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INTRODUCTION

In the study of tandem queuing systems, it is important to know
the output distributions of these systems. By output distribution (inter-
departure time distribution), we mean the distribution of the time
period between two successive departures in the steady state.

The purpose of this paper is to investigate these output distribu-
tions for some queuing systems.

In the first section of this paper, we consider the outputs of single
server queuing systems, including M/G/1, E;,/M/l and E;/E;/1 systems.

In the second and third sections, we investigate tandem queuing
systems with two stages and three stages respectively.

Poisson arrival distributions and exponential service time distribu-
tions are assumed in these two sections.

In the last fourth section, using these output distributions, we assert
that a characteristic of tandem systems is evaluated with satisfactory
precision, by means of single server systems approximating these tandem
systems. In this section we consider only systems with two stages.
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Throughout this paper we use following notations:

A the mean arrival rate of customers

2o the mean service rate of a service station

p=4/p  utilization factor

Preeerennn. the steady state probability that the system is in state
n. (Let p¢, s, be the steady state probability that the
system is in state (v, s, n), so on.)

p. ... the steady state probability that the system is in state
n, regarding the time immediately after the departure of
each customer as epoch

£ ... the steady state probability that the system is in state
n, regarding the time immediately before the departure

of each customer as epoch

M,(6)... the moment generating function of the inter-arrival
distribution

Ms(f) ... the moment generating function of the service time
distribution

"My(h)... the moment generating function of the output dis-
tribution

E()... the expected value of the output distribution
V(u)... the variance of the output distribution
C ... the coefficient of variation of the output distribution

"In addition, it is known that all systems treated in this paper have

uri‘ique stationary solution.[ 1], [10]

Furthermore, let us note the following fact. That is, except for

G/M /1 .system, the relation

a7 o g

holds true with all systcms that we are going to investigate in this

paper.

In other words, all instant of time arc equivalent, in the sense

that departures are equally likely to occur.
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A Study of Output Distribution 111

1. The Output Distribution from Single Server System

1.1 M/G/1 System
We will find the moment generating function (m.g.f.), Mu(6) of the
output distribution from M(1)/G(p)/! system.
If there is no customer in the system immediately after the departure
of a customer, then the time to the next departure is equal to
(inter-arrival interval)+-(service time),
because the distribution of the length of an exponentially distributed
variable remains the same if part of the length is chopped off.
On the other hand, if there is at least one customer in the system,
then the time interval to the next departure is equal to
(service time).
Table 1.1 shows these situations. From now on, we shall present

situations by similar tables, and omit detailed discussions.

Table 1.1
i State immediately before | State immediately after Partioned
| a departure a departure m.g.f.
i ) 1 ‘ 0 Ma(68)- Ms(6)
| for n>2; | 1 Ms(9)

Thus we have the following representation of moment generating
function My(6) of the output distribution.

(1.1) My(0)=po - {M4(0)- Ms(0)} + {1 —po*} - Ms(0)
=p 7 {M(0) Ms(0)} + {1 —p1 7} - Ms(0)
Differentiating both sides of (1.1) with respect to # and equating

#=0, we have
1 1 1 1
2 —p ).
F Pl()<l+#>+(1 171() P

pl(_):ﬁo(”: l —p.

and
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Since M4(0) is given by
A
M=
substituting these expressions into (1. 1), we obtain the following theorem.
[Theorem 1.1)
The moment generating function My(f) of the output distribution
from M(2)/G(¢)/1 system is given by

_e=0 A
(1.2) Mo(O)=-=" 3~ 5 Ms).

(Corollary 1.1)
In the case of M(1)/G(¢)/1 svstem, the coefficient of variation of
the output distribution is obtained by

C*=1—-p2(1—-Cs?). (Cs denotes the coefficient of variation
of the service time distribution.)

Therefore, we have C=1 if and only if Cs=1.

On the other hand, in the case of Cs=1, the value of C is between
the value of the coefficient of variation of the arrival distribution and
the value of the coefficient of variation of the service time distribution.

