
Journal of the o. R. Society of Japan, 

Vd. 8, No, 2, February 1966. 

ON A CLASS OF OPTIMAL STOPPING 
RULE PROBLEMS 

HIROSHI YANAI 

Keio University, Tokyo 

(Received Jun. 11, 1965) 

§ 1. INTRODUCTION 

One of the typical decision processes, to which we are confronted, 

in our daily activities, may be to decide whether to accept or refuse a 

proposal from several kinds of them, at the instant it is offered. Consider, 

for example, a situation where we have three kinds of traffic facilities 

in a town: street car, bus and taxi-cab. We are waiting for one of them 

to attend, perhaps, a weekly meeting. At the instant when one of them 

comes along the street, we have tc make up our mind whether to take 

it or pass it over and wait for the one which will come afterwards. 

Such kind of decisions can only be made rationally on some definite 

criteria. In our example, we may suppose that we should have to pay 

penalty, if we would be late, and on the other hand, the fee is different 

for each kind of the traffic facilities. In this circumstance, the criterion 

may be the total amount of the fee and the penalty. 

The refusal against a proposal may be done only in the hope that 

we would have another proposal, in the future, which is expected to be 

more favourable than the current one either in sense of the kinds of the 

proposals or the opportunities they would be made. 

Moreover, in order to estimate the figure of merit associated with a 

particular decision in advance, we must have some information about 

the figure of merit to accept the proposals which would be made in 

future. 

In this article, we would like to investigate how we can decide 

optimally whether to accept or refuse a proposal at the instant when it 
66 
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On a Class of Optimal Stopping Rule Problems 67 

is offered to us, assuming that there are N kinds of them, each of which 

IS made stochastically from time to time, independent to the other kinds, 

with the known law of 'arrival' distribution. Suppose that it is admitted 

to accept a proposal only once. The figure of merit to accept the i-th 

kind of proposal made at a particular instant is assumed to be known 

as a function of the time. 

The problem is formulated into a system of non-linear integral 

equations by the method of dynamic programming. The existence and 

the uniqueness of the solution of the system is proved. Iterative methods 

for numerical solut:on are examined with the estimation of the associated 

error. 

§ 2. FORMULATION OF THE PROBLEM 

Assume now, that there are N kinds of proposals, each of which is 

made to us stochastically from time to time with a known 'arrival' 

distribution. 

Let 

(2.1) epi(!) t~O, j=1,···,N 

be the probability density function that a proposal of the kind 'j' will 

follow a proposal of the same kind after t time units. We assume that 

rpi(t) is independent to the other kinds of proposals, what we have replied 

to the proposals made in the P:lst and the times at which they were 

made. In other words, it depends only on the kind of the proposal and 

the fme lapse after the latest proposal. 

We postulate that If,j(t) is uniformly bounded: 

(2.2) ep.i(t)<M<oo t~O, j= 1, .. " N 

And the a posteriori probability given that we have not been offered by 

proposals of the j-th kind during fJ time units after the latest proposal 

of the same kind, that we would not be offered by a proposal of the 

same kind until fJ+, time units after the latest proposal of the j-th kind 

is assumed to be defined for any 11>0 and ,>0 by the fraction of the 

integrals, 
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(2.3) 

Hirorhi Yanai 

(00 cpj(t)dt 
)0+, 

~~ cpj(t)dt 
j=I, ... ,N 

which is continuous as to O. Denote by Q the class of distribution 

functions satisfying the above conditions. 

Denote by 

(2.4) gj(t), j=I,···, N, to::;;;,t<oo 

the figure of merit that we will obtain, if we accept, at time t, the 

proposal of the j-th kind made at that time. We assume that this 

function is known in advance and belongs to the class I', defined below: 

gj(t)fI', j=I, ... N . 

Definition 1 
The set of uniformly bounded functions get) defined on (to, (0) which 

are continuous except on the set of points {tn}, (n= 1" .. ) will be called 

the class I', where the set {tn} is assumed to be fixed [or all g in rand 

to have no finite limit points (Fig. 1) . 

• .. ~ . . ..,.--- :~.~ 

tz 
Fig. 1 

Let us define the metric on I'. 

