets.

2. METHOD

It is convenient to introduce some concepts associated with the partial ordering.

Connected elements: Two elements i and j of P are said to be connected if there exist elements k_1, k_2, \dots, k_{ν} of P such that i is comparable to k_1, k_1 is comparable to k_2, \dots, k_{ν} is comparable to j.

Disjoint subsets: Two subsets P_1 and P_2 with no common elements are said to be disjoint if there exist no connected elements (i, j) such that $i \in P_1$ and $j \in P_2$.

Direct predecessor or successor: If i < j and there is no third element k such that i < k < j, it is said that i is a direct predecessor of j or that j is a direct successor of i.

Let [P] be the number of feasible subsets of a set P.

THEOREM 1. If P is empty, [P]=1.

THEOREM 2. If P consists of a single element, [P]=2.

THEOREM 3. If P is divisible to two or more subsets P_1, P_2, \cdots , P_{ν} , which are disjoint each other, $[P] = \prod_{\alpha=1}^{\nu} [P_{\alpha}]$.

When P consists of two or more elements, let us represent P in a convenient diagram D(P) as follows; node i corresponds to element i and an arrow is drawn from node i to node j if i is a direct predecessor of j.

[Procedure A]

Step 1: Assign the index matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ to each arrow in D(P).

Step 2: Apply the following rules which are illustrated in Fig. 1, successively until D(P) is reduced to a signal arrow.

Rule 1: When we change the direction of an arrow, transpose its index matrix.

Rule 2: Reduce two sequent arrows to an arrow whose index matrix is the product of their index matrices.

Rule 3: Reduce two parallel arrows to an arrow whose index matrix is the element-wise product of their index matrices.

Rule 4: When there exist an arrow from i to k with the index matrix M_p , an arrow from k to j with the index matrix M_s , and arrows from l_α to k with the index matrices $M_\alpha = \begin{pmatrix} m_{00}^{(\alpha)} & m_{01}^{(\alpha)} \\ m_{10}^{(\alpha)} & m_{11}^{(\alpha)} \end{pmatrix} (\alpha = 1, 2, \dots, \nu)$, reduce them to an arrow from i to j whose index matrix is $M = M_p M_{1d} M_{2d} \cdots M_{\nu d} M_s$, where $M_{\alpha d} = \begin{pmatrix} m_{00}^{(\alpha)} & +m_{10}^{(\alpha)} & 0 \\ 0 & m_{01}^{(\alpha)} & +m_{11}^{(\alpha)} \end{pmatrix}$

Rule 5: If necessary, we make divide a node into two nodes and an arrow between them whose index matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then connect the arrows connected to the old node to either of the new nodes.

THEOREM 4. If D(P) is reduced to a single arrow whose index matrix is $\begin{pmatrix} m_{00} & m_{01} \\ m_{10} & m_{11} \end{pmatrix}$, then $[P] = m_{00} + m_{01} + m_{10} + m_{11}$.

Fig. 2. Division of P into P_1 and P_2 .

If D(P) is not reducible to a single arrow, divide P into two subsets P_1 and P_2 satisfying the conditions of THEOREM 5, and calculate $[P_1]$, $[Q_1]$ and the index matrix of $D(P_2)$.

THEOREM 5. If P is divisible into two subsets P_1 and P_2 such that (1) only one element h is the direct successor in P_2 of any element of P_1 , (2) there exist no successors of h in P_1 , and (3) by applications of Rules, $D(P_2)$ is reducible to a single arrow from h with the index matrix $\begin{pmatrix} m_{00} & m_{01} \\ m_{10} & m_{11} \end{pmatrix}$, then $[P] = [P_1] (m_{00} + m_{01}) + [Q_1] (m_{10} + m_{11})$.

Here Q_1 is the set consisting of all the elements in P_1 which don't precede h and having the partial ordering between them. (See Fig. 2.)

The proof of these theorems is shown in § 4.