We apply the theorem 1.1 to some simple examples.

(Example 1.1)

By (1.2), the moment generating function My(f) of the output dis-

tribution from M(2)/M(u)/! system is given by

A
A—0

MU(0)=

Hence the output distribution coincides with the arrival distribu-
tion. (This is a well-known result.[6])
(Example 1.2)

In the case of M(2)/Ei(p)/1 system, where

Z k
Mi0)=—" and MS(0)=( k:ﬁ 0),
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A Study of Output Distribution 113

the moment generating function of the output distribution is given by

MU(0)=( £ ;0 )(jf[)(kﬁe)k

As to the coefficient of variation of the output distribution, we

N

have

(Example 1.3)
Since the case of M(4)/D{()/1 system is obtained from Example 1.2

as k—oo, in this case we have

mao=("" )L )
C:»\/ l_pf.
1.2 E;/M/1 System

Similarly to the preceding section, we can find the output distribu-
tion from E,(4)/M(g)/1 system shown in Fig. 1.1.

™ Arrival—Timing Channel
= S pu—
51 Phase [ Phase | Exponential
- I IRTTTISTIPRIPN — O-+Q0O | service station |— Output
@A .13 I3 QNS .
& (rate : 1) (rate : IA)_ queue (rate; p)
-
Fig. 1.1

Let us denote a state of the systern by (s, n), where s (next customer
is in the sth phase in the arrival-timing channel) runs from [ to 1, and
n is the number of customers in the system (including a customer being
served). It is known that the solutions of a system of steady state
equations for this system are given[4][9] by

(1.3) Pss n=p (1 —v) -pints-i-t (I<s<ly,

where » is a positive root of
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



114 Toji Makino

1.4 vttt o—lp=0,  (p=4/p),
which is less than unity. To find the output distribution, we must
have
Po=é{7s’o, Pus bpas cors P
and

1 !
P2=5§lps,s s Pa—‘—sélps, 3y "0t .
By (1.3) we can find these values as follows:

po=1-p
pa=p(1—ot) -0t
pa=p(1—01) %
pr=p(l—at) -pn=bt
Referring to the Table 1.2, we obtain the following representation
the moment generating function My(6) of the output distribution.

Table 1.2

! State immediately before | State immediately after ‘ mg.f /

| a departure “ a departure | F4
W e GG

o T
@0 } (2, 0) \‘ (TA—iF) (7/35) E
P |
€y | eo EGs)

Thus we have

Mr'(/)):(ﬁ—ﬂ—)-{x}élpmm.(_l,il%?,,)m—s_*_g!,nm}
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~(ur ) zeealy) v Epe)

Using the relations

[Jn(">=Tp”p (for n>1),
—Fo

we have following theorem.
[Theorem 1.2]

The moment generating function of the output distribution from
E(A)/M(p)/1 system 1s given by

a5 oS4 () (=) L]

-0 ) |~ 1_(1_ Z)

Note that following corollaries are readily obtained.
(Corollary 1.2.1)
In E,()/M(p)/1 system, we have

ﬁo(+) ;epo
for I=1.
(Proof)

Considering that
_ J 2
(4 — g (=) — __ 4

Po J 41 T—py
and

bo=1—p, pr=p(l—0Y),
we have

Pt =1—0t

On the other hand we have v»*<<p for {>1, since
v oI o=]p,

It follows that
pHO>1—p=p,.
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(Corollary 1.2.2)
Concerning the coefficient of variation of the output distribution
from E;(2)/M(x)/] system, the relation

C= J 1
is satisfied. From this relation it can be seen that

1
VTSCSI

—v'+p)

(1.6) 2l

(Corollary 1.2.3)
As to My(6) in (1.5), following relations are satisfied ;