Definition 2 

t 

The distance between two elements of I', get) and g'(t) will be defined 

as follows. 
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(2.5) p(g(t), g'(t» == sup Ig(t) - g'(t) I • 
'o.;;,t<oo 

Next, we introduce a discount factor 

(2.6) exp( -F), r>O, r : const. 

which will be multiplied by the figure of merit, in order to evaluate it 

at the instant r time units prior to the instant at which it will be obtained. 

Remark that, with this factor, the figure of merit g(t+rl +r2) which is 

expected to be obtained at time t+ rl +r2 (rl, r2>O) will be evaluated at 

time t as 

(2.7) 

while the re-evaluation at time t of the figure of merit evaluated at time 

t+rl, 

will be 

exp( -rrl)·exp( -rr2)·g(t+rl +r2) 

=exp( -r(rl +r2))·g(t+ rl +r2) 

which is consistent with the evaluation (2.7). 

Let us consider the situation where we are admitted to accept only 

one proposal, only once; thus all the decisions before the acceptance of a 

proposal are refusals. Using different words, we are considering a class 

of optimal stopping rule problems---problems of stopping to look over 

proposals. 

The state of a decision maker at time t may be described by the 

time duration 

(2.8) Ok~O, k,=I,"',N 

from the time when the latest proposal of the k-th kind was made. 

Hence, our problem is to decide, at the time when one or several 

proposals are made, which one to accept or to refuse all of them, related 

to Ok, k=l,"', N, so as to maximize the expected figure of merit evaluated 

at that time. 

We apply the method of dynamic programming [2]1) to formulate the 
-----------------

1) Numbers in brackets [ 1 refer to the references cited at the end of the paper. 
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problem. In order to do so, we define an unknown function as follows. 

(2.9) J(t; fP,···, (}N): the maximum expected figure of merit 

evaluated at time t, related to the time 

duration (}k>O from tne latest proposal 

of the kind 'k', k=l, .. . ,N. 

With this, the principle oJ optimality leads to a non-linear integral equation 

(2.10) J(t; (}1, ... , (}N)=max [(li(t), jf] 0 (}k>O 
h(t; (;1, ... ,(IN) t?;, =, 

where] is the set of all the superfices j for which (Ji=O and the function 

A(t; (}1, ... , (}N) is defined as follows. 

(2. 11) h(t; 01,···, (}N): the maximum expected figure of merit 

evaluated at time t after refusing all the 

proposals made up to (;:;:;t) the time t. 

Let us evaluate the function h(t; (}\ ... , (}N) in terms of J(t; (}1, ••• , (}N) 

and tpi(t), i=l, .. ·, N. If we have refused all the proposals made up to 

(;:;:;) time t, the next moment at which we would be urged to make 

decision will be the time at which a proposal would be made for the 

first time after t, regardless of its kind. 

On the other hand, the probability that a proposal of the i-th kind 

will be made in a small interval (t+r, t+r+.1r) as the first proposal after 

time t is given by 

(2.12) 

( 

N \00 tpl(t)dt) "( (J") 
= nJ<+o! . tp'r+' . .1r+o(.1r), 

1= I Coo tpl(t)dt Coo tpi(t)dt 
JO! J<+o' 

where o(.1r) denotes the quantity for which 

lim o(.1r) =0 
4<-0 .1r 

holds. 
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Remark here, also, that the probability that more than two proposals 

would be made in this small interval of length Llr would be so small as 

the order o(Llr) that we may even neglect in reality as in the subsequent 

discussions. 

If we follow the optimal decisions at time t+, and thereafter, the 

maximum expected figure of merit evaluated at time t+r is, by definition, 

(2.13) f(t+r; (P+r,···,Oi=O,···,ON+r). 

Thus, according to the principle (~f optimality, the function h(t; 01
"", ON) 

is evaluated as follows. 

(2. 14) h(t; 01,···, ON) 

( 

N rHl rpl(t)dt) rpi(r+Oi) d 
X IT ' • r 

1= 1 ("" rpl(t)dt ("" rpi(t)dt Jel Je i +, 

so that it might be, at least in some cases, appropriate to denote it in the 

form 
(2.15) h(t; 01,···, ON; j). 

Thus, our problem reduces to the non-linear integral equation 

(2.10, bis) f(t; 01,·· ., ON)=max [yj(t), jf} 
h(t; 01, •• " ON; j) 

t~O, Ok;;:::O. 