If we cannot apply THEOREMS 1-4 for counting $[P_1]$ or $[Q_1]$, continue to divide P_1 or Q_1 .

3. EXAMPLES

Example 1:

Hence (P)=1+0+40+1=42.

Example 2:

Hence (PJ=1+0+30+3=34)

Example 3:

Put h=11 and divide P into P₁ and P₂

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Example 3 (continued):

Hence (P)=40x1+5x4=60.

4. MATHEMATICAL JUSTIFICATION

THEOREMS 1-3 can be easily verified.

Before we prove THEOREM 4, let us consider what each element of the index matrix means.

Now it is convenient to represent a subset S of P in (x_1, x_2, \dots, x_n) where $x_i=0$ if $i \in S$ and $x_i=1$ if $i \in S$. Obviously $(0,0,\dots,0)$ is an empty set and $(1,1,\dots,1)$ is the whole set P. We define $\phi(x_{i_1},x_{i_2},\dots,x_{i_\nu})$ as follows;

$$\phi(x_{i_1}, x_{i_2}, \cdots, x_{i_{\nu}}) = \begin{cases} 1 & \text{if } (x_{i_1}, x_{i_2}, \cdots, x_{i_{\nu}}) \text{ is a feasible subset,} \\ 0 & \text{if not so,} \end{cases}$$

when the set $\{i_1, i_2, \dots, i_r\}$ is considered as if the whole set.

Then $\sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} \phi(x_1, x_2, \cdots, x_n)$ gives the number of feasible subsets in P.

LEMMA 1. Let $F = \{f_1, f_2, \dots, f_s\}$ be a subset which separates two subsets $G = \{g_1, g_2, \dots, g_s\}$ and $H = \{h_1, h_2, \dots, h_{\mu}\}$, as shown Fig. 3. Then

Fig. 3. Relation of F, G and H in LEMMA 1.

$$egin{aligned} \phi\left(x_{f_1}, x_{f_2}, \cdots, x_{f_k}, x_{g_1}, \cdots, x_{g_k}, x_{h_1}, \cdots, x_{h_{\mu}}
ight) \ = & \left(x_{f_1}, x_{f_2}, \cdots, x_{f_k}, x_{g_1}, \cdots, x_{g_k}
ight) \ imes & \left(x_{f_1}, x_{f_2}, \cdots, x_{f_k}, x_{h_1}, \cdots, x_{h_{\mu}}
ight). \end{aligned}$$

Proof. If a subset (x_1, x_2, \dots, x_n) is feasible w.r.t. P, a subset $(x_{i_1}, x_{i_2}, \dots, x_n)$

 $\dots, x_{i\nu}$) is also feasible w.r.t. $Q = \{i_1, i_2, \dots, i_{\nu}\}$. So, if $\phi(x_{f_1}, \dots, x_{f_{\varepsilon}}, \dots, x_{f_{\varepsilon}})$ $x_{g_1}, \dots, x_{g_{\lambda}}, x_{h_1}, \dots, x_{h_{\mu}} = 1, \quad \phi(x_{f_1}, \dots, x_{f_{\kappa}}, x_{g_1}, \dots, x_g) = \phi(x_{f_1}, \dots, x_{f_{\kappa}}, x_{g_1}, \dots, x_g)$ $x_{h_1}, \cdots, x_{h_{\mu}})=1.$

If $\phi(x_{f_1},\dots,x_{f_k},x_{g_1},\dots,x_{g_k},x_{h_1},\dots,x_{h_k})=0$, there exists a pair (i, j) such that $i, j \in FuGuH$, $i < j, x_i = 0, x_i = 1$.

If $i, j \in FuG$, then $\phi(x_1, \dots, x_n, x_n, \dots, x_n) = 0$.

If $i, j \in FuH$, then $\phi(x_{f_1}, \dots, x_{f_k}, x_{h_1}, \dots, x_{h_k}) = 0$.