, _¢* A2 )
lim My(9)= <;z 0)<ga wn),

1.3 E,/E,/1 System
Let us consider the output distribution from the system shown in

Fig. 1.2,

\Arrival—Timing Channel Service Station

£
2| Phase 1 | Phase 2 Phase 2 | Phase 1
2 — Qeeere o] — QOutput
= . . S—— . .
zu (rate; 22) (ratzi, 22) queue (rate; 2p) | (rate; 2p)
— .
Fig. 1.2
Table 1.3
State immediately before | State immediately after mg.f
a departure a departure -8.J-
22 \? 2p \?
’ 5 1 1, 0, 0 It AR I Ny i
.3 D (1. 0 0 (527) (2u0)
22 2 z
TR 2,0;0 (_,_,) < /zw>
& 1 1) ( ) 2i—0/) \2p—0
for n>2; . . 2 \?
(s, 15 m) (5 25 n—1) (2/1-—-0)

Note : (5, 0; 0) denotes the state of no customer being in the service station.
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Denote each state of the system by (s, m; n), where s is the arrival
phase number, m is the service phase number, and 7 is the number of
customers in the system. Similarly to the preceding section we consider
the Table 1.3,

Thus we have the moment generating function of the output
distribution

(1.7) My(O)=p571y

It has been shown by Kawamura[9] that
o=l | 1 1 1

p(-‘,’"i"): A' (l —‘2)3)
Uy Uy 1+p

U Gmny  Ugfsmm) ()
where

p=4/p, A=p—uy,
Uj(:, m; n):ujm—l .vjs—l .wjn——l, (le, 2)

_ 0o
U= 1+P—uj )
wi=uf ,
1 T T 62
uy= +e «/11+6p+p . m=p,
_ l+o+ v 146p+07
Us= __2 ]

Using the preceding results, we can radily see that

Pa,D=0p,0,0)
—o(1—p)(1+23)
JJeRE l)=‘*g( 1 XLt} )
—Us
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- JZERTE)
pgl,l DT 2 e
PN IR
s=1n=1
-y — [2(21 D
ﬁ( L™
Z ZI FERTED)
J— ’l——
-y l’(:l D
Pidw="2
Z Z,' P um
s=ln=1

and considering (1.7), we have following theorem.
[Theorem 1.3]

The moment generating function of the output distribution from
Eq(A)/Es(1)/1 system is given by

w0 (2 et oo

—<l—p><1+va>( 2‘0)+ ko200, }

9

where

3=

—l—p—v1+6p+0%
2

By (1.8) we may see that the expectation and the variance of the
output distribution is equal to

] 1 .
Ew=—r, VW={z{3+20-30*~(1—)v TH657¢*} .

Therefore

1
V> 422 8+20-30"=(1—0)1+3p)} =75 .

Thus we have,
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(Corollary 1.3.1)
The output distribution of FEy(4)/E(¢)/1 is different from Ey(4). The
coeflicient of variation of the output distribution is greater than that

of the input distribution.
2. The Output Distribution from a Tandem Type System with
Two-Stages

In this section, we consider the output from the system shown in
Fig. 2.1{7].

Poisson S — ] ———
arrival first stage service . second stage
— Q-+ O O] station g ;—»I Walling T0Om |, corvice sta%ion —>QOutput
—~— (rate; p) | (capacity ; N) (rate; p)
queue | V7777 #7 e > H

Fig. 2.1

If an arrived customer finds the first service station empty, then
he will be served at once.

If he finds the first stage busy, then he will join the queue in
front of the first stage station, and customers in the queue will be
served in order of arrival. In this case, the length of the queue in
front of the first station has no restriction.

After a customer has finished to be served at the first station, he
will be served at the second station. If he finds the second station
busy, then he joins a queue in front of this station (in a waiting
room).

In this case, however, we suppose that the maximum of permissi-
ble queue size (the capacity of waiting room) is equal to N. By this
restriction, if a customer finished to be served at the first station finds
N customers in the waiting room, then he must continue occupying
the first station. We call this situation that the first station is blocked.

We suppose that arrivals to the first station have the Poisson dis-
tribution with arrival rate 2, and service times at the first stage and

the second stage have the exponential distribution with common ser-
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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vice rate f.
All states of this system are listed in Table 2, 1.