And the optimal decisions at time t when we are offered a single 

proposal of the j-th kind are: 

( i ) accept the proposal of the j-th kind, if 

yj(t»h(t; 01,·· ., ON), 

(2.16) (ii) refuse the proposal of the j-th kind, if 
yj(t)<h(t; 01, •• • ,ON), 

(iii) either accept of refuse the proposal of the 

j-th kind, if yj(t) = h(t; 01,··· ,ON). 

In case, we are offered more than two proposals at a time, we only 

have to take the superfix j for which the figure of merit gj(t) is the 

greatest among them. 
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Besides the basic formulation in (2.10), we may formulate the problem 

in another form. Although this new formulation is essentially equivalent 

to (2.10), it has more convenient appearance for numerical treatments 

especially in the case when the 'arrival' distribution is of Poisson type, 

which will be considered later in examples. This formulation is based 

on the fact that we may neglect, in reality, the case of two proposals 

made at a moment, as remarked above. 

We define again, unknown functions which are slightly different 

from that defined in (2.9) as follows 

(2.17) fj(t; (J1,···,fP-t,Oj+I,···,ON): the maximum expected 

figure of merit, evaluated at time 

t, when a single proposal of the 

j-th kind is made, related to the 

time duration (jk after the latest 

proposal of the k-th kind. 

And again, by the principle of optimality, we are lead to a system of 

non-linear integral equations 

(2.18) 

where, 

and 

(2. 19) 

fj(t; (jt, ... , (jj-I, (jj+1,"', (jN) 

= max[(Jj(t) 
h(t; (jl, . . " (jj =0, .. " (jN ; f(t)) j= 1, 2" .. ,N, 

f(t)=(fl(t),. . . ,j N(t» 

h(t; (j1, ... , (jj=O, .. . , (jN; f) 

as in (2.14). Indeed it may be readily remarked that the relation below 

holds between the functions in (2.9) and (2. 17). 

(2.20) fet; (j!, ... , (jN)=max({fj(t; (jl, •.. , fjj-l, (jj+1,. .. ,(jN)}), 
~J .. 
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where J is the set of j for which 

(2.21) fP=O. 

Also, the optimal decisions against the j-th proposal offered at time t 

are: 

( i ) accept the proposal of the j-th kind, if 

gi(t)<h(t; 8t,···, Oi = 0" . " ON), 

(2.22) (ii) refuse the proposal of the j-th kind, if 

gi(t»h(t; 01,···, (}i=0"", ON), 

(iii) either accept or refuse the proposal of the 

i-th kind, if gi(t)=h(t; Ot,···, OJ=O,. • " ON). 

§ 3. EXISTENCE AND UNIQUENESS OF THE SOLUTION 

Let us now examine the existence of the solution of the functional 

equations (2.10) and (2.18). In order to do so, we first define several 

metric spaces on which the functional equations are to be defined. 

Definition 3 

The metric space Iffab is the set of all the functions if;(t: fJ) defined 

on the region, 

(3.1) 

and 

(h may be finite or infinite) 

19: fJ=(Ot,·· ',ON);;;;'O i.e., OJ":?:.O, j=l, .. . ,N, 

which are continuous as to t and fJ and uniformly bounded. The distance 

between two functions if; and if;' in ''[fab is given by the formula 

(3.2) p(r/" if;')=sup Jif;(t)-if;'(t)J. 
/<Ca, b) 

Definition 4 

The metric spase lJf a IS the set of all the functions if;(a, fJ) defined 

on the region, 

(3.3) 

19: fJ=(Ot,"·,ON);;;;'O i.e., OJ;;;;'O, i=I, ... ,N, 

a: a fixed parametre 

which are continuous as to fJ and uniformly bounded. The distance 
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between two functions cj;a and iF a in /]fa is given by the formula 

(3.4) p(cj;, cj;') = sup 
Bd" 

Icj;(a, (J)-cj;'(a, (J)I 

It may be well known that /]fab and /]fa are complete as to the 

metrics (3.2) and (3.4) respectively. 

Definition 5 
The metric space I/F is the set of all the functions cj;(t, (J) defined on 

the product set Toxe, where 

To: t?;,to 
(3.5) 

e: (J=((J1"",(jl')?;;"O, l.e., (}i?;;"O,j=I, ... ,N, 

which are uniformly bounded and continuous as to (J, and belong to r 
if (J is fixed. The distance between two functions cj; and cj;' in /]f is 

given by 

(3.6) p( cj;, cj;') = sup I cj;(t, 0) - cj;' (t, 0) I . 
I. To 
'd:J 

For this metric space I/f, we have 

Theorem 1 

The metric space Ijf is complete as to the metric (3.6). 