If $i \in G$ and $j \in H$ (or $i \in H$ and $j \in G$), then there exists an element $k \in F$ such that i < k < j, because F separates G and H. Hence, $\phi(x_{f_1}, \dots, x_{f_k}, x_{g_1}, \dots, x_{g_k})$ $\dots, x_{g\lambda} = 0$ if $x_k = 1$ (or $x_k = 0$), or $\phi(x_{f_1}, \dots, x_{f_k}, x_{h_1}, \dots, x_{h_{\mu}}) = 0$ if $x_k = 0$ (or $x_k=1$).

Consequently, $\phi(x_{f_1}, \dots, x_{f_s}, x_{g_1}, \dots, x_{g_d}, x_{h_1}, \dots, x_{h_d}) = \phi(x_{f_1}, \dots, x_{h_d})$ $x_{f\kappa}, x_{g_1}, \cdots, x_{g_{\lambda}}) \times \phi(x_{f_1}, \cdots, x_{f\kappa}, x_{h_1}, \cdots, x_{h_{\mu}}).$

LEMMA 2. Let $\binom{m_{00}}{m_{10}} \frac{m_{01}}{m_{11}}$ be the index matrix of an arrow from i to j, and let $K = \{k_1, k_2, \dots, k_{\nu}\}$ be the elements absorbed in the arrow when some of the Rules are applied. Then

(*)
$$m_{ab} = \sum_{K} \phi(x_i = a, x_{k_1}, x_{k_2}, \dots, x_{k_{\nu}}, x_j = b)$$
 $(a = 0, 1; b = 0, 1).$

Here \sum_{K} represents $\sum_{x_{k_1}} \sum_{x_{k_2}} \cdots \sum_{x_{k_{\nu}}}$, and $\sum_{K} \phi(x_i=a, x_{k_1}, x_{k_2}, \cdots, x_{k_{\nu}}, x_j=b) = \phi(x_i=a, x_j=b)$ if K is empty.

Proof. We shall prove it inductively.

If i is a direct predecessor of j, $\phi(0,0)=\phi(1,0)=\phi(1,1)=1$ and $\phi(0,1)=0$. The relation (*) is true for the elemental matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ which is assigned to every arrow at first.

Next we shall show that if the relation (*) is true now, then it is so after we apply one of the rules.

For Rule 1: Let $(m_{ab}^{(T)})$ be the index matrix of the arrow from j to i whose direction is changed.

$$m^{(T)}_{ab} = m_{b^2}$$

= $\sum \phi(x_i = b, x_{k_1}, x_{k_2}, \dots, x_{k_{\nu}}, x_j = a)$

The relation (*) is true since there is no absorption of elements.

For Rule 2: Let $G = \{g_1, g_2, \dots, g_{\lambda}\}$ be the elements absorbed in an arrow from i to k whose index matrix is $M_1 = (m_{ab}^{(1)})$, and let $H = \{h_1, h_2, \dots, h_{\mu}\}$ be the elements absorbed in an arrow from k to j whose index matrix $M_2 = (m_{ab}^{(2)})$.

Then the element m_{zb} of the index matrix M of the reduced arrow from i to j is as follows;

$$egin{aligned} m_{ab} &= \sum\limits_{k} m_{ax_{k}}^{(1)} \ m_{x_{k}b}^{(2)} \ &= \sum\limits_{k} \sum\limits_{G} \phi \left(x_{i} = a, x_{g_{1}}, \cdots, x_{g_{k}}, x_{k}
ight) imes \sum\limits_{H} \phi \left(x_{k}, x_{h_{1}}, \cdots, x_{h_{\mu}}, x_{j} = b
ight) \ &= \sum\limits_{k} \sum\limits_{G} \sum\limits_{H} \phi \left(x_{i} = a, x_{g_{1}}, \cdots, x_{g_{k}}, x_{k}, x_{h_{1}}, \cdots, x_{h_{\mu}}, x_{j} = b
ight) \end{aligned}$$

The relation (*) is true, since the elements absorbed in the reduced arrow are $\{g_1, \dots, g_{\lambda}, k, h_1, \dots, h_{\mu}\}$.

