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I. INTRODUCTION 

To describe the queuing system considering in this paper, we shall 

state a practical model comming about in an iron-manufacturing company. 

We consider the case where ingots of a high temparature wait in a 

line to be produced by a process. Each ingot is produced in the order 

in which it arrives-first come, first served. 

We assume that the temparature of a waiting ingot dropps in pro­

portion to its waiting time. If the productional machine requires the 

high temparature of ingot before its production, its temparature falling 

in the waiting duration must be risen. 

Thus ingots in line are produced after having spent time in proportion 

to the waiting time. 

In this paper we shall consider the queuing system modified the above 

model. Recently, such a queuing system called the system with extra 

service was treated by F. D. Finch and F. Pollaczek. Finch [1] considered 

the system a customer who arrives to find the server idle does not com­

mence service immediately on arrival but must wait a time before he 

commences service. Pollaczek [2] considered the system a customer who 

arrives to find the server busy does not commence service immediately on 

departure of the preceding customer but must wait a time' before he 

commences service. Also in a tandem queue with blocking, a blocking 

time is considered as an extra time for the next service. 

We discuss the following system. Customers arrive at the single 

counter at the instants rl> r2,···, rn, ... where {rn} is a renewal process, 

that is the Yn=rn+l-rn (n;;:;:;O, r~=O) are independently and identically distri-
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buted nonnegative random variables with common distribution function A(x) 

andfinite expectation A-I = ~~ x dA(x). Let the service lime of the n-th cus­

tomer (that is the customer arriving at !"n) be Rn where {Rn} (n= 1, 2, ... ) 

is a sequence of identically and independently distributed non-negative 

random variables with common distribution B(x) and finite expectation 

/FI = ~~ xdB(x). We suppose also that the sequence {Rn} is independent of 

the input process {!"n}. Let customers be served in the order of their 

arrivals and let customers queue for service no customer departing until 

he has received service. If the n-th customer arrives to find the server 

busy, then he commences service after having spent a time in proportion 

to his waiting time, if he arrives to find the server idle, he commences 

service at once. 

Let Wn be the time of completion of service for the (n-l)-th customer 

minus the time of arrival of the n-th customer, then 

( 1 ) 

woere c is' a constant larger than 1. 

The random variables Tn=Rn-gn (n= 1, 2, ... ) are independently and 

identically distributed with common distribution function given by 

(2) T(x) = ~:y(y+X)dA(Y) 

and finite expectation 

~
oo 1 1 

xdT(x)=--, • 
-00 p. JI 

We use the notation aVb instead of max (a, b), then WnVO is the 

waiting time for the n-th customer. 

As a mathematical interest, c in ( 1 ) is taken as non-negative constant. 

Our queuing system is a generalization of the system GI/G/l stu~ied 

by Lindley [3], which is the particular case c= 1 in our case. 

In the next section we provid(~ criteria for the ergodicity of the 
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process {Wn }. 

Finally the author wishes to express his sincers thanke to Dr. H. 

Morimura for his valuable advice. 

11. THE ERGODICITY OF THE SYSTEM 

First, we assume Wl;;S;O, then (1) give 

(3) Wn+1=OVcWn+Tn 

=TnVlTn+cWn] 
=Tn V[T n+c{Tn_1 V(Tn_1 +CWn_l)}] 

=Tn V[Tn+cTn_dV[Tn +cTn_1 +C2Wn _ 1] 

= ..... . 
=Tn V[T n+cTn-dVlTn+cTn_1 +c2T n_2]V· ..... . 

V[Tn+cTn_l+··· +c,,-lT1]· 

{Wn, n~ l} is a Markov process with stationary transition probabilities. 

This fact will enable us to prove Lemma 2 below. 

Lemma 1. P(Wn;;S;tl W1 =x);;S;P(Wn~tl W1 =y) 

= P(Wn;;S;t I W 1 =0) for all t, x~O, y<O and n~2. 

Proof: Fix a point w in the sample space of R1, R2, ••• , Rn, Yh 

Yn and let 

W1(w, x)=x; 

W/w, x)=T j _ 1(w)VlT j _ 1(w)+cWj-1(w, x)] 

for 2;;S;j;;S;n. It is clear that if x~O and y<O, then 

W/w, 0)= WiCw, y);;S;WiCw, x) for each j~2. 