Table 2.1
. State of the | No. of units in the State of the
State Queue size first station waiting room second station
(0 0 0) 0 0 0 0
©o1 0 0 0 1
o110 0 0 1 1
O N1 ’ 0 0 N 1
© N2 ’ 0 b N 1
n>1;
2 0 0) n—1 1 ) 0 ' 0
(n 0 1) n—1 1 0 1
(=11 [ n—1 \ 1 1 1
(n N 1) n—1 1 ‘ N ‘ 1
(n N 2) ' n b 1 N ‘ 1
Table 2.2
State immediately before State immediately after m.g.f.
a departure a departure & J
A\ (Y
oo ©00) () ()
n>1; ¥
(= 0 1) (n 0.0) (y—())
n>0; r=1, 2, .-y N; (n, r—1, 1)
(nrl) ( o )
—0
n20; #
(2 N 2) (, N, 1)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Study of Output Distribution 121

The letters 0, 1 and 4 in Table 2,1 represent that the correspond-
ing station is empty, being in service, and blocked respectively.

The partitioned moment generating function of the output distribu-
tion are given in Table 2. 2.

From these expressions for partitioned moment generating functions,
we can see that the moment generating function of the output distribu-

tion is given by

> A il 2 &) (€] H__ 2
e (2 M ) o )
S - - u
+{F, +F21)+'°'+FA'1)'I"F1(V2)}'( pr—0 ) ’

where

Mecanwhile, by Makino[7],[11]

Door=p-Pooo 5 Fop=1-p, Fm:l'—P"Poot)s .
_(N+2)—(N+3)p

Do " N D) (Nt D)o N2 e e 4200 pH*1
and
poor+ {Fo—poon} +{Fu+Fa+- - +Fy+Fr}=1—Fy=p.
Therefore we have the following theorem 2.1 considering that the
relations

(=)
'[7001 ’ Frs ::"“Fr,x .

1
->_ 1
pOOl p

[Theorem 2.1]
The moment gencrating function of the output distribution from

the second stage station of the two-stage tandem system shown in Fig.

2.1 is given by

@.1) My(®)= (‘) ,,.<7;5—).[,,000.{ p( ey )(?ﬁb )

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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122
—a +p)(———f~5~) +1
S ]
Thus its mean value, variance, and coefficient of variation are
given by
1
E(u):T s
2
V(tt)—" (2—p)+ """" (2 po0e—1) ,
(2.2) C= ‘/ 1-2{1 "P)Z_Pooo}
(Corollary 2.1)
In the casc where N=0, since pop= 22_T3pp_ we have
(2.3) C= \/ 2"3
and ig the case where N—oo, since poo—(1—p)? we have
-1 .

3. The Output Distribution from a Tandem Type System with
Three-Stages

We consider the output distribution from the system shown in

Fig. 3.1.

Poisson first stage second stage third stage |
arrival—.}omoo service station—| service station/—| service station —»Output
m (rate; p) ' (rate; p) (rate; p)
Fig. 3.1

All states of this system are listed in Table 3. 1.
The partitioned moment generating functions are shown in Table 3. 2.
Steady state probalities are calculated by the usual method of dif-

ference equations as’ follows[11];

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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o0