For Rule 3. Let $G = \{g_1, g_2, \dots, g_i\}$ be the elements absorbed in an arrow from i to j whose index matrix $M_1 = (m_{ab}^{(1)})$, and let $H = \{h_1, h_2, \dots, h_n\}$ be the elements absorbed in another arrow from i to j whose index matrix $M_2 = (m_{ab}^{(2)})$.

Then the elements m_{ab} of the index matrix M of the reduced arrow from i to j is as follows;

$$m_{ab} = m_{ab}^{(1)} m_{ab}^{(2)}$$

$$= \sum_{G} \phi(x_i = a, x_{g_1}, \dots, x_{g_{\lambda}}, x_j = b) \times \sum_{H} \phi(x_i = a, x_{h_1}, \dots, x_{h_{\mu}}, x_j = b)$$

$$= \sum_{G} \sum_{H} \phi(x_i = a, x_{g_1}, \dots, x_{g_{\lambda}}, x_{h_1}, \dots, x_{h_{\mu}}, x_j = b)$$
(from LEMMA 1)

The relation (*) is true.

For Rule 4: Denote F_a , G and H as follows;

 $F_a = \{f_1^{(\alpha)}, f_2^{(\alpha)}, \cdots, f_{k(\alpha)}^{(\alpha)}\}$: the elements absorbed in the arrow from l_a to k whose index matrix is $M_a = (m_{ab}^{(\alpha)})$,

 $G = \{g_1, g_2, \dots, g_k\}$: the elements absorbed in the arrow from i to k whose index matrix is $M_p = (m_{ab}^{(p)})$, and

 $H = \{h_1, h_2, \dots, h_n\}$: the elements absorbed in the arrow from k to j whose index matrix is $M_s = (m_{ab}^{(s)})$.

Let $M=(m_{ab})$ be the index matrix of the reduced arrow from i to j.

$$\begin{split} & m_{ab} = \sum_{k} m_{ax_{k}}^{(b)} \left\{ \prod_{\alpha=1}^{l} \left(m_{0x_{k}}^{(a)} + m_{1x_{k}}^{(a)} \right) \right\} m_{x_{k}b}^{(s)} \\ &= \sum_{k} \sum_{\alpha} \phi \left(x_{i} = a, x_{g_{1}}, \cdots, x_{g_{k}}, x_{k} \right) \\ &\times \prod_{\alpha} \left\{ \sum_{l\alpha} \sum_{f\alpha} \phi \left(x_{l\alpha}, x_{f_{1}}^{(a)}, \cdots, x_{f_{k(\alpha)}}^{(a)}, x_{k} \right) \right\} \times \sum_{H} \phi \left(x_{k}, x_{h_{1}}, \cdots, x_{h_{\mu}}, x_{j} = b \right) \\ &= \sum_{k} \sum_{G} \phi \left(x_{i} = a, x_{g_{1}}, \cdots, x_{g_{k}}, x_{k} \right) \\ &\times \sum_{L} \sum_{U \mid r_{\alpha}} \phi \left(x_{k}, x_{l_{1}}, \cdots, x_{l_{\nu}}, x_{f_{1}}^{(1)}, \cdots, x_{f_{k(1)}}^{(1)}, x_{f_{1}}^{(2)}, \cdots, x_{f_{k(\nu)}}^{(\nu)} \right) \\ &\times \sum_{H} \phi \left(x_{k}, x_{h_{1}}, \cdots, x_{h_{\mu}}, x_{j} = b \right) \\ &= \sum_{k} \sum_{G} \sum_{H} \sum_{L} \sum_{U \mid r_{\alpha}} \phi \left(x_{i} = a, x_{g_{1}}, \cdots, x_{g_{k}}, x_{k}, x_{l_{1}}, \cdots, x_{l_{\nu}}, x_{l_{\nu}}, x_{l_{\nu}} \right) \\ &\times x_{f_{1}}^{(1)}, \cdots, x_{f_{k(\nu)}}^{(\nu)}, x_{h_{1}}, \cdots, x_{h_{\mu}}, x_{j} = b) \end{split}$$

where $L = \{l_1, l_2, \dots, l_{\nu}\}$ and $UF_{\alpha} = F_1 U F_2 U \cdots U F_{\nu}$.

