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ABSTRACT 

An attempt is made to explain the cause of instability in vehicular 

traffic flow by assuming that the equilibrium flow of a system is related 

to the concentration of vehicles in the system by a parabolic curve. 

Measurements of tunnel and freeway traffic are the basis for this as­

sumption. I t is found that the flow for densities less than that for 

maximum flow, i.e., the unsaturated flow regime, is completely stable. 

On the other hand the saturated flow regime is unstable to certain 

perturbations but will support finite oscillations. Finite oscillations 

between the two regimes can be either stable or unstable, but in particular 

oscillations around maximum flow are unstable. 

INTRODUCTION 

The general bchavior of traffic flow as a function of concentration 

IS well known, at least qualitatively, for many systems. Examples of 

such systems are single lane flow in tunnels for which there is good 

quantitative data [ 1] and multi-lane flow on freeways where the situation 

is more difficult [2]. This behavior of the steady state flow is shown 

schematically in Fig. 1 where the abscissa is the number of vehicles in 

the syssem at one time and the ordinate is the flow in vehicles per unit 

time. The solid line represents the gross or averaged flow and the circles 

represent data points. The average flow increases linearly at first with 
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On the Stability of Vehicular Traffic Flow 135 

the number of vehicles in the system but as the number of vehicles 

increases the flow reaches a maximum and then drops off and finally 

breaks up. The scatter in the data points, of course, is because the 

flow and the number of vehicles are both statistical quantities and 

subject to fluctuations. Large fluctuations indicate the onset of ins­

tability and it is this effect that we want to investigate here. 

We will use an extremely simple model. Fig. 2, which is an 

idealization of Fig. 1, shows the flow as a function of the number of 

vehicles in the system assuming that there are no fluctuations; we do 

not supply the reasons for such behavior but take this result as our 

starting point. For simplicity we take the flow curve to be a parabola 

following Helly [3] who worked with the discrete case. We assume that 

this curve determines the dynamic behavior of the system and thus have 

restricted our considerations to the slowly varying case. We further 

assume the flow out of the system is equal to this flow. Finally, we 

assume that the flow into the system is independent of the number of 

vehicles in the system-at least up to the point where the flow out is 

zer0 when the model breaks down. 

If we let N Ct) be the number of vehicles in the system at time t 

it then follows that 

where 

_d:: =q(t)-rN (2M-N), O~N(t)<2M, 

q(t)=flow into system, vehicles per unit time, 

r=constant, 

( 1 ) 

Jl;[=constant, the number for which the system has 

maximum flom out. 

tn writing down Cl) we have assumed that the flow out is immediately 

affected by any change in the input flow. As is well known a similar 
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physically unrealizable condition obtains for the heat equation. Such 

a change in the flow out is patently unrealizable for a well defined 

bottleneck downstream of the input. However, if the bottleneck is ill 

defined or distributed as for example can be the case in multilane flow 

on a more or less homogeneous highway, it seems reasonable that there 

should be a regime where (1) is a valid approximation to a physical 

system. Remarks akin to these can be made about the validity of the 

assumption that the flow in is an independent variable. Unfortunately 

because of the present state of the theory of vehicular traffic flow no 

quantitative limits can be put on the regime of validity; the plausibility 

of the model must rest on the results which can be obtained from it. 

Two results which will be obtained which argue in favor of plausibility 

are (l) the instability of the flow to a small change in the input on 

the retrograde side of the flow curve, which would thus cause the scatter 

in measured data, and (2) the impossibility of maintaining a flow at 

maximum, which is not documented but is noised about. 

2. PRELIMINARY ANALYSIS 

For mathematical convenience we set (see the dashed axes III 

Fig. 2) 

so that becomes 

r;=(N-M)/M 

w=q/rM2 

7:=rM2t 

( 2) 

(3) 

The normalized flow out is [l-r;2] and thus for steady state flow a 

necessary condition is O::;;w::;; 1. The time variable 7: has a unit such 

that if the system starts at time 7: = 0 with no vehicles in it, r; = -1, 

vehicles enter at the maximum steady steady state rate, w= 1, and no 
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vehicles are allowed to leave, then at time r= I we find that r;=0, i.e., 
the number of vehicles in the system is such that the flow is a maximum. 

The steady state solutions of (3) are obtained by setting w(r)=O, 

a constant, and dr;/dr=O. Then 

r;(r)=±VCT':":o), for 0::;:0::;:1. ( 4) 

The negative sign is for the unsaturated flow case and the positive sign 

for the saturated flow. Of course, these solutions were purposely built 

into the model. 

