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Introduction 

In such an integrated iron and steel works as Yawata, there are 

some problems about the material flow from steel plants to primary-rolling 

mill plants. Hot steel ingots tapped from a steel making furnace in a 

steel plant are sent to soaking pits in a primary-rolling mill plant. 

Immidiately after arriving at soaking pits, they are reheated and soaked 

for rolling. But since their arrival is irregular, they often must wait 

for soaking, which results in their cooling off and it takes longer time 

to reheat them. Therefore, once ingots happen to wait for soaking, others 

add to them and make a line of waiting ingots. It often grows longer 

and longer until the cold ingots among them must be removed out of the 

line. In order to explain this phenomenon exactly, this paper will deal 

with the following problem; 

Under what condition does their waiting line grow large infinitely 

at soaking pits in case we do not remove the cold ingots? 

Of course, our practical problem is how to schedule and control the 

material flow from steel plants to primary-rolling mill plants. Several 

system simulations by Monte-Carlo method have been made to solve this 

problem, and from their results the controlling center were alredy set up. 

On the other hand, the above problem intends to study a fundamental 

principle of the queues and takes notice about the convergency of their 

simulations. 

We owe the methods of this paper to J. Kiefer & J. Wolfowitz [I] and 
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Queues Occurring in an Integrated Iron and Steel Worka 17 

D. V. Lindley [3], but the properties of our problem are considerably dif­

ferent from those of them. 

Formulation of the probrem 

We now formulate problem in the terminology of queueing theory. 

1) We shall use the term of customer and server for ingots and 

. sorking pits respectively. Define; a unit of customer is one heat of ingots 

tapped from a steel making furnace and that of server is pits occupied by 

one heat of ingots. We assume that there are s(;;;;:l) serves, Mt, Ms,' . " 
M., in this system. 

2) The ith customer arrives at time tt with t(:;;,tl+1, to=O. Let 

gl=tt-tl_1 for all i;;;;:l . We assume that the gt are independent random 

variables with identical probability distributions and the mean, Eg1 , is 

finite. 

3) The length of time which ingots spend in pits to be reheated 

and soaked is determined by their temperature when they are charged in 

soaking pits. Therefore we assume that the service time of a customer is 

a monotone-increasing function, f(x) , of his waiting time, x, and 

f(O»O, lim~ ..... +oo.f(x)"f(oo)<oo. 

Here, we neglect the influence of the rolling mill which refuses a queue 

between soaking pits and a primary-rolling mill. Since it makes the 

waiting time longer than that of our monel, the assertion of this paper 
remains usefull in the case the queue is refused. 

4) If a customer arrives when at least one server is free, he is im­

mediately attend to. But if he arrives when none of the server is free, he 

waits in a queue. His service is begun as soon as at least one server is 

free and all customers, arrived before him, have been or are being served. 

Under such conditions, we shall deal with the problem according to 

J. Kiefer and J. Wolfowitz [1] as follows. Let Uij be the time at which 

the jth server, M j , finishes serving the last of those among the first (i-I) 

customer which it serves. Let U'ij=oVuu. Let Wig be the quantities U'll, 

••• , U'i. arranged in order of increasing size. Then, Wit is the waiting 
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18 S. Sugawara and M. TakahaBhi 

time of the ith customer. 

Write lOt = (Wil , ••• ,Wt.), then, since tf+! =tt + gi+l, lOi+! is obtained 

from lOt as follows: Subtract gt+! from every component of (Wil + f(wa), 

Wi2, ••• ,Wts). Rearrange the resulting quantities in ascending order and 

replace all negative quantities by zero. The ensuing result is Wt. 

Let S~ {X=(Xh···, x.)ERs such that O:;;;;Xl:;;;;··· :;;;;x.} and x, yES. 

For i~l, let 

where, for a,bER', a~b implies that every coodinate of a is not greater 

than the corresponding coordinate of b • 

Let 0 be the origin in space R' and Ft(x)~F(x\O). Then it holds 

Fi+l(X);:;;;Fi(X)(i~I). Write Xl=(Xh 00, ... , 00), Fi*(Xl)=F;(xl)' where Fi* is 

the distribution function of the waiting time' of the ith customer. 