The relation (*) is true.

For Rule 5: It is obvious that we may divide a node into two nodes and an arrow between them whose index matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, because feasible subsets neither increase nor decrease in number by adding an element i' to P such that $\phi(x_1, \dots, x_{i-1}, x_i = a, x_{i'} = b, x_{i+1}, \dots, x_n)$

$$= \left\{ \begin{array}{ll} \phi(x_1, \dots, x_{i-1}, x_i = a, x_{i+1}, \dots, x_n) & \text{if } a = b \\ 0 & \text{if } a \neq b. \end{array} \right.$$

Consequently this LEMMA is true after rules are applied successively. The proof is accomplished.

For example, that the index matrix of the arrow from 3 to 9 in Example 2-D2 is $\begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$ implies that when $\{3, 5, 7, 9\}$ is considered as if the whole subset, the number of feasible sub sets which contain neither 3 nor 9, contain 9 but not 3, contain 3 but not 9, or contain both 3 and 9 is 1,0,4 or 1 respectively.

Proof of THEOREM 4.

The fact that D(P) is reduced to a single arrow from i to j means that all the elements but i and j are absorbed in the arrow. Hence $\sum_{i} \sum_{j} m_{xixj} = \sum_{P} \phi(x_1, x_2, \dots, x_n) = [P],$ which completes the proof.

Before we prove THEOREM 5, we shall present LEMMA 3, easily

verified.

LEMMA 3. If h has no successor in $G = \{g_1, g_2, \dots, g_{\lambda}\}$, then

$$\phi(x_{g_1}, x_{g_2}, \dots, x_{g_k}, x_h = 0) = \phi(x_{g_1}, x_{g_2}, \dots, x_{g_k}).$$

If f has no predecessor in G, then

$$\phi(x_f=1, x_{g_1}, x_{g_2}, \dots, x_{g_{\lambda}}) = \phi(x_{g_1}, x_{g_2}, \dots, x_{g_{\lambda}}).$$

Proof of THEORAM 5.

Let the elements of P_1, Q_1 or P_2 be $\{f_1, f_2, \dots, f_{\epsilon}, g_1, \dots, g_{\ell}\}$, $\{f_1, f_2, \dots, f_{\epsilon}\}$ or $\{h, h_1, h_2, \dots, h_{\mu}\}$ respectively.

$$egin{aligned} [P] &= \sum\limits_{P_1} \sum\limits_{P_2} \phi\left(x_{f_1}\,,\,\cdots,\,x_{f^{ar{e}}}\,,x_{g_1}\,,\,\cdots,\,x_{g^{ar{\lambda}}}\,,x_h\,,x_{h_1}\,,\,\cdots,\,x_{h_{eta}}
ight) \ &= \sum\limits_{P_1} \phi\left(x_{f_1}\,,\,x_{f_2}\,,\,\cdots,\,x_{f^{ar{e}}}\,,x_{g_1}\,,\,\cdots,\,x_{g^{ar{\lambda}}}\,,x_h\!=\!0
ight) \ & imes \sum\limits_{P_2\,=\,h} \phi\left(x_h\!=\!0,\,x_{h_1}\,,\,\cdots,\,x_{h_{eta}}
ight) \ &+ \sum\limits_{Q_1} \phi\left(x_{f_1}\,,\,x_{f_2}\,,\,\cdots,\,x_{f^{ar{e}}}\,,x_{g_1}\!=\!x_{g_2}\!=\!\cdots=\!x_{g^{ar{\lambda}}}\!=\!x_h\!=\!1
ight) \ & imes \sum\limits_{P_2\,=\,h} \phi\left(x_h\!=\!1,\,x_{h_1},\,x_{h_2},\,\cdots,\,x_{h_{eta}}
ight) \end{aligned}$$