Proof 
Denote by {cj;n(t, (J)} a fundamental sequence in /]f, i. e., for any e>O, 

there exists a positive integer N, for which the relations 

(3.7) F(cj;p, cj;q)<e 

hold for all the integers 

(3.8) p, q>N,. 

The parts of the functions cj;n(t, (J) defined on the interval (ti, t;+I) 

belong to /]fei, ti+1 and constitute a fundamental sequence in it, as to the 

metric (3.2). Moreover, cj;n(ti, (J), n = I, 2"" is a fundamental sequence 

in /]fti, as to the metric (3.4). Hence, each of these sequences converges 

to a limit function with repect to either the distances (3.2) or (3.4): 

(3.9) 
cj;n(t, (J)-->cj;(t, (J) , ti<t<ti+1 , OEe 

cj;n(ti, (J)~cj;(t;, (J) , OEe 

thus the fundamental sequence cj;n(t, (J), to:;;;;;t, (JEe converges to the 
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limit function which is constructed by the limit functions given in (3.9) 

with respect to the distance (3. ti). Hence, If! is complete as to the 

metric (3.6). 
Q.E.D. 

Corollary 

r is complete as to the metric (2.5). 

Let us now define metric on the product sp:lce of N complete metric 

spaces. 

(3.10) 

Definition 
The distance between two elements of '11" N 

(3. 11) 

is defined by 

(3. 12) 

cp=(cpt, cp2,.,., CPN)E'II" N 

It may be obvious that 

Theorem 2 

If! N is complete as to the metric (3. 12). 

Let us recall, here, three theorems on contraction operator defined on 

a complete metric space. 

Theorem 3 

If a mapping T defined on a complete metric space (Il, p) into itself 

is associated with a constant L (which is called the Lipschitz constant) l<;sB 

«) than unity such that 

(3.13) p(T(re), T(re'»~Lp(re, re') 

for any two elements re, ;;'(Il, then the operator T is called a contraction 

operator and the sequence defined by the recurrence relation 

(3.14) rek+l =T(rck) 

with an arbitrary reo converges to a limit re, which is the unique fixed 

point of the operator T i. e., 
(3.15) re=T(rr) 
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Corollary 
Ln 

(3.16) pen, nn)~i ~ L P(Trl, Tro) 

The proof of this theorem and the corollary may be found in any 

of the standard textbooks on functional analysis (e. g., [4]) and will not 

be given here. 

Theorem 4 

If we have an operator system T mapping 'I/' N into itself of the form 

Tl(cjJ\ cjJ2, .•. , cjJN)flJfl 

(3. 17) 

T N (cjJ\ cjJ2, .•• , cjJN)ElJf N 

each of which is associated with a constant D such that 

(3. 18) 

for arbitrary two elements 

(3.19) cp=(cjJ\ cjJ2, ••• , cjJN),'I/' N 

cp' = (cjJ'\ cjJ'2, ••• , cjJ' N)E'I/'N 

then the operator 

(3.20) T(cp) = T(cjJ!, <j;2, ••• , cjJN) 

i= 1, 2,.··, N 

=(Tl(cjJ\ cjJ2, ••• , cjJN), ••• , TN(cjJl, cj;2, ••• , cjJN))E'f" N 

mapping 'I/' N into itself is associated with the Lipschitz constant evaluated 

as follows. 

(3.21) 

Proof 

L=max {D} 
l~i~N 

Indeed, we see that 

p(T(cp), T(cp'))=max p(Ti(cp), Ti(cp')) 
1 <;;,<;;N 

~ma~ {Dp(cp, cp')} =(max {D} )p(cp, cp'), 
1 <;;,<;;N l';i.;N 

from which (3.21) follows immediately. 

Q.E.D. 
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Theorem 5 

If we have an operator system of the form 

r/=TI(cp', cp2, ••. , CPN)clJfl 

rl=T2(7)I, lj;2, ••• , CPN),,1Jf2 

(3.22) 

7)N=TN(I7), ... ,7)N-I, CPN)EIJfN 

77 

instead of the operator system (3. 17), with the Lipschitz constant given 

in (3. 18), then the operator given by (3.22) written in the form. 