Then we can easily derived the following lemma from Wl.-Wil 

~f(oo)<oo and [I]. 

Lemma. There exist lim i-+co Ft(x);'7 F(x) for every x E Sand 

lim i-+co Ft*(Xl)7' F*(Xl) for Xl~O and the following equalitity holds: F(Xl) 

=F*(Xl) where Xl=(Xh 00, ..• ,00). Now our aim of this paper is to prove 

the following theorem, especially, ii-b). 

Theorem. If Conditions 1),2),3) and 4) are satisfied then it follows. 

i) If sEg1> f( 00) ,F(x) is a distribution function. Therefore F*(Xl) is 

also a distribution function. 

ii) In the case, sEg1 <f( 00), there are two case: 

Proof 

ii-a) If P{sgl<f(O)} =0, then F*(Xl)== I for );1 ;;::: 0 

ii-b) If P{sgl<f(O)} >0, F(x) is not a distribution function and 

F(x)==O, F*(Xl)==O, F(x\y)==lim Ft (x \ y) == 0 
.... 00 

i) Let R t be the service time of the ith customer and RI' == f( 00). Then, 

Let lOt', Ft', F be the same functions of {gj} and {Rn that lOt, Fi , F are of 
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{gi} and {R j }. It follows by induction W/;;;;:Wi (i= 1, 2). On the other­

hand, p=ER1'/sEg1 =f(oo)/sEg1< 1 , so that the theorem of J. Kiefer and 
J. Wolfowize is applicable for {w/}, i. e. 

lim.t-o(oo, ... , oo)F(x) = 1 . 

From Ft'(x):;aFt(x)::;' 1, it follows, F(x):;;;F(x)::;'l • 

Therefore, 1 =lim.t-o(oo, ... , oo)F(:t)~ limx_(oo, ... , oo)F(:t);:;;;l . 

Hence, 

ii-a) 
limx_(oo, ... , oo)F(:t) = 1 . 

In this case, it is easily seen that, with probability one, 
wtl=0(i=1,2, ... ). It follows from this, Ft*(xl)==1(i=1,2, ••• ), 

then F*(Xl) == 1 . 

ii-b) We shall now prove that, if sEg1<f(oo) and P{sgl<f(O)} >0, 

then F(x)==O. 

Let [a] be the largest integer;:;;;;a and for some c>O, define, 

1'(x)=c[f(x)/c], g/=c[gt/c]+c (i= 1,2, ... ) . 

Then gt''i;:.gt and 1'(x)~f(x). Let wt' be the same function of {g/} and 

l' that Wi is of {gj} and f. Then it is seen by induction that 

and if c is sufficiently small, SEg1'<f'(oo) and P{gl'<1'(O)} >0. 

Therefore, it is sufficient to prove ii-b) for this process, {w/}. We shall 

write Wt=w;', gt=gt', f(x)=1'(x) in the remainder of this section. 

Let Wl =0. From the definition of Wi; the process, {w;}, is a Markov 

chain with stationary transition probabilities. 

Case 1 We show F(:t)==O if P{gl>f(oo)}>O. 

Let A be the set of origin 0 and all points which can be reached by the 

process {Wt} with positive probability. 

This chain is not bounded i.e. for arbitrary point M=(M1c, .. ·, M,c), 

there exists a point of A, (k1c, ••• , k.c) such that kt>Mt (i= 1,2, ... , s) 

since P{sgl<f(O)} >0. And this chain is irreducible and apperiodic since 

P{gl> f(oo)} >0, i. e., for all point (hlc, ..• ,h.c) of A, 
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20 S. Sugawara and M. TakahaBhi 

Then, from the theorm of Feller [2] XV. 6, our chain belongs to one of 

the following two cases: 

( I) Either the states are all transient or all null state: in this case, 
F(x) =0. 

( 2) Or else, all state are ergodic. 

Since, we show that all state of our chain are transient. 

