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I. INTRODUCTION 

In many applications of the queueing theory, we are concerned solely 

with the limiting or equilibrium probability distributions since the solu­

tion of non-equilibrium queue is far from convenient for its use. But we 

must evaluate the time required to approach very closely to the equili­

brium state. If the time is not so long, some results concerning the 

steady state may practically give good approximations for non-equilibrium 

state. 

Davis [I] tried to estimate the time using a notion of the build-up 

time T of waiting lines, and conjectured that it takes time 2T to 3T 

before the mean number in the system has reached a value within, say, 

10 per cent of the steady state value. 

Recently Morimura [2] proposed an analogous indicator representing 

the above time and discussed it in the case M/C/l. 

Quite often, however, we want more explicit information about the 

behavior of the queue over fairly short time. This leads us to the 

asymptotic evaluation of time dependent solutions. 
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In this paper we shall study a simple queue in which the system is 

characterized by Poisson arrivals with constant mean rate, J., exponential 

service times with common mean, 1/ p, and a finite number K of avail­

able channels. 

2. THE ASYMPYOTIC FORMULAE FOR M/M/1 

In 1952, A.B. Clark [3] studied the birth and death process to write 

down the solution for Pin(t), the probability that there are n items in the 

system at time t given that there were i waiting at time zero. 

(2.1) Pin(t)=e-o+p ){ (.J-'i: y-n Ii_n(2 vijit)+( .J~~y-n+1Ii+n+l(2v)'p t) 

+(1- -~-)( ~ rk=i~n+/ .J-fYlk(2VApt)} 
where In(x)=i-njn(ix) is the modified Bessel function of first kind. The 

series will now be examined. From standard textbooks 

exp[-21_X(Y+~)J= 'i; ynI" (x). y n=-oo 
We assume in what follows that the system is empty at time zero. 

Then 

(2.2) 

n+l 00 T 

+(1-p)-lp-2[n+1(2vppt)- E p-2 !, (2 v Ppt). 
r=-l-n 

where p=)./kp is the traffic intensity. For notational convenience, we have 

just written Pn(t) in place of Pon(t). 

The rate of convergence of the above series depends on p and pt. 

Mathematical tables which has been published before, to our knowledge, 

are not adequate for the calculation of Eq. (2.2). 

Using Meissel's formula we obtain for large order r 
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where 

1 {2-3X2 } -4X2+X' 
Vr(X)= 24; (1+;;2)m -2 -- 16r2(1+x2)3 

--57iois-{!6+ ~1~f;:~!~~~~4±3}5:X:6_16} 
32x 2 - 288x4 + 232x6 - 13x8 

+ l28r4(1+x2)6-~-+' ... 

Furthermore the recurrence formula 

(2.4) 

provides a very useful method. For the calculation of infinite senes m 

Eq. (2. 2), the formula (2. 3) has been used for large order n and we 

recurrently obtain the functions for other order from Eq. (2.4) (Fig. 1). 

The invaluable works pertaining to the approximations of exponential 

like functions was done by C. Hastings [4]. He gave the useful approxima­

tions of the negative exponential functions e- X by the forms [1 +alx+ ..... 

+ap xP]-21 over (0, oo)-best in the sense of minimum absolute error. The 

parametric forms studied there are also very useful in approximating the 

functions given by Eq. (2.2) whose asymptotic behavior is like that of 

decaying exponential as x->oo. 

To the moderate accuracy for the asymptotic behavior, the following 

approximation formulae is obtained as a result: 

(2.5) 

in the case of 

where 

y=(l- V'p)21tt, 

and al=O.l24, a2=O.0089'~, as=7_09, a,=28.3 
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Fig. 1. depicts these approximations in dashed lines. 

'0 

exact 
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. ".. (; 

Fig. I Exact and approximate value of Pm(t) for n =0, I, and 2 
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3. THE ASYMPTOTIC BE HA VIOR 

OF SOLUTIONS OF M/M/K 

3.1 A Probability Function Representing the Rate of Convergence 

(a) THE CASE K~2 

Let Qn(t) be the probability function defined by 

QU)= P nU)/ P n( 00) 

The function Q,,(t) can be interpreted as representing the rate of con­

vergence. 

The forward equations describing our problem are 

(3. l. 1) d ((tQo(t) = -AQo(t)+AQl(t) 

(3. 1. 2) d ((tQ,,(t) = -(A+np)Qn(t)+npQ"_l(t)+AQn+1(t) 

(3. 1. 3) d dTQn(t) = -(A+kp)Qn(t)+kpQH(t)+AAQn+1U) 

with initial conditions Q,,(O) = i5on/Po (oon: Kronecker symbol), 

where 

PO-l= ~1 (Kp)n +~ (Ke)k ... 
n=O n ! K !(l-p) 

We introduce a function Q(z, t) defined by 
00 

(3. 1. 4) Q(z, t)= E Qn(t)Z" 
,,=0 

(k~n), 

and multiply Eqs. (3. 1. 2) and (3. 1. 3) by zn and form the sum on the 

righthand sides over the appropriate ranges of n, including Eq. (3.1.1). 

