NOTES ON PARAMETRIC QUADRATIC PROGRAMMING

REIJIRO KURATA

Faculty of Engineering, Kyushu University, Fukuoka (Received Oct. 6, 1965)

The primal-dual algorithm of parametric linear programming (e.g. [1]) can be extended in some sence to parametric quadratic programming problems as follows.

§ 1. Problem of the first type

Let us consider the following quadratic programming problem $P|\lambda$ with a parameter λ .

$$P|\lambda: Min\{p'x+x'Cx|Ax \leq b+\lambda d\}$$
,

where C is an $n \times n$ positive semi-definite matrix, A is an $m \times n$ matrix, p and x are n-vectors, and b and d are m-vectors.

We denote by M' the transpose of M.

Dorn[2] constructed the dual problem $D|\lambda$ of $P|\lambda$ with a vector variable y:

$$D|\lambda: Max\{p'x+x'Cx+y'(Ax-b-\lambda d)|p+2Cx+A'y=0, y\ge 0\}$$
.

The duality theorem holds between $P|\lambda$ and $D|\lambda$ as in linear programming. Now let (x, y) be the optimal solution of $P|\lambda$ and $D|\lambda$.

Put
$$w=b+\lambda d-Ax$$
 and $S=\{i|w_i=0, 0\leq i\leq m\}$.

The restricted primal and dual problems which we denote by RP and RD are constructed as follows.

$$\begin{split} RP: & \quad Min\{\xi'C\xi| \textcircled{1} \ A\xi + \sigma = d, \quad \textcircled{2} \ \sigma_i \geq 0 \ \text{for} \ i\epsilon S, \quad \textcircled{3} \ \sigma' y = 0\} \ , \\ RD: & \quad Max\{\xi'C\xi + \sum_{i \in S} \eta_i (A'_i \xi - d_i) | \textcircled{1} \ 2C\xi + A' \eta = 0, \quad \textcircled{2} \ \eta_i \geq 0 \\ & \quad \text{if} \ y_i = 0, \quad \textcircled{3} \ w' \eta = 0\} \ , \end{split}$$

where A'_i means the *i*-th row vector of $A = \begin{pmatrix} A'_1 \\ A'_2 \\ \vdots \\ A'_m \end{pmatrix}$.

Theorem 1. If (ξ, η) is the optimal solution of RP and RD then $(x+\theta\xi, y+\theta\eta)$ is the optimal solution of $P|(\lambda+\theta)$ and $D|(\lambda+\theta)$ for any θ such that $0<\theta\leq\theta_0$,

where θ_0 is defined as follows:

$$\theta_1 = \begin{cases} \min -w_i/\sigma_i(\text{where } \sigma_i < 0) & \text{if there exists } i \text{ such that } \sigma_i > 0 \\ \infty & \text{other wise,} \end{cases}$$

$$\theta_2 = \begin{cases} \min -y_i/\eta_i(\text{where } \eta_i < 0) & \text{if there exists } i \text{ such that } \eta_i < 0 \end{cases}$$

$$\theta_2 = \begin{cases} \min -y_i/\eta_i(\text{where } \eta_i < 0) & \text{other wise,} \end{cases}$$
and
$$\theta_0 = \min(\theta_1, \theta_2).$$

By the Kuhn-Tucker theorem, a necessary and sufficient condition that (x, y) (resp. (ξ, η)) be an optimal solution of $P|\lambda, D|\lambda$ (resp. RP, RD) is the following, from which the above theorem can easily be proved.

(I) Optimality of (x, y) for $P|\lambda, D|\lambda$: $Ax+w=b+\lambda d$,

$$2Cx+A'y=-p,$$

 $w\geq 0, y\geq 0, w'y=0.$

(II) Optimality of (ξ, η) for PR, RD: $A\xi + \sigma = d,$ $2C\xi + A'\eta = 0,$ $\sigma_i \ge 0 \text{ if } w_i = 0, \quad \eta_i \ge 0 \text{ if } y_i = 0,$ $\sigma' y = 0, \quad w' \eta = 0, \quad \sigma' \eta = 0.$

§ 2. Problem of the second type

Next, let us consider the following problem.

$$P'|\lambda$$
: $Min\{(p'+\lambda_q')x+x'Cx|Ax\leq b\}$.

The Kuhn-Tucker conditions for $P'|\lambda$ are as follows.

