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The primal-dual algorithm of parametric linear programming (e.g. 

{l]) can be extended in some sence to parametric quadratic programming 

problems as follows. 

§ 1. Problem of the first type 

Let us consider the following quadratic programming problem PIA 

with a parameter A. 

PIA: MinfP'x+x'CxIAx;:;;;b+Ad} , 

where C is an n X n positive semi-definite matrix, A is an m X n matrix, 

p and x are n-vectors, and band d are m-vectors. 

We denote by M' the transpose of M. 

Dorn[ 2] constructed the dual problem DIA of PIA with a vector 

variable y: 

DIA: Max{p'x+x'Cx+y'(Ax-b-,{d)IP+2Cx+A'y=O, y;;;;;O}. 

The duality theorem holds between PIA and DIA as in linear pro­

gramming. Now let (x, y) be the optimal solution of PI). and DIL 

Put w=b+,ld-Ax and S= {ilwi=O, O::;;i::;;m}. 

The restricted primal and dual problems which we denote by RP 

and RD are constructed as follows. 

RP: Min(eC;ICD A;+a=d, (2) ai;::::O for ifS, @a'y=O}, 

RD: Max{;'C;+ L>li(A'i~-di)ICD 2C;+A'7j=O, (2) 7ji;::::O 
i,S 

if Yi=O, @ W'7j=O} , 
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A'l) 
who," A', m.am 'h, i-th ,ow vttW of A~(l~ . 
Theorem 1. If (~, 1) is the optimal solution of RP and RD then (x+8~, 

y+(1) is the optimal solution of PI(..l+8) and DI(..l+8) for any f! 
such that 0<8;;;;;80, 

where 80 is defined as follows: 

l
min-Wdai(where ai<O) 

fh= 
00 

if there exists i such that ai'>O 

other wise, 

jmin-Yd1)i(Where 1),<0) 

{/2= 

00 

if there exists i such that 1),<0 

other wise, 

and 

By the Kuhn-Tucker theorem, a necessary and sufficient condition 

that (x, y) (resp. (~, 7)) be an optimal solution of PI..l, DI..l (resp. RP, RD) 

is the following, from which the above theorem can easily be proved. 

(I) Optimality of (x, y) for PIA, DI..l : 

Ax+w=b+M, 

2Cx+A'y=-p, 

w~O, y~O, w'y=O. 

(11) Optimality of (~, 7) for PR, RD: 

A~+a=d , 

2C~+A'7)=0 , 

ai~O if Wi=O, 7)i~O if Yi=O, 

a'y=O, W'7)=O, a'7)=O. 

§ 2. Problem of the second type 

Next, let us consider the following problem. 

PI..l: Min{(p' +..lq')x +x'Cx I AX;;;;;b} • 

The Kuhn-Tucker conditions for pll..l are as follows. 
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(I') 

Reijiro Kurato 

Ax+w=b, 

2Cx+A'y=-p-J..q, 

W~O, y~O, w'y=O. 

The restricted problem then becomes as follows. 

RP: Min{q'~+~'C~ICD A~+a=O, (2) ai~O for iES, @ a'y=O; 

where S= {ilwi=O, O;:;;;i;:;;;m}. 

The Kuhn-Tucker conditions for RP are; 

(11') A~+a=d , 

2C~+A'7)= -q, 

ai~O if Wi=O, 7)i~O if Yi=O, 

a'y=O, W'7)=O, a'7)=O. 

Theorem 2. If (x, y) is the solution of (I') (i.e. the optimal solution of 

P'I..l, D'I..l), and if (;, r,) is the solution of 11' based on (x, y) (i.e. the 

optimal solution of RP', RD'), then (x+O~, y+fJ7) is the optimal 

solution of P'ICA+O) and D'ICA+fJ) for any fJ such that 0<0;:;;;00 where 

fJo is defined by the same relation as in § 1. 

§3. Remarks 

1. Problems of the form Min{p'x+x'CxIAx;:;;;b} can easily be solved 

by Wolfe's simplex method, if p=O or if C is strictly positive-definite 

(cf., e.g., Die Kurze Form in [3], p. 115). 

RP and (11) in § 1 satisfy this condition. 

2. Starting from an optimal solution (x, y, w) of PIJ.. and DIJ-, we 

can obtain the optimal solution of (Xl> Yl> Wl) of PI(J..+fJo) and DICA+fJo) 

by the method explained in § 1, where Xl=X+fJO;, Yl=y+fJ07) and Wl= 

w+fJoa. 

To solve PIJ..' and DIJ..' for J..'>J..+fJo, we must solve (11) for (Xl> Yh Wl), 

that is to find a solution satisfying CD A;+a=d, 2C;+A'7)=0, (2) ai~O if 

W1i=O, 7)i~O if Y1i=O, @ a'Yl=O, W'l7)=O, a'7)=O. 

But the solution (;, 7), a) of (11) for (x, Y, w) satisfies automatically 

CD and @ of (11) for (Xh Yh Wl). 

To obtain the solution of (11) for (Xh Yl> Wl) satisfying (2) by using 
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(~, Tj, (1), it seems to be enough to solve by the simplex method the 

problem of minimizing L: I1r)+ L: Tji(-) under the condition CD and 
Wti=O Yti='O 

(ID, where l1i=l1i(+)-l1i(-) (l1 i(+\ l1i(-);:;;;O) and Tji=Tji(+)-Tji(-) (Tji(+), Tji(-);:;;;O). 

However, we have not yet obtained the rigorous proof of this fact. 

3. Let us consider a solution of the problem Min{p'x+x'CxIAx;:;;;;b}, 

b~O. 

Consider the following parametric problem: 

MinPP'x+x'CxIAx;:;;;;b}., b~O. 

(x=O, y=O) is evidently the optimal solutions of this problem for 

A=O. It suffices to solve this problem for increasing A by the method 

m § 2 and then to stop at A= 1. 

4. Markowitz [4] investigated a form of parametric quadratic pro­

gramming, in connection with the problem of porto-folio selection. 
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