From f(oo)<sEg lo there exists a point (m10c, ..• ,m,Oc) of A such that 

The state (m10c, ..• ,m.oc) is transient if there exists a point (m1c, ... , msc) 

such that m/;;;'m/, s~j~1 and 

P{wi+kJ>m/c for all k~1 and s~j~llwij=mjC s~j~l} >0. 

From WI.-Wi1:;;.f(oo), i;:::l, it is sufficient to show that 

• • 
P{ E Wi+kJ > E m/c+2sf(oo) for all k~llwiJ=mJc s~j~l} >0. (*) 

j=l j=l 

Let {uJ}, {Ut} be sequences of random variables as follows: 

j, k= 1,2, ... , 

Then, the UJ are independent random variables with identical probability 

distributions and the mean, EUlo is positive. 

The above inequality is correct if 
, 

P{Uk> E (m/-mj)c+2sf(oo) 
j=l 

for all k~I}>O. (**) 

Now, by the strong law of large numbers, for any positive s there exists 

an N such that 

for all k>N}I- ~-. 
On the other hand, there exist a point (m1c, ... ,m,c) of A such that 
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Therefore we obtain 
s 

P{Uk> I: (m/-mj)c+2sf(CX» for all k~l}>l-E, 
}=1 

where f is arbitray positive number and (**), also (*), holds. 

Case 2. We now suppose P{gl>J(oo)f=O. 

Let no, n be positive integers such that 

noc:;;;'J(oo) , 

Let {g/'} be independently and identically distributed random variables 

with the following distribution: 

P{gl"=nOc} =P{gl==nOc} -E , 

P{gt=nc} =f, 

P{g/' =ic} =P{gl =ic} 

Here 0 is a small positive number and P{gl =noc} -E>O . 

We choose f so small that J( 00 ) <sEgt" . 

Let wt, Ft, F" are same functions of {g/'} and J that Wi, F i, F are of 

{gj} and J. Then it is easily seen that 

Fi(;&);;;,.F/'(;&) 

F(;&);;;.F"(x) 

for every x 

I'Jr every X 

Therefore, it is sufficient to show F"(x) =. O. and the result of case 1 is ap­

plicable for this process {w/'} . 

Case 1 and Case 2 together show that F(x)=.O if sEg1<J(00) and 

P{Sgl<J(O)} >0. 
Now, let x, yES. It is easily seen that 

for X, yES. 

Hence 

F(x I y)==limi~ooF(x I y):;;;'F(;&)=.O. 

Then the proof of the theorem is completed. 

Note 1. In our theorem the case sEg1 = J( 00) remains untouched, 
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sence in this case it seems that there needs some additional conditions on 

f(x). 

Note 2. The above proof of ii-b) also shows that for any sequence 

{gt, g2, •.. }, we can find an N such that Wi>" for any ,,=S and n>N, 
with probability one. 

Then, large queues build up, never to disappear. 

Conclusion 

In Yawata Works, there needs essentially an on-line controlling 

system for the ingots flow and we have to remove the cold ingots of the 

waiting line, since the assumption of is-b) are almost satisfied. 

On the other hand, in a general iron and steel works, it almost holds 

sEg1 <f~ oo}but the gi are not strictly independent. Therefore, in practical, 

we would rather replace P{sgl<f(O)} >0 by the condition that a waiting 

time Wit can cross over the critical point Xo such that 

In Tobata Works in our company, facilities and equipments of steel 

plants and primary-roiling mill plants are arranged in a direct line to 

assure the smooth flow of ingots and Wit rarely crosses over the critical 

point Xo. 

In this case we do not need a particular controlling system for the 

ingots flow. 

Thus, our problem belongs to one of these two case, Yawata or 

Tobata type. Almost all works which have been built recently belong to 

the latter. But in the case of Yawata type, not only the thermo-efficiency 

but also the production rate of primary rolling mills depends on the 

amount of cold ingots which occur before soaking pits since we must 

remove them in order to prevent them from increasing infinitely. The­

refore, it is very important how to schedule and control the ingot flow to 

ensure its smoothness. 

A study on the design of its controlling system and system simula­

tion for its purpose in Yawata Works will be presented in the near future. 
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