(I')
$$Ax+w=b,$$

$$2Cx+A'y=-p-\lambda q,$$

$$w\ge 0, \quad y\ge 0, \quad w'y=0.$$

The restricted problem then becomes as follows.

$$RP: \quad Min\{q'\xi+\xi'C\xi'] \textcircled{1} \quad A\xi+\sigma=0, \quad \textcircled{2} \quad \sigma_i \geq 0 \text{ for } i \in S, \quad \textcircled{3} \quad \sigma'y=0;$$
 where
$$S=\{i|w_i=0, \quad 0\leq i\leq m\} \ .$$

The Kuhn-Tucker conditions for RP are;

(II')
$$A\xi + \sigma = d$$
, $2C\xi + A'\eta = -q$, $\sigma_i \ge 0$ if $w_i = 0$, $\eta_i \ge 0$ if $y_i = 0$, $\sigma' y = 0$, $w' \eta = 0$, $\sigma' \eta = 0$.

Theorem 2. If (x, y) is the solution of (I') (i.e. the optimal solution of $P'|\lambda, D'|\lambda$), and if (ξ, η) is the solution of II' based on (x, y) (i.e. the optimal solution of RP', RD'), then $(x+\theta\xi, y+\theta\eta)$ is the optimal solution of $P'|(\lambda+\theta)$ and $D'|(\lambda+\theta)$ for any θ such that $0<\theta \le \theta_0$ where θ_0 is defined by the same relation as in §1.

§ 3. Remarks

1. Problems of the form $Min\{p'x+x'Cx|Ax \le b\}$ can easily be solved by Wolfe's simplex method, if p=0 or if C is strictly positive-definite (cf., e.g., Die Kurze Form in [3], p. 115).

RP and (II) in §1 satisfy this condition.

2. Starting from an optimal solution (x, y, w) of $P|\lambda$ and $D|\lambda$, we can obtain the optimal solution of (x_1, y_1, w_1) of $P|(\lambda + \theta_0)$ and $D|(\lambda + \theta_0)$ by the method explained in §1, where $x_1 = x + \theta_0 \xi$, $y_1 = y + \theta_0 \eta$ and $w_1 = w + \theta_0 \sigma$.

To solve $P|\lambda'$ and $D|\lambda'$ for $\lambda' > \lambda + \theta_0$, we must solve (II) for (x_1, y_1, w_1) , that is to find a solution satisfying $\bigoplus A\xi + \sigma = d$, $2C\xi + A'\eta = 0$, $(2\pi) \circ \alpha_i \ge 0$ if $w_{1i} = 0$, $\eta_i \ge 0$ if $y_{1i} = 0$, $(3\pi) \circ \alpha' \circ \gamma_1 = 0$, $(3\pi) \circ \alpha' \circ \gamma_1 = 0$.

But the solution (ξ, η, σ) of (II) for (x, y, w) satisfies automatically (1) and (3) of (II) for (x_1, y_1, w_1) .

To obtain the solution of (II) for (x_1, y_1, w_1) satisfying ② by using

 (ξ, η, σ) , it seems to be enough to solve by the simplex method the problem of minimizing $\sum_{w_{1i}=0} \sigma_i^{(-)} + \sum_{y_{1i}=0} \eta_i^{(-)}$ under the condition ① and ③, where $\sigma_i = \sigma_i^{(+)} - \sigma_i^{(-)}$ ($\sigma_i^{(+)}$, $\sigma_i^{(-)} \ge 0$) and $\eta_i = \eta_i^{(+)} - \eta_i^{(-)}$ ($\eta_i^{(+)}$, $\eta_i^{(-)} \ge 0$).

However, we have not yet obtained the rigorous proof of this fact.

3. Let us consider a solution of the problem $Min\{p'x+x'Cx|Ax \leq b\}$, $b \geq 0$.

Consider the following parametric problem:

$$Min\{\lambda p'x + x'Cx | Ax \leq b\}$$
, $b \geq 0$.

(x=0, y=0) is evidently the optimal solutions of this problem for $\lambda=0$. It suffices to solve this problem for increasing λ by the method in § 2 and then to stop at $\lambda=1$.

4. Markowitz [4] investigated a form of parametric quadratic programming, in connection with the problem of porto-folio selection.

References

- [1] S. Kurata: Primal Dual Method of Parametric Programming and Iri's Theory on Network Flow Problems J. Operations Res. Soc. Japan, 7, 104-144, (1965).
- [2] S. Dorn, Duality in Quadratic Programming, Quart. App. Math. 18, 155-162 (July 1960)
- [3] H.P. Kunzi und W. Krelle: Nichtlineare Programmierung, Springer-Verlag Berlin, Gottingen, Heidelberg, (1962).
- [4] H.M. MARKOWITZ: The optimization of a quantatic function subject to linear constraints, Nav. Res. Log. Qu. 3 111-134, (1956).