(3.23) 'YJ=T*(rp) 

rp= (CP" • .. , CPN) 

'YJ = (7)" ..• , 7)N) 

is associated with the Lipschitz constant 

(3.24) L*=max{Ci} 

where 

l';;i.;;N 

Ci=D max (1, max{CJ]), 
l~j";;;;;i-I 

so that, if every D (i = 1, 2, ... , N) is less than unity, we have 

(3.25) 

Proof 

L*<l. 

This theorem may be proved inductively. Indeed, for i= 1, 

p(T'(CP), T'(CP'))~L'p(rp, rp')=Clp(rp, rp') 

If we assume that the relations 

(3.26) 

hold for i=l,···,n-l, then we have for i=n, 

(3.27) p(Tn('YJ), Tn('YJ'))~Lnp«7)" ..• , 7)n-l, cp", .•. , CPN), 

(7)''' ••• ,7)'n-" cp'n, ••• , CP'N)) 

~Lnmax «max{Cip(rp, rp')}), p(rp, rp'» 
l';;i';;n-l 

~Lnmax «max{Ci}), l)p(rp, rp') • 
l~u;;;;TI-l 
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Thus, the relations (3.26) hold for z = 1" . " N. And the remainder 

of the theorem follows from Theorem 4. 

Q.E.D. 

Let us now examine the exisitence of the solutions of the equations 

(2. 10) and (2. 18) evaluating the associated Lipschitz constants. 

Consider first the equation (2.10). Denote by T(j) the operator 

(3.28) T(f) = maX[gi(t), jf}: the set of all superfices j for 
which 8i =0 

h(t; fP, •.. , 8N ; j) 

defined on If!. It will be shown that the operator T(j) maps If! into 

itself and is associated with a Lipschitz constant less than unity. Thus, 

we have 

Theorem 6 

Equation (2.10) has a unique solution in /fi", which is obtained as the 

limit of the sequence given by the recurrence relation 

j"+1=T(j,,) 

with an arbitrary j o(/fi". 

Proof 
Indeed, it may be readily seen that h is continuous as to t and fJ, 

so that the operator (3.28) maps IF into itself. Moreover, it is readily 

verified that we have by (2.14) 

(3.29) p(h(t; 8\"',8N; j), het; 81, ••. ,ON;],» 

N ~oo lOi ( r + 8i ) IT ipk(r) dr 
(00 N k= I ,+Ok 

~p(j, ]'). sup.l (exp ( - rr»' L ~----.---"-- dr . 
M 0+ i=l (00 ipi(r)drll Coo cpk(r)dr 

.10'+. k= I .lOk 

But since by the assumption as to lOi(t) given in § 2, 

(3.30) 
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and the integrand in the right hand side IS the probability density 

function that the first proposal after time t would be made at time t+, 

regardless of the kinds. Hence, the right hand side of the inequality in 

(3.30) is equal to unity. Reminding that 

(3.31) p(T(f), T(j'»~p(h(t; (jl, ••• , (}N ; f), h (t; (}1, ••• , (}N; ]'», 
we see that the operator (3.28) is associated with a Lipschitz constant 

less than unity. The remainder of the theorem follows by Theorem 3. 

Q.E.D. 

Consider next the equation (2.18). Denote by Ti(jt, ... ,jN), i=l, 

2,· .. , N, the operators 

(3.32) max[yi(t) 
h(t; (P,···, (}i-l, 0, (}i+1, ••• , ON; ft,···, f2) 

defined on the product space F N • It will be shown that each of thc 

operators Ti(P,···, fN) maps F N into /jfi and is associated with Lipschitz 

constant D less than unity. Thus we have 

Theorem 7 
Equation (2. 18) has a unique solution in the product space F N as 

the limit of the sequence given by the system of the recurrence relations 

f!+l = Tl (f!,·· ·,f~) 

(3.33) f~+1 = Ti (f!,·· ·,f~) 

f~+l = TN(f!,·· ·,f~) 

or the system of the recurrence relations of the Seidel form 

f!+l = Tl (f!, f;,·· ·,f~) 