Fr,s= Z p,-z'rk ’
0

we have

n=

Fm:Foo—Pooo
| :
Fy =9 {8Fa0—3po00— 200 — Poro— Pooz}

F02=

1 .
T {3F00_3P000_2p001 "‘ﬁolo +P002}

1
Fi= 4 {5Fs0— Spavo—2p001 + Poto—Paoz}

1
Fy =*4 {3F00 —3[1000— 2[’001 -2/7011 "pﬁlo"p‘“’?’

Table 3.1
State Quene size | G e e arion | thind st
(0 0 0) 0 i 0 | ' 0 ‘ 0
B ©on | o 1 o ,,i ”Bmm'i o
©10) 0 ‘ 0 i T {7777?7?
for n>1; (n 0 0) }Wmn——l \ 1 0 0
TR R R 2
002 \ 0 0 7{ b 1
fora>l; (10 1) | a1 | R \ 1
o110 | a1 0 1 ‘ 0
(120 i " b ; 1 | 0 !
vy | 1 i 1 ‘ 1
w7/%”(}[&)’72)7‘ el | i 5 1
for n>0; (a0 2 1)”’ n i b | 1 1
r (202 7[ no b ‘ b 1
Putting
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Table 3.2
State immediately before | State immediately after Partitioned
a departure a departure m.g.f
2
©o1 ©00) (2 )(57)
:
for n>1; (n 0 1) (n 0 0) (”fo)
©11) ©10
(i (10 (o
©21 ©20) | Ne=0
(n 2 1) (n 2 0) ;
©02 - ©on ‘
(n 02 (n 0 1) J p
©22) ©11) l (/1—-())
(29 i ‘

1
Fyy= o {4F 00— 4Pano—2Poor — 2Po10— Por1 — Pooe}

Fpo= % {3Fs0—3Po00—2bo01 — Pora— Po11 — 2002}
and

39 Fyo=4+(35+180)pooo+9po10+ ooz +6pons

Do =p" Poco

Pooz=p(1+0)+ Pose— Poto

ponr =p(1 +P)2'[’ooo_(l +p) *Poro

Pr06=2(1+p)+ pora— p(1 +0)% Poca

Pro=—p2+3p+30%+ 0% pooo—2(1 +p)% puro

Considering that the relation

)

b= L b4
nrs p nrs
holds, we have the following expression for the moment generating

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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function of the output distribution
3.1) My(ﬁ)zfl—{p ( ) ( . ) +(Fy—p 1)( )3
P 001 r— 0 00 pr— 0
2
+(F11+F21)< ) +(F02+F22)( 0)} .

Its coeflicient of variation is given by

2
3.2) = \/1_2<1+"§*>{(1"P)a—ﬁooo}—_:;‘o‘
On the other hand, by simple calculation we can show that
l—p
3 5 ’
1 +2_0+3p2+(4+ ) +(5+~lg—->p‘

(3.3) Pooo<<

and we can conclude that

208
< \/ 1—- 24_7

Note that the right hand side of the above inequality is the coeffici-
ent of variation of the output distribution from two-stage tandem system
(with N=0).

Therefore we have the following ;
[Theorem 3.1)

The coefficient of variation of the output distribution from three-
stage tandem system shown in Fig. 3.1 is smaller than that from two-
stage tandem system (with N=0) shown in Fig. 2.1.

4, Similar Systems

4.1 General Consideration
In the study of tandem queues with blocking effect, it is difficult
to find the distributions of queue sizes and waiting times, since it is
impossible to regard its stations os independent and treat them separately.
By this reason, it may be natural to require that all states should
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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be put together and be regarded as an equivalent, at least approxi-
mately, service station. In this paper we restrict ourselves to the con-
sideration’ of two-stage tandem system (Fig. 2.1).

In the case that the capacity N of the waiting room is equal to
zero, it is known that

[the mean number L of customers in the system]
=4p(2—0%)/(2+0)(2-3p) .

For N>1, however, the values of L is not yet obtained.
In section 1, we have shown the moment generating function of
the output distribution from M(4)/G(;/)/1 system to be

.1 My(0)= (—“;i) (5 ;)M

where Mg(0) is the moment generating function of the service time
distribution.

On the other hand, it has been shown in section 2, that the
moment generating function of the output distribution from two-stage

M)/ M(p)/1 system (with the waiting room of capacity N) is given by

@2 o= e (17 ) )0 (7)1
{(l—p)( ) (20—1)H
Regarding (4.1) and (4.2) to be equal, we have
o e (AT
b2 Ml
{(l—p) (—-—)+(2o—1)H

Our approach to the tandem system is through the substitution of

a single server system for the original system. In other words, instead
Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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of the tandem system with service rates y, Poisson arrival, and waiting
room capacity N, we consider M(4)/G(¢/)/1 system with the service dis-
tribution determined by (4.3).