(3. 1. 5) z~:e -QCe-, t)=(A-kpZ)[(l-z)Q(Z, t)-Qo(t)] 

On taking Laplace-Stieltjes transfiJrm, in which typically f* (s) == 
~~ e-':t(t)dt, we now solve the equation with respect to Q *(z, s) and obtain 
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Two zeros of denominator are 

(3. 1. 7) fi;(s)=[p+ 1 +s/kp± v(p+ 1 +s/kp)2-4p]/2 (i= I, 2), 

where 

I fit! > 1 and I /32 I < 1, 

so that 

Now it follows from the definition of the Laplace-Stieltjes transform 

of that Q*(z, s) must converge everywhere within the unit circle I Z I = I, 

provided Re(s»O. Thus in this region zeros of both numerator and 

denominator on the righthand side of Eq. (3. 1. 6) must coincide. There­

fore, 

(3. 1. 8) 

Laplace-Stieltjes transforms of Eqs. (3.1. 1), (3. 1. 2), and (3. 1. 3) are 

(3.1.9) {('<-kp/32)(I-/32)+'</32}Qo*(S)-'</32Ql*(S)=*/32Po-1 

(3. 1. 10) {('<-kP/32)(I- /32)+(np+'<)/32}Q·,*(s)-np/32Q~_I(S)-..l132Qn+I*(S)=0 

(k>n~l) 

(n~k), 

From Eqs. (3. 1. 8), (3. 1. 9), and (3. 1. 10), Q.,*(s) (n<K), meromorphic functions 

of /32, are determined, and Q,,*(s)(n~K) from Eq. (3. 1. 11). 

Hence, Qn *(s) has branch points at 

so= -('<+kp-2vkpA.) 

sl=-(..l+kp+2vkpi) 

The inversion of Q.,* can now be carried out. The contour we choose 

is indicated in Fig. 2, where a branch cut has been made between branch 

points So, SI> and - 00. 
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)00 

o C. 

Fig. 2. Path of integration I 

We assume that there is no pole, except s=O, in the sector I arc(s-so) I 
~ qr (IF = -; +e; e is arbitrarily small positive number (see Fig. 3» Then 

we consider an integral along ~, which consists of a small semicircle 

about So and two .lines arc(s-so)=±I[f. Taking account of the simple 

pole at s=O, we obtain 

(3. 1. 12) Q,,(t) = 1 +-21.- ~l! etsQ1I*(s)ds. 
1n • 

(Lemma) [5] 

Let 1(s) be an analytic function of s In the neighbour food of a 

point 5=So in the sector I arc (s-so) I ~I[f. 
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jeo 

fIII*- ----­.. ~ 
" 

s. 

Fig. 3. Path of integration II 

For real A. and arbitrary complex A, uniformly 

.... .... .... 

o G 

.. _-- -

j(s)-A(S-SO)l (s-+so) (A.; arbitrary real number), 

and, furthermore, along 

j(s) = 0(e"1 31), for 1 s 1-+00 (k>O). 

Then 

1 \ e-H 
F(t) =-21£ )(£ etsj(s)ds-AeSotT( -..l.) (t->oo ) 

From Eq. (3. 1. 12), we obtain 
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Since Q .. *(s) is an analytic function of ~2 in the sector I arc(s-so)I 

::;;.1Jf we can deduce 

(3. 1. 13) Hm dQ,.~~s) lim dQ.~~(s)_=An' 
'-'0 d~1 iJ2- .rp· dfiz 

where An is real constant. From Eq. (3.1. 7), we easily find that uniformly 

(3. 1. 14) 

and along the large arcs of Fig. 3 

I dQ~I_o ds ' 

Then our function dQ .. *(s) satisfies all conditions of the above lemma, 
ds 

which gives 

(3. 1. 15) An(~)1/' 8'0' Q .. (t) -I +-2kp (1/2)' tm· 

Observing that 

s~I=().-kp~2)(1-~2) , 

we obtain from Eq. (3. 1. 8) 

1-~2 1- ~2 [ I i-I J 
(3.1. 16) Qo*(s)=-:S'(1-p)+-s -- Po-1

- I _
p 
+ 1'fI(k-n)p~'''a1&*(s) , 

where 

a,,*(s)=Q .• *(S)-Q!_l (s) 

lim a,.*(s) =an • 
,-.0 

We multiply the righthand side of Eq. (3. 1. 16) by s, and find that 

(3. 1. 17) tim s • .J ___ ~2_ = I. 
.-.0 s(1-p) 
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(3. 1. IS) 

On taking Laplace-Stieltjes transform in Eqs. (3.1. 1) and (3.1.2), 

(3. 1. 19) 

(3. l. 20) 

SQo*-PO-l=).al*(s) 

sQo*= =Aa!+1(s)-npan*(s) (k>n~l) , 

which give as s--->O 

(3. l. 21) 

(3.1.22) (k>n~I) . 