(3.34) 
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f N TN(j.1 jN-I fN) 
n+l= n+I"", n+l, n' 

with an arbitrary (fb,···, j~)f1T N 

Proof 

Indeed, it may be readily seen that h IS continuous as to t and fJ, 

so that the operators in (3.32) map 1T N into 1[1\ i= 1, ... , N. Moreover, 

it is readily verified that we have by (2. 14) 

(3.35) p(h(t; (JI, ... ,(}N;jl, ... ,jN), het; (}l, ... ,(}N;j'l, ... ,j'N» 

while the second factor in the right hand side is less than unity as it 

was shown in the proof of Theorem 6. Reminding that 

(3.36) p(Ti(f), Ti(f'»-::;;'p(h(t; fJ; f), h(t; fJ; f'» 

we see that the operator Ti(f) is associated with the Lipschitz constant 

D less than unity. The remainder of the theorem follows by Theorems 

4 and 5 and the fact that the fixed points of the operators in (3. 17) and 

(3.22) coincide as it might be readily verified. 

Q.E.D. 

Example 1 

Consider the case of Poisson arrival, i. e., epiC,) are of exponential 

form: 

(3.37) 

Since 

(3.38) 

,l1>0, ,~O, i=I,2, .. ·,N. 

h(t; (}1,"', (}N; f) and thus f are independent of the parametres (}1, .•• , (}N. 

Hence 

(3.39) 
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from which we see that 
N 

L: Ai 
(3.40) D< i=I

N 
<1 

r+ L: Ai 
i=1 

81 

The remainder of this section will be devoted to the evaluation of 

the error associated with the approximated solution of the functional equa­

tion via approximated functional equation. In other words, we have to 

consider, in some cases, the approximated system of functional equations 

instead of the original system (2. 18) : 

(3.41 ) 

where 

(3.42) 

with 

(3.43) 

Theorem 8 

If 

(3.44) 

f'i(t; (Jt, ... , (Ji-l, (Ji+ 1, .•. , (IN) 

=max[g'i(t) 
h'(t· (J! ... (Ji-O··· (IN. f'l ... f'N) , , , -, , , , , 

i=I,2,···, N 
to~t, fJ=«(Jt,···,(JN)F8, g'i(t)fr 

(i(t)~g'i(t)d' 

viCt) ~ rp'i(t)dJ. 

max sup sup I 
l<;;i<;;N ',H r>O, 

rpi(,-\-(Ji) 

\" 00 rpi(t)dt 
)Oi+r 

rp"(,+(J') N r+Okrp'k(t)dt I 
(CO rp"(t)dt kf!1 (00 cp;k(t)dt 
JO'+r JOk 
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and 

(3.45) 

where 

Hiroshi Yanai 

peg, g')=02 

g=Cg1Ct),···, gNCt» 

g'=(g'l(t), ..• , g'N(t» , 

then the distance between the solutions of the systems of functional 

equations (2.18) and (3.41) is evaluated as follows. 

(3.46) per, (I) 

Proof 

<_1_ 
=l-L 

In fact, by the corollary of Theorem 3, 

L 
pC(, (1):;;:;'I_LP«(I, (0) 

from which, it follows 

1 
pC(, (o):;;:;'p«(, (I) + P«(I, (0) :;;:;'1-L pC(!, (0) 

If we take (0 is equal to the solution (' of the equation (3.41) 

(0=(' 

we obtain 

p(h'(t; (J; (I), h(t; (J; (I» 
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But since 

we have 
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p(ft, f');;;;;'max [peg, g'), p(h'(t; (J; f'), h(t; (J; f'»,J, 

p(f, f')= p(f, fO);;;;l ~ r.:-p(fl , fo) =l~L p(ft , f') 

1 N 

;;;;l-L max [ol~E 

[00 e-"<j'i(t+-r; (J1+-r, ... , fJi=O, ... ,ON+-r)d-rl, 0'2J Jo+ 
Q.E.D. 
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Remark that since f' is the solution of the approximated system of 

functional equations, we may evaluate the right hand side of the 

inequality (3.46). 

§ 4. SOME PRORERTIES OF THE SOLUTION 

Let us now examine some properties of the solution of the functional 

equation (2. 18), in ose some restrictions are bid on the functions gi(t). 

We consider two cases. 

10 gi(t) are periodical. 

Theorem 9 

If there exists a positive number T, for which 

(4.1) f/(t+T)=gi(t) , i=l,.·., N 

for all {~to, then the solution of (2. 18) is also periodical, i. e., 
(4.2) P(t+T)=P(t), j=l, ... ,N. 