From LEMMA 3,

$$\phi(x_{f_1}, x_{f_2}, \dots, x_{f_k}, x_{g_1}, \dots, x_{g_{\lambda}}, x_h = 0)$$

$$= \phi(x_{f_1}, x_{f_2}, \dots, x_{f_k}, x_{g_1}, \dots, x_{g_{\lambda}}), \text{ and }$$

$$\phi(x_{f_1}, x_{f_2}, \dots, x_{f_k}, x_{g_1} = x_{g_2} = \dots = x_{g_{\lambda}} = x_h = 1)$$

$$= \phi(x_{f_1}, x_{f_2}, \dots, x_{f_k}).$$

Consequently

$$[P] = [P_1] (m_{00} + m_{01}) + [Q_1] (m_{10} + m_{11}),$$

which completes the proof.

5. FINAL REMARKS

If D(P) is a series-parallel diagram, e.g. Example 1, the number can be counted more easily by Procedure B and THEOREM 4B. [Procedure B]

Step 1: Assign the index number 1 to each arrow in D(P).

Step 2: Apply the following Rules, which are illustrated in Fig. 4, until D(P) is reduced to a single arrow.

A Method for Counting the Number of Feasible Subsets of a Partially Ordered Finite Set

Fig. 4. Illustration of Rules (B).

Rule 2B: Reduce two sequent arrows to an arrow whose index number is the sum of their index numbers.

Rule 3B: Reduce two parallel arrows to an arrow whose index number is the product of their index numbers.

THEOREM 4B. If D(P) is reduced to a single arrow whose index number is m by Procedure B, then [P]=m+2.

The index number in Procedure B corresponds to m_{10} of the index matrix in Procedure A. When D(P) is series-parallel diagram, by applications of Rule 2 or 3, the index matrix always retains the form of $\begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}$. Surely

$$\binom{1}{m_1} \binom{0}{1} \binom{1}{m_2} \binom{0}{1} = \binom{1}{m_1 + m_2} \binom{0}{1}$$
 (Rule 2)

and

$$\begin{pmatrix} 1 & 0 \\ m_1 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ m_2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ m_1 \times m_2 & 1 \end{pmatrix}.$$
 (Rule 3)

Hence it is enough to calculate only m_{10} of the index matrix. Note that D(P) is always reducible to a single arrow by applications of Rule 2B or 3B in this case.

Held, Karp and Shareshian²) introduced the concepts of basic complement and component of P, and proved that

- (1) [P] is equal to the sum of the numbers of feasible subsets of the basic complements and that
 - (2) [P] is equal to the product of the numbers of feasible subsets

Example 1B:

Hence [P]=40+2=42.

of the components of P. (This corresponds to THEOREM 3 in this paper.)

They presented a method for counting the number by applying these theorems and a procedure in a special case when D(P) is a tree.

However Procedure A is applicable in much wider case. In many practical cases, D(P) is reducible to a single arrow by Procedure A, and necessity of separating P rarely occurs.

In a line-balancing problem, the number of feasible subsets gives the total number of storage locations and a rough measure of the time required for the calculation by the computer. So we can see whether it is practically possible to apply an exhaustive procedure like Jackson's¹⁾ or Gutjahr's³⁾.

REFERENCES

- [1] Jackson, J.R., "A Computing Procedure for a Line Balancing," Man. Sci. Vol. 2 (1956) 261-271.
- [2] Held, M., Karp, M. and Shareshian, F., "Assembly Line Balancing— Dynamic Programming with Precedence Constraints," Opns. Res. Vol. 11 (1964) 442—459.
- [3] Gutjahr, A.L. and Nemhauser, G.L., "An Algorithm for the Line Balancing Problem," Man. Sci. Vol. 11 (1964) 308-315.