As to the mean number of customers in M(2)/G(¢)/1 system the

following results have been obtained.
FQ=T pior=(—p)X=2)- S0 ~2)/ (S0 -1 - (o' =4/

Where p; denotes the steady state probability that the number of

customers in the system is j, and

S*(0) = S”e-vrdS(t)

0
is the Laplase transform of the service distribution function S(2).
Nothing that
Ms(—0)=8%@) ,
we have
4.4) FR=(1-p"1—-2)-Ms—2(1 —2))/{Ms[—21-2)]-2} .
Substituting (4.3) in (4.4), we obtain that
(4.5)  FR=1—p) Ms[—i(1—2)]

) {1+0(1—-2)}-{l+p(1—2)}*
[(1—2) poge+4o(l —2)+-2—2{p*1 —2)+ o' (1 +p(1 —2))*}]

Since we want to consider M/G/1 system instead of the two-stage
system, it is preferable to compare the queue size of both systems.

Let Fy(2) be the generating function of queue size.

Then we have

1

(4.6) F=( —p’)-(l—?>+%-F(z) .

Hence the mean queue size L', in M(2)/G(¢)/1 is given by

— Poovot =1 P)2

z=1 1—',0’

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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Therefore our problem becomes to find out the value of
4.8) =

4.2 Calculation of o'

Table 4.1 gives all states of a two-stage system (with the waiting
room of capacity N), and corresponding mean passage time.

By the mean passage time, we mean the mean passage time of the
first customer through the system after the arrival of a customer (we
observe the system at the epoch immediately before an arrival). For
example, if the state immediately before an arrival is (0,7,1), then the
mean time to the first departure from the first stage station (the time
spent in the first station) is equal to 1/pu.

Table 4.1
Stat Queue |State of the| No. in the | State of the Ivfic;r; ?:’ s:ﬁge
ate size Ist station |waiting room| 2nd station first station
© 0 0) o | o 0 o | 1/
0o 0 ’ 0 0 1 1/p
(O,N—l,l)’ 0 0 ‘ N—1 1 ‘ 1/p
o - . " 1 NS
) 2 p
for n>1;
00 n—1 1 0 0 w (8]
n(n01) n—1 1 ‘ 0 1
P ‘ ) mean:
N+3 1
n(n N 1) n—1 1 1 ‘ N 1 N+2
for n>0;
(n N 2) ’ § ’ b v :

Denote the mean service rate when the system is regarded as a
single server system by ¢/, then

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.
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1
4.9) g=——""""- EBEEE I
(PacotPaor+* -+ +Posvots)* +P0N1 < gw —; »)
N
+ {1 —(pooo+poor+ - +[70N1)}< Ni; P )

it follows that

A
[ A,
="

3
=[([Jooo+[1001+ cretPoyoin)+ 2"!’01\’1

+ {1 —(poso+ Poor + * * - +pon)} - x:::g :’

It is clear that

N43

1— 0> poso+poor+++ +povi >1 "—m'ﬂ .

The values of poo and povi can be precisely evaluated as necessary.
However, for the large values of &, we may suppose that

N+3
(4.10) p'#{l-l" ((NIQ))Z p} o .

4.3 Approximate Solutions

Let us compare the mean queue size L'y, of M/G/1 system obtained

in the preceding paragraph, with the mean queue size L, of the original
two-stage system. At first we calculate L,.

By [7],
L=[TstFr,s(Z)/dz]z=1 . (Frs(2)= an,r,‘,n-l-r-{-s .

Since we have obtained the expression of F,,(z), the mean queue
size L, is given by

(4.11) Ly=L—{Fy(1)+2-Fu(1)+3-F.(1)+3 Fia(1)} + (poco+ poos + ors)
=L—~{(0+3) pooo+(To—3)} .
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where

(4.12) L=- (p*+4p—1) fp“;‘:‘{,gl,%f,lgﬁ’i}),,_ 7.