From these equations, we can obtain 

(3.1.23) an (n-I)! {"-I 1 } 
).(kp)n-i· m'fl m!(kp)"'+I-Po-l , 

and incidentally 

k-I k-I[ (n-I)! n!] [_-I (kp)m - ] I: (k-n)f.L,onan= I: --kn-1 -k--;' I:-
m

, +I-Po 1 

0=1 _=1 m=1 • 

k-2(kp)" k_1 [(n-I)! n!] -I k-I[(n-l)! 
= I: _.,- I: -k~n:;I--kn +(l-Po ) I: kn - I m=l m. n=m+l n=1 

Then it follows that the righthand side of Eq. (3. 1. S) vanishes and 

(3.1.24) 

where the formula 

(s--->O+ ) 

means that 

s1(s)-;0 (s--->O+) • 

Substituting the above result into Eq. (3. 1. 6), we get 
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(I) k-I ( 1 ) (J.-kp.r.)o - - L: (k-n)pz~+I[Qn*(S) -Q~_I (s)]-z Po-l--l~-+ S n-I _ -P . 
kp(z- {j1)(Z- {j2) 

Observing that 

k_1 

lim s L: (k-n)f.lZn+I[Qn*(S)-Q!_I(s)] 
s-o n=l 

k-l 
=lim L: (k-n)/-lZ,,+I[Q,,(t)-Qn_l(t)] 

1_00 n=l 

=0, 

we find 

(3.1.25) (s->O+ ) 

so that 

(3.1.26) * {j2
n
+

1 
( I ) 

Q" (s) kp(l-p)p"(p-fi2) +0 S (s->O+) . 

We represent by Q,,*(s) the first term of the righthand side of Eq. (3.1. 26) 

and observe that Q .. *(s) has no singularities except the pole at s=O and 

the branch points at So, SI> Then we can shift the contour from the line 

R.(s)=C to ~. 

Therefore, 

I ~C+iCO I ~ ([,,(t) =2-----. Qn*(s)e·tds= I + 2---; '" ([,,*(s)e·tds. rrt c_loo rr t ... 

It is easily seen that uniformly 

dQ,,*(s) (kp~)1/4{(n+I)v'p -n} 
-(Is - --.+1 _ (s->so) , 

-2(kp)2(l-p)pT(l-v' p)2(S-so)1/2 

and so 41J;~(s) satisfies the condition of the lemma. Thus, 

_ (kp<)1/4{(n+l)vp -n} e'ot 
Q.,(t) -1 + - - -,+1 _ - ---- - . (3/2 (t->oo). 

2(kp)2(I-p)p-'l (I-v' p)2T(1/2) 
(3.1.27) 
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(b) THE CASE K=l 

For K = 1, a similar process leads us to the following analogous sets 

of equations 

(3.1.28) 

(3.1.29) 

tQo(t)=-'<Qo(t)+'<~(t) 

d 
dt Q .. (t) = -(.<+ p)Q .. (t) +pQ .. -l(t) +'<Qn+1(t) (n~ 1). 

Furthermore, there is the same initial conditions 

Q .. (O)=Oon/po, 

where 

Po=l-p. 
00 

The generating function Q(~ t) = 1: Qn(t).C" must satisfy the following 
n=O 

partial differential equation 

(3.1.30) ~:, Q(~ t)=(.<-~)[(l-~)Q(~ t)-Qo(t)]. 

Therefore, Q*(~ s), the Laplace-Stieltjes transform of Q(~ t), is given by 

(3. 1. 31) 

Let, the zeros of the denominator be 

.Bi(S)=[P+ 1 +s/ p± .v(p+l +s/p)2-4p1l2 

so that 

Thus we have 

which gives 

(3.1.32) 

1.Bs1<1. 

Qp*(s) = }~o -1 • 

'<-P.B2 

(i = 1, 2 l.Bll> l.Bsl) , 

If we substitute this into the Q*(~ s) formula, we find 
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(3. 1. 33) 

so that 

(3. 1. 34) 

From this after, in order to make distinction between the cases K?;,2 and 

K = 1, we use superscript K to indicate the quantities relevant to K servers. 

3. 2. THE BEST APPROXIMATIONS IN THE 

SENSE OF MINIMUM ABSOLUTE ERROR 

When we change K, with p held constant, we have from Eqs. 

(3. 1. 26) and (3. 1. 34) 

(8.2.1) Q~*(s) =-}Q;*( ~) +(}-) . 
The inverse transform of Eq. (3.2. J) is 

(3.2.2) 

which, observing Eq. (3. 1. 15) and Eq. (3. 1. 27), gives the following ap­

proximation of moderate accuracy in the sense of minimum absolute 

error: 

(3.2. 3) (t-Hx)) , 

where the formula 

J(t)~g(t) 

means that the first term of the asymptotic expansion of the function J(t) 

coincides with that of the function ,?(t), up to a factor not containing t. 

These approximations are depicted and compared with exact solutions in 

It is a great pleasure to acknowledge our thanks to colleagues of the 

Udagawa laboratory for the discussion on this subject. 
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-- exact 
_____ approximate 

I. If. 

1.1... 

1. 0 

" 
Fig. 4 Exact and approximate values of Pn(t) for K=2 and n=O, I, and 2 
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