Since we are interested in time varying solutions of (3) let us 

examine this equation from the mathematical viewpoint briefly. It is a 

Riccatti equation and is discussed in many places, e.g., Ince [4], Forsythe 

[5], Watson [6]. The substitution ~I=-V'/V linearizes it, 

v" +[w(r)-I]v=O. (5 ) 

Ideally, analytic solutions to (3) or (5) for noiselike w(r) are desired. 

What is available, however, is the following: For w a constant the 

solution of (5) is trivial. For w a periodic function (5) is Hill's equa­

tion and for the special case w=a+ ,3 C03 pr it is Mathieu's equation, 

[ 4, 5] Whittaker and Watson [7], Stoker [8], McLachlin [9]. The 

periodic cases are difficult enough; apparently nothing has been done 

for more noiselike w. Thm there is little use for the existing literature. 

3. CONSTANT INPUT 

Let us set w(r)=O, a constant; we can then find r; straightforwardly 

by solving (5). It is convenient to define 

p=+vll-OI,O::;:O. (6) 

Case I: 0::;:0<1. 

r;(r)=-p+2p [I+ P -+- 7i"-e2I'c]-I, r;(O)=r;o, r:::::O. (7) 
p r;,. 

In the range of regularity of r; it is a monotone function of r. For 
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138 David H. Evans 

1,'0<0, 1;(r) increases or decreases, as the case may be, smoothly to 1,'(=) 

= - p., a point in the unsaturated steady state flow region in Fig. 2. 

For O<1,'o<p. the same is true, i.e., starting at the point 1)0' 1) decreases 

to 1) (=) = - p. while the flow increases to a maximum and then decreases 

toward its steady state value. On the other hand, for 1)o>f! the flow 

decreases and 1) builds up to 1)= 1 so that the flow stops and the model 

breaks down. Hence, points representing flows which are to left of the 

maximum in Fig. 2 are stable to step function changes in the input 

while points on the retrograde sIde of the curve are unstable to step 

function changes because either the flow goes to the unsaturated con­

dition or the flow breaks down no matter how small the change. As 

has already been remarked in the Introduction this behavior gives us 

an important plamibility argument for the validity of the model. Its 

importance is seen when the measurement of the statistics involved is 

considered. The measurement must take place during a finite length 

of time; if a step function change in input occurs during this time the 

instability would cause considerable scatter in the numerical results. 

Case II: 0> 1. 

Clearly this case is transient 

( 8 ) 

which is valid for O:S:; r< ro where 1) (ro) = 1. 

There remains the transition case 0= 1 ; one finds that 

(9) 

Thc solution is stable for 1)0:S:;0 and otherwise holds only for O:s:;r<ro 

where 1)(ro)=1. 

4. SMALL OSCILLATIONS 

Let us next consider the more noiselike case of an oscillatory 

input; put 
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w(r)=a+f3cospr, a>O, 1f3I:S:a. (10) 

Since a is the average flow in the on'cy case of interest IS a:S: I and so 

we set 

(11) 

The differential equation (3) then becomes 

(12) 

A; already noticed the known asymptotic results for the Mathieu equa­

tion, which i<; the equation (12) goe3 into when linearized by the sub­

stit'ution r;= -v' Iv, do not appear to be useful to us. We therefore restrict 

the examination to the case 1(31 small and obtain a few terms of a 

perturbation expansion of r; in power.> of (3. We set 

sub ;titute it into (12) and set the eocfficients of f3 to zero; thus 

YO'_Yo2= _k2, 

Yl' - 2YOYl = cos pr , 

Y2'-2YoYZ=Yl2, 

(13) 

(14) 

The analysis can be simplified by choosing the initial conditions 

judiciously. Let us set Yo(O)=k; the solution to the first of equation 

(14) i<; then 

Yo(r:)=k, -I<k<+l. (15) 

With the above sub3titution the second of equation (14) has the general 

solutlOa 

For k negative the last term goes to zero as r: increases regardless of the 

initial canditions; for k~O the initial conditions can be chosen such that 

al =0 to pre~erve the oscillatory charader of the solution. We can pro-
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ceed in a like manner for higher power3 of " and the results, except 

for k=O, are the same; that is, for k less than zero the solution is 

unconditionally asymptotically oscillatory, for k greater than zero the 

initial conditions may be chosen so that the solution is oscillatory. For 

the case k=O the solution (16), with al =0, reduces to 

Yl(')=~ sin pr. p 
(17) 

Substituting this into the third of equations (14) and solving we find 

(18) 

which is unstable for any choice of a2' 

Summing up the results of this section we have found that (1) 

the flow is unconditionally stable to small oscillations in the input flow 

for flows represented by points to the left of the maximum in Fig. 2; 

(2) for input flows equal to the maximum flow in Fig. 2 the flow l~ 

unconditionally unstable to small oscillations, as had been mentioned in 

the Introduction; and (3) for flows represented by points on the retro­

grade side of Fig. 2 the flow is conditionally stable to small oscillations. 