If we substitute M(4)/G(¢)/1 system for this two-stage system, then

we have

(4-13) P [(Pooo‘*‘ﬁoox)‘*’ 1’011+ 4 @000+P001+p011)}:[

TCENER SN

using the relations (see [7]

BPoor=p" Pooo
Dotz =3—40—(3+20) * booe

On the other hand, we can see that

(N+2)— (N+3)li in
(N+2)+(N+l)o+Np + . +20N+p"“ >

(4.14) Povo=

where N is the capacity of the waiting room. In the present case of
N=1, we have

3—4p

pooo 3_*_240’_}_“‘0’ .

It follows that

i (18+18p+1902—4p%)-p
(4.15) o= 6-(3+20-+0%

Table 4.2 gives the values of

— (Y _— )2
@16 L= PR

and the values of L, for various values of p.

The numerical values of L, in Table 4.2 is calculated from (4.11),
4.12) and (4.14) by
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(4.17) Li=L—{(o+3): posot+(7p-—3)}
. 3p*+5p—8 | 8—2lp+18p*
T 3420+p? 3_4p

In this relation we used approximate values for pg, so that the

values of L, given in the Table are approximate.

Table 4.2
Mean queue size of Mean queue size ofl
, approximate single| original two-stage

e o bovo server system system

| L, L,
0 0 B 0 ‘ 0
0.1 0.1038 ‘ 0. 8100 0.01 ! 0.01
0.2 0.2164 \ 0. 6395 ! ' 0.06 \ 0.05
0.3 0.3388 i 0. 4878 0.17 0.16
0.4 0.4711 ] 0. 3535 0.41 0.38
0.5 0.6127 L 0. 2353 ‘ 0.93 0.88
0.6 0.7626 F 0.1316 ‘ 2.33 2.27
0.7 0.919¢ ’ 0. 0409 ‘ T 989 9.98
3/4 1 ‘ 0 t oo o

Table 4.2 shows the fairly goocd agreement of the value of L; and
L',. When N becomes large, the agreement is expected to become
more satisfactory.

Table 4.3 gives the approximate mean queue sizes L'; for some
values of N. .

Note: For N—oo, L', is calculated by L'q=~—‘o——p .

1—p
Only two-stage systems are considered in this section. However,

Remark

the concept of similar system is applied to three-stage systems in the

similar way.
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Table 4.3
Mean queuc size of approximate single server system; Lg
? 1 N=2 l N=3 ‘{ N=4 . N=5 1N_10 { N=20 | N=oo
0 0 ] o [ o | o Lo | oo | o | o
0.1 001{ 0.01 | 001. 001[ 0011 001} 001. 0.01
#_oiA[?iogﬂwoge{Wgﬁos[ 005[ 00;‘ 005‘ 005( 005‘;
[ 017| 016‘ 015’ 015’ 014} 013‘ 013‘
0.4 } 041‘ 0371 o35| 033] 032{ 029| 027{
’ 0.93 | 0.81 | 0.7¢ | 0.67 | 0.64’ 0.57] 0.52 | 0.50
0.6 1 233’ 180] 1.56 | 135| L27| 109 0.95] 0.9
0.7 ’ 9891 494' 380‘ 306| 275‘ 216\\ 177‘ 1.63
(3/4) 1 o } 11.63 ‘ 7.03 ‘ 5.18 ' 4.44 ‘ 3.22 ’ 2497\4257
@/5) | 14 w 52010\“13\ 847| 516} 3.65| 3.20
(5/6) ‘ ’ } | | 29.06] 16.62‘ 7.70| 490 | 4
(6/7) ] l | e | 41,041 11. 111 624\
(7/8) )*‘ :F i'fﬁfif" ) o } 15.88 ) 701 } 6.88
0.9 | | | N {3503\ 10.86 | 8.10
(12/13)‘ [ ‘ { ‘ ] ﬁ . 16.54\ 11.08
(22/23) ﬁ“* ( |_1 ‘ | e ' 21.05
EENEANREREE
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