Hence the lemma is now seen to be true. 

Lemma 2. 

where Fo is a monotone non-decreasing function. 

Proof: Then 
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(4) 

Since {Wn} is a stationary Markov process and because of Lemma I, 

(5) P(Wn+1;;;;;tIW1=0, W2=x)=P(Wn;;;;;tIW1=x) 

;;;;;P(Wn;;;;;tIW1=0) for all t. 

Then, inserting (5) into (4) we have 

P(Wn+1;;;;;t I W1 =O);;;;;~P(Wn;;;;;tl W1 =O)dH(x) 

=P(Wn;;;;;tIW1=0) 

Thus P(Wn;;;;;tIW1=0) is a monotone sequence and therefore converge 

to a limit which is called Fo(t). The above-mentioned properties of Fo 
are easily deduced. 

Note. It is evident that for y<O 

Theorem 1. The function Fo(t) defined in Lemma 2 is a probability 

distribution if anyone of the following conditions hold: 

( i) Tl =R1-Yl;;;;;0 with probability one, 

(ii) c=O, 

(iii) O<c;;;;;1 and E(T1)<0, 

(iv) O<c<l, E(T1YG::0 and a2(T1)<oo. 

Proof: The cases (i) and (ii) are trivial and then Fo(t) = T(t). We 

consider the ca e (iii). The case where c= I and E(T1)<0 is well known 

as the system GI/G/I, which considered by Lindley [3]. 

If O<c<l, then from (3) 

Now we define the sequence {W~} by 
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(6) 

and 

( 7) 

then we have 

Takeji Suzuki 

(n=I,2, ... ), 

(n=I,2, ... ). 

According to the above inequality and Lindley's result [3] on the 

process {Wn*} with E(T1)<0, we see our argument to be true. 

Next, we consider the case (iv).We put in (3) 

(i=I,2, "', n), 

and 

(k=l, 2, "', n). 

If E(T1)=0, Kolmogorov's inequality holds; 

(8 ) for every ,(>0, 

since {X} is a sequence of mutually independent random variables with 

E(X)=O and (J2(X)< ex:>. 

Hence (8) gives 

(say) , 

from which we have 

(9) 

where E(t~O as t->ex:>. That is, {Wn} is bounded In probability. If 

E(T1»0, we put X=Ci-l[Tn_i+I-E(Tn_i+I)] and use the same way as 

above. Thus 
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that is, 

where 

e'(t)-+O as t->oo . 

Therefore the theorem is seen to be true. 

Therem 2. 

(i) If c~l and E(Tl)~O, then Fo(t)=O where the case T1=O with 

probability 1 is excluded. 

(ii) If c> I and E(T1)<O, then Fo(t) is not a probability distribution 

where the case T1;:;;;O with probability I is excluded. 

Proof: First, we consider the case (i). From (3) 

We define the sequence {W~} by (6) and (7), then 

(n= 1, 2, ... ). 

Applying the Lindley's result [3] to the process {w::} with E(T1Y;;:,O, we 

see that Wn->+oo in probability which proves that Fo(t)=O. 

Also we can prove the fact by another way as follow: 

We define W~* by 

W~* =OVcWn , (n=I,2, ... ). 

Then 

~OV[cT n + W~*] 

~OV[cTn +OV(CT"_l -/- W ~.!l)] 
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where W~~l =Ov W:+1 is the waiting time defined in Lindley's paper 

[3]. Since W~L)---++oo is probability under the conditions of the case (i) 

we see that W:* and Wn are also. 