Proof 

In fact, if we choose an initial function 

fo(t)=(fbCt), 16Ct), ... , 1~Ct» 
for which 

(4.3) 1~(t+T)=1~(t), j==l, ... ,N 

for all f~to for the sequence given by (3.23), it may be readily seen 

from the operator (3.32) that 
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(4.4) ]~=(t+T)=]~(t), }=I,···,N 

for all finite n. And, by Theorem 7 of § 3, the sequence tends to a limit 

which is the unique solution of the system of the functional equations 

(2.18). Denoting this limit by f(t)=(P(t),.· .,]N(t» we have by (4.2) 

and (4.4), 

(4.5) p(f(t+ T), f(t»;;;;'p(f(t+ T), ffl(t»+ p(fn(t), f(t)) 

= p(f(t+ T), fn(t+ T»+ p(fn(t), f(t)) 

-:;;;'2p(fnCt), f(t)) . 

But since the last term tends to zero as n-oo, 

(4.6) p(f(t+T),f(t»=O. 

i. e., 
(4.7) PCt+T)=P(T) , }=I,···,N 

for all r;;;;Jo. 
Q.E.D. 

Example 2 

If we assume that the 'arrival' distributions are of exponential 

form, 

(4.8), (3.37 bis) 

as in Example 1, § 3 and moreover that (l(t) are periodical i. e., there 

exists a positive T such that 

(4.9) gi(t+T)=giCt), i=I,···,N 

for all t?;;,to, we may simplify the relation (3.39) as follows. 
(00 N N 

(4.10) hCt ;])= Jo+e-rc(exp (-"ftr»i'ftfiCt+r)dr 

00 iT N N 

=n'foJo exp (-(r+k~Ak)(r+nT)~~?fi(t+r)dr 

1 
=----.-.---- X 

N 

l-exp (-(r+ L,Ak)T) 
k=l 
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For N=2, the system of functional equations (2.18) takes the form, 

(4. 11) pet) = max[ gl(t) ~_-:----=-== 
l-exp( -(r+ .. t1+j/2)T) 

X J; exp( -(r-t-j/l+..i2)r)(j/~l(t+r)+j/:f2Ct+r»dr 

P(t) = max[ g2(t) ____ _ 

l-exp(-Cr+j/l+j/2)T) 

X I; exp( -(r-t-j/l+j/2)r)(j/~lCt+r)+j/:f2(t:r»dr. 

In order to have numerical results, let us now approximate the 

functions gl(t), g2(t), pet) and pet) by piecewise constant functions as 

follows 

gi(t)_gi, r 

ji(t)-ji, r 

tE[(r-l)Jr, rJr) 

tE[(r-l)Jr, rJr) 

i=l, 2, m=T/Jr: integer r=l, "', m. 

Then (4.11) can be written as follows. 

(4.13) p, i=max[gl' i 
-:--_-:--,-1---:-: m [exp( - (r + j/ 1 + j(2)r )]'J' 
l-exp(-(r+j/l+.:I2)T)r~1 r+j/l+j/Z (r-l)J, 

where 

X (j/~l, SeT) + ..i:fZ' .(T) , 

jZ'i=max[gZ'i 1 m [expc-cr+j/l+.:I2)r)],J, 

l-exp(-Cr+j/l+j/2)T)'~1 r+j/l+j/2 (r-l)J, 

X (j/ljl, .(T) + j/:f2, SeT)~ , 

i=l, "',m 

s(r)=i+r 

=i+r-m 

i+r;:;am 

i+r>m. 

We may propose three kinds of the recurrence relations to obtain the 

numerical solution as follows. 
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(i) 

(4.14) 

( ii) 
(4.15) 

(iii) 