5. FINITE OSCILLATIONS 

It is possible to investigate the stability under finite oscillatiom 

in the input by using the remIts for step function input" section 3. 

Suppose the input flow is the rectangular wave shon in Fig. 3. For a 

time T the input is Or and for a time f it is Of; without loss of generality 

we demand Or>O/. Then for stable oscillations during the time T, 1J 

will rise to a peak value 1J and during the following time J, r; will fall 

to its minimum value '2 and so on. Clearly 

(19) 

in Fig. 3 the zero of the 1j axis is purposely not indicated. For stability 
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7J. and ij must exist and, conversely, if they exi~t there is stability. The 

average value of the input flow is 

and clearly must be restricted as indicated. 

I t is convenient to define 

As before there are two cases: 

Cases I: O~Of<O,<l. 

By the use of (7) it is found that 

-pi+Ptfj 
Pt-r; 

where we have set 

Pf=Pf cothfpf> pr=/l, coth rPr 

for convenience. 

Ca,e II: O::::;Of<l<Or 

From (7) and (8) it is found that 

-pi+Ptfj 
Pt-fj 

where for this case we have set 

Pf= Pf cothiJ, pr= pr cot rpr. 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

I t is instructive to plot these equations for some typical O's before 

analyzing the equations. Fig. 4 shows these equations superimposed on 
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one another. On the abscissa the values are plotted for PI and each of 

the pr's and the p's are used as the indepenent variables; the values of 

1 and 1; are plotted on the ordinate. A typical stable oscillation for 

Case I with 01 =1/2 and Or=0.96<1 has ij=-1/4, 1=-1/2 with Pr 

indicated by T and pr bye. A companion stable oscillation has 1; = 
1/2, 1 = 1/4 with the same value3 for Pr and pr which are now indicated 

by • and l::J., respectively. It is seen generally from thi~ figure that 

only two kinds of stable oscillations exist for this case: - Pr<"'L<1;< - pr 

<0 or O<pr<r;<1;<Vr. For Case n, 0r=1/2, Or=1.04<1, a typical 

stable o,cillation has 1;=-1/4,7,'=-1/2 with Pr still the value indicated 

by ... but pr now indicated by 0; the companion oscillatIOn 1;=1/2, 

72= 1/4 again exists. A type of stable 03cillation not allowed under the 

previous case has 1;=1/4, 1=-1/2 with Pt indicated by 0 and pr«O) 

indicated by x, the companion o,cillation has 1; = 1/2, l',1= -1/4. General­

ly it is clear from the figure that a necessary condition for stable 

oscillations is - PI <r; <f; <PI. 
Let us now obtain the general conditions for stability; we will 

only analyze the more interesting case, Case n, for which Or>1. By 

combining (25) and (26) we obtain the following quadratic equation 

for 7j: 

(28) 

The quadratic equation ij satisfies is the same except that the sign of 

the middle term is negative. It is expedient to introduce the definitions 

p=pr+PI, LlO={}r- Or=pr2+pr2 , (29) 

whcrc the last is from (21). Thc solutions of (28) are then 

1£= -(LlO/2p)2± v7{ (30) 

where 

(31) 

One can readily show by multiplying (25) and (26) through by their 
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respective denominators and then eliminating the terms ii· TJ... between 

these equations that for any solution 1) 

fJ =r;+t1(} / p . (32) 

By (29) and (19) necessarily 

p>o. (33) 

From Fig. 4, as already mentioned, or by analysis, It is necessary that 

(34) 

Thus the necessary condition for stable oscillations is 

(35) 

where the left limit must obviously be non-positive and the right limit 

non-negative. 

First let us look at the requirement that R be non-negative. We 

can define lJ such that 

(36) 

where the last is from (33) and (27). A convenient mixed notation for 

R as a function of lJ is 

(37) 

For R to be positive 

(38) 

where 

(39) 

For p large, i.e., rand f small, it can be shown that (39) implies (20). 