Next, we consider the case (ii). We put 

(10) 

then the process {-Sn} forms an upper semi-martingale. Since 

c EIS"I;;;;;;--IEIT11 for all n, 
c-

according to the theorem 4. 1 s, p. 324 in [4], lim Sn=Soo exists with 
"_00 

probability one. We assume peT 1>0»0. Then there is a sufficient small 

positive number to such that P(T1>tO»0. Therefore for ~tll N~I, 

(ll) P(Soo>O)~P(Tl>tO' T 2>to, "', TN>tO' 

c-NT N+l +C-N-1T N+Z+' .. > -to(1 +c-1+ .. . +c-N+1» 

=P(T1>tO)N . P(c-NTN+1 +C-N- 1T N+2+··· >-tOl(+SN) 

where K=_c_ and sN=toKc-N---+O as N---+oo. 
c-I 

We find an integer N such that 

00 

(12) L: c-N-n(N +n+ 1)2;:;;:D c-N(N + 1)2<toK-sN 
n=O 

where D is a constant. 

On the other hand, according to the Markov's inequality (see for 

example Loeve [5], p. 158) we have 
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Then if we take N statisfying the inequality (12), 

(13) P(c-NTN+1+C-N-lTN+2+··· >-toK+eN) 

;;;;:;p(TN+1>-(N+l)2, T N+2>-(N+2)2, .... ) 

2. ;; (1- El Tl ~ ) 
-.=0 (N+n) 

>0, 

00 

since L: (N+n)-2<oo. By (11) and (13) we see that if P(T,>O»O, then 
.=1 

P(Soo>O)=a>O. 

For any t and e>O, 

..... 00 

;:;;;; lim sup P(Sn;:;;;;el W l =0) 
..... 00 

Therefore 

that is, Fo(t) is not a probability distribution. 

Now we shall give two examples for which p(Soo>O)=a is evaluated. 

Example 1. Let T, be a random variable defined by 

{
I with probability p 

T,= 
-1 with probability 1-p , 

1 
where p< 2. Then E(T,) <0. If c> 1, 

P(Soo>O);;;;:;P(T,=l, •.. , TN==l) 

=P(Tl=l)N=pN for N>log 2/1ogc. 

Example 2. Let TI be a random variable obeying a normal pro-
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bability law with parameters m and a. Let m<O and c>l. Then the 

characteristic function of Tl is 

Therefore the characteristic function of Soo is 

where K = _c - and 
c-I 

c2 
H 2---2-1 . c-

That is, 

1 roo _~(y-mK)2 
P(Soo>O)= .v2rr aH )0 e 2 oH dy 

=l-QJ( _mK) 
aH ' 

where QJ(X)= .1 .~. e 2 y dy. 
l)X _ 1 2 

'V 2rr -00 

Finally, we shall show that the limiting distribution, if it exists, IS 

independent of the starting point Wl' 

The cases where Tl=O with probability one or c=O are trivial and 

then 

f 1 (t~0) 
Fw(t)=Fo(t)= I 0 

l (t<0) 

for any value w of Wt, where Fw(t)=lim P(Wn;:;;;;tIWt=w). 
n~oo 

In what follows we exclude the case where Tl =0 with probability one. 

If O<c<l, E(Tl)<O and Wl=w;:;;;;O, then Fw(t)=Fo(t) because Lemma l. 

If O<c<l, E(Tl)<O and Wl=w>O, Fw(t)=Fo(t) because 

P(Wn+1;:;;;;tIWl =w)=P(Uk;:;;;;t for I;:;;;;k<n, Un;:;;;;t-cnW) 

~P(Uk;:;;;;t for I;:;;;;k<n, Un;:;;;;t-e) 

~P(Uk;:;;;;t-e for l;:;;;;k;:;;;;n) 

~Fo(t-e) 
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k 

for any small number E>O and all n~log (E/w)/log c where Uk = L: CH, 
i=1 

T n-i+h that is, 

lim inf P(Wn+1~tIWl=W)~Fo(t-E), 
0-+00 

Also 

that is, 

lim sup P(Wn.H~tIWl=W)~Fo(t). 
0-+00 

Therefore 

If O<c<l, E(Tl)~O and u2(T1)<co, then for any value w, Fw(t)=Fo(t) 

by the same argument as the above. 

If c= 1 and E(T1)<0, then Fw(t) = Fo(t). This is well-known result by 

Lindley [3]. In above cases, if W, has any distribution W1(w), then 

lim r p(Wn+1;;;;;tl W1 ==w)dW1(w)= Fo(t) n-+ooj 

by Lebesgue's theorem on integrals. Uniqueness of the limiting distribution 

is obvious. 
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