(4.16) 

where 

HirOBhi Yanai 

f!.,!I=max [gl, i 

~~~~~~~~~ 

l-exp( -(r+i.l+i.2)T) 

f;.,!I=max [l' i 
l-exp( -(r+),1+i.2)T) 

i=I,·· ·,m. 

f!.,!I=max [gl, i 
~~~~~~~~~ 

l-exp( -(r+i.1+),2)T) 

m 
X r~l Cr(A~},' "Cr)+A~;' SCO), 

f;+i2=max [g2, i 

~~~~~~~~~ 

1-exp( - (r+i.l+),2)T) 

x f: Cr(i.~~~lsCr) + i.~;' SCO), 
r=l 

i=I, .. ·,m. 

f!.,!1 =max [gl, i 
-----:---:--
l_e-Cr+.l1+.l2 )T 

X(i.l I: C:nc:.)scr)+i.2 f: C:!;' S(r) 

r=l r=l 

f~"!2=max [g2, i 

-----''----­
l_e-Cr+.l 1+.l2)T 

x(i.1 I: C:!~~lsCr)+i.2 f: C:!rc:,)"CT) 
r=1 r=\ 
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and 

(4.18) 
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s(r)=i+r 

=i+r-m 

t(r)=n+1 

i+r;;;;;m 

i+r>m 

s(r)<i 

=n s(r)~i. 
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Using different expressions, (i) is the simple iteration process, while 

( ii) corresponds to the Seidel process described in § 3, (3.34). The 

method (iii) is also a Seidel process, from whose point of view, (ii) turn 

out to be 'blockwise' Seidel process. 

Numerical iterations corresponding to these methods are carried out 

with the values of parametres 

r=O.S 
.(1=0.1 

,{2=0.3 

Thus the Lipschitz constants of these systems of operators are evaluated 

as 4/9. And 

thus 

.:1,,=0.1 

T=2.0 

m=20. 

Thus figures of merit are 

(4. 19) gl, '=-r+21 
g2, r=r 

And the initial approximations are 

(4.20) 16"=10 

1~"=10 

r=I,2,·· ,,20 . 

r=1,2, ",,20. 

With these values, we have obtained the results as shown schematic ally 

in Fig. 2. The numbers n of iteration to reach the precision of 

0.2 X 10-6 i.e. 
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(4.24) 

(if. (3. 16») are 8,7 and 6 for the methods (i), (ii) and (iii) respectively. 

'(t) 

S'(t) 

~~ ____ ~~L-+-____ 4-~~L-____ +I~~t 
4.\0 I I 

I I I I I I 

fss 1 $SS ss ssl Iss s t ss ss ss " I~~! ~~ ~ 
tlsslssssssl lsslsslsslss! Lsssx'ss"ss} acceptthel''''posal 

I I I 
S $ $ slS S S $ S S $ si 

~ gi(t)=O 

Theorem 10 

Fig. 2 

If there exists a number T>to such that 

(4.25) 

then 

(4.26) 

Proof 

fi(t) =0 

t~T, i=l, .. ·,N, 

t~T, j=l,. ",N. 

of the 2-nJ ).,ind 

In fact, if we choose the initial functions fb (t), j = 1, ... , N which 

are 

(4.27) fb (t) =0, t~T, j=l, .. ·,N 

for the suquence given by the operator (3.28), it may be readily verified 

that 

(4.28) f~(t)=O, t~T, j=l, ···,N . 

And, by Theorem 7 of § 3, the sequence tends to a limit which is the 

unique solution of the system of the functional equations (2. 18). Denoting 

this limit by f(t)=(j1(t), ... , fN(t», we have by (3.13), 
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max sup I PCt) I =max sup I J~ (t)-pet) I ::S;p(fn, f) 
j t" r j t"T 

Ln 
::S;T_TP(fl' fo) 

89 

where L is the Lipschitz constant associated with the operator system (3.28) 

evaluated to be less than unity in the proof of Theorem 6, § 3. Thus, 

the left hand side of (4.29) tends to zero as n--'>oo, from which the 

statement of the theorem follows immediately. 

Q.E.D. 

Numerical iteration was carried out by the methods which corres-

ponds to the method (iii) in 10 of this section for the parametres 

N=2 
,{1=O.1 

,(2=O.3 

r=O.7 
T=2.0. 

The figures of merit gl(t) and g2(t) are as shown schematic ally in Fig. 3. 

The numerical iteration was repeated 6 iterations to reach the results 

shown in Fig. 3. 

o 10 20 

Z 2 2 2 ZZ 2 Z Z 2 It zz zz,-.-acceptthe ~ c5f'the I-st kind 

" Z2 ZZ ZZ Z Z2 Z 2Z Z Z? Z ? ZZ ZZ Zt _ .• - accept the pYOp:>SZll of the 2· nd kind 

Fig. 3 
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