Next from the signs of the limits in (35) it is seen that 

(40) 

which further restricts the range of p. Also, (40) can be found directly 
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by the instructive method of letting J be infinite, which means that 

Pj=Pj, setting7J=-Pf, ~=+pj, and then solving for p. Finally, under 

the assumption that the previous conditions, (38) and (40), are satisfied, 

the remaining inequalities in (35) give only 

(41) 

which adds nothing that was not already known; however, it is reas­

suring. The canstants (39), (40), (41) all have the point p=iJ(J/2pj in 

common on their boundaries. 

In Fig. 5 the area defined by the above constraints has been 

~ketched for the case considered before, namely OJ= 1/2, Or= 1.04. The 

parameter p is some sort of a generalized frequency because of the 

behavior of its components pr and PI. To show the precise relation 

between rand J and the stability criterion three of the curves r+ J= 
constant have also been plotted in Fig. 5. Clearly the qualitative aspects 

of the stability criterion will not change with the value3 of Or and (J j. 
The results for Case I, fJ r< 1, are not particularly interesting. 

Briefly, oscillations of the variety >;'<o<~ are not allowed; on the other 

hand for any 7{, ij such that - pj<7J<~< - pr or pr<r;<~<pj there exist 

compatible chocies of pr and PI. 

6. CONCLUSIONS 

The model we have used in investigating the stability of vehicular 

traffic flow, which is all contained in equation (I) in its physical form, 

appears to have a range of validity. The evidence for this statement 

is all qualitative and it is not clear at this time how to obtain quanti­

tative validation. Some of the qualitative evidence has already been 

given in the Introduction, i.e., the derivation of the equation and some 

results. The same effect found using the step function can be illustrated 

in another way: Suppose these is a steady state flow with 7j=7jo which 

is due to the constant input Bo; let pc> be defined in the usual manner. 
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Now let us perturb the input by a small amount e for a short time a. 
By tection 3 at the end of time iJ, 7/(tl)=r;o=1)o+eo; thus, for 1)o=-p.o 

then 1)(oo)=-p.o, i.e., stability, while for 7jo=+P.J then 1)(oo)=-p.o for 0: 

negative and 1) (00) does not exist for e positive, i.e., instability. On the 

other hand we have seen in section 5 that there may be large, stable 

oscillations on the retrograde side of the flow curve. In fact the only 

oscillations which are unstable are some of those for which the low 

point in the number of vehicles in the system is to the left of the 

maximum of the flow curve and the high point to the right, as was 

derived in section 5. So, essentially we have found that the model shows 

completely stable flow when the flow is constrained to be in the unsatu­

rated region, which certainly checks with observed traffic behavior; on 

the other hand, when the flow is partly or wholly in the saturated 

region the stability of the flow is dependent on the type of disturbance, 

which is not an unreasonable conclusion to reach from observing real 

traffic flow. The next problem is to find out how to handle stochastic 

inputs and then find the statistics that the model would predict for 

such inputs. 

Flow 

• 
• 

, , 
• 

, 
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L-________________________________________________ ._ 

Number of Vehicles 
Fig. 1. Schematic representation of the flow vs. the number of vehicles 

in a system showing scatter of data points about average. 
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Fig. 2. Idealization showing flow as a parabolic function of number, N, 
of vehicles in system. Normalized flow vs. normalized number, 1), is shown by 

dashed axes, see equations (2). 
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.... ...... 
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Fig. 3. Schematic drawing of rectangular wave input into system, wC:"). 
and resultant steady state variation of number in system, r/,). Here, max r;(,) 
=~, min r,(c)=1;" and the zero of the Tj axis is not shown. 
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Fig. 4. Surerimposed curves with the values for the variables 7) and fj given 
on the ordinate and the values for pr and PIon the abscissa. Three families 
are shown: the dependent variable '11 as a function of the independent variable 
PI for the parameter (h= 1/2 and for various initial values ij, the variable ij as 
a function of pr for 8=0.96 and various initial!l> and the variable ij as a func­
tion of pr for 8r= 1.04 and various initial '11. 
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2Pf 
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r + f = constant 
Fig. 5. The region bounded by hatched lines gives IJ, p for which stable 

oscillations exist for the case (Jf=1/2, 8r=1.04. Constant period curves are 
indicated by the dashed lines with periods (in units of r) as shown. On such 
curves r decreases monotonely from its value on the upper curves, IJ=.A(p), and 
goes to zero as the curve asymptotically approaches the lower curve, IJP=Pf. 
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