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§ 1. INTRODUCTION 

In the previous papers [3, 4], the authors proposed a new type of 

preventive maintenance policy which was named as Policy III to maintain 

a complex system of equipments, and noted that it has some practical 

usefulnesses. 

Especially, in [4], it was shown that an optimal type of preventive 

maintenance policy from a practical view point becomes type Ill. More­

over, an optimal policy of type III may have robustness for varying the 

mean life time. This fact was illustrated numerically in [3] when the life 

time distribution is of Weibull type: 

F(x)= l-exp {-a(x-r)P} 

=0 

(x:>'r) 

(xS;r) 
(1. 1) 

Above discussions were limited only for the cases where the object 

function is the limiting efficiency and the location parameter r of the 

Weibull distribution is zero. However, since these discussions were already 

extended to the case where the object function is taken as the mainte­

nance cost rate [4], some numerical examples for the cost rate case will 

be illustrated. Since the case of r>O may not be neglected in many 

practical uses of that policy, r need not constraint to zero in our numeri­

cal computations. Thus, in this paper some numerical examples will be 

given for which the parameters are selected systematically. 
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Some Con8idemtions on Preventive Maintenance Policies 155 

These examples will show that the policy is considerably tough for 

varying the parameters a and r, (where f3 is assumed to be fix) while the 

Policy II cannot be so tough in those cases. Furthermore, that the 

optimal policies of type III are more efficient than the corresponding 

optimal policies of type 11, will be shown by these examples. An analytical 

treatment on asymptotic behavior of this fact will be added in the last 

section. 

For the preparation of this paper, the various computations were 

made with an electronic computor. So, the contents of a series of com­

putations will be explained in § 3. 

§ 2. EXTENSION OF SOME FORMULAS IN 

THE PREVIOUS PAPERS 

In the previous papers, the concrete expressions of the optimal replace­

ment time, the maintenance cost rate, the limiting efficiency, the interval 

reliability and so on, are given under the assumption that the life time 

distributions of the systems are of Weibull type with zero location parameter. 

However, in many practical cases, it may be recognized that the 

failure distribution is of a mixed Weibull type as cited already in [4] 

(Remark 6. 3). But, since many systems will be run in the factory (i.e., 

'aging ') during the period corresponding with the catastrophic failure, one 

can see that the part of catastrophic failure of the life time distributions 

of the systems are truncated in their practical uses. 1\1" ()reover, when the 

aging procedure has been done completely, one may neglect the number 

of failures before r from the count of failures. Thus, it may be considered 

that the life time distribution is of a slmple Weibull type with a no;)<'[.e1'o 

location parameter r in usual cases. Hence, deleting the (chance) failures 

before the time r, Policy III based on a simple Weibull type life distributions 

with a non-zero location parameter can be applied. In discussions of Remark 

6.3 in [4], "Policy III does not depend on r ", should be replaced by" Policy 

III depends on r ", because when the maintenance cost rate (or limiting 
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156 H. Makabe and H. Morimura 

efficiency) is accepted as the object function to be minimized (or maxi­

mized), this statement is not valid. 

Thus, this paper introduces the extension formulas of the maintenance 

cost rate and the limiting efficiencies for Policy 11 and III to the non­

zero location parameter case. It is assumed that the life time distributions 

of system are Weibull type with the identical parameters fj and r. Then, 

the extended formulas can be expressed readily as follows: 

C(2)(t)=[(T m+Cm)a(t-r)~+C.+T.1I[t+a(t-r)~T m+T.] (t'>r) 

=[C.+T.]/[t+T.] (t5.r) (2.1) 

C(3)(k)=[(k-1)(T m+CmHT.+Cs] / [PNB( t, k )+r+ (k-1)T m+Ts] 

(2.2) 

Eff~l(t)=t/[t+ {a(t-r)~}T m+T.] (2.3) 

Eff<';'\k)= [Pfj/B( ~, k)+ rJ / [Pfj/B( ~ , k)+r+(k-1)T m+T. ] (2.4) 

using the notations used in [4]. Hence, the replacement times for the 

optimal policy of type 11 or III may be obtained from these formulas. 

Since no discussion was made in [3] on the maintenance cost rate of 

Policy 11, the expression (2.1) is quite new, but its deduction is almost 

similar to that of (2. 2). Therefore the detailed discussion on the deduction 

was omitted in this paper. 

§ 3. OUTLINES OF NUMERICAL COMPUTATIONS 

A series of numerical computations are listed as follows: 

i) Optimal replacement time (ko) for Policy Ill. 

For the sake of effective use of Policy Ill, some numerical tables of 

the optimal replacement time ko were prepared. Assuming C.=Cm=O, 

since maximization of the limiting efficiency is equivalent to minimization 

of the maintenance cost rate, the tables are presented for the maintenance 

cost rate only. If it is assumed that the family of the life time distribu­

tions of the systems is given by {F;(x)} such that 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Some Con8ideration8 on Preventive Maintenance PolicieB 157 

Table 1. ko for !l.=a-1/~ . r(l + ; ) 

Cm p T. r I 
OPTIMAL REPLACEMENT TIME (ko) 

2 3 4 5 6 7 8 9 10 

10 0 00 36.571 13.298 8.593 6.547 5.391 4.643 
10 1 00 28.444 10.343 6.683 5.0924.1933.611 
10 3 00 12.190 4.432 2.864 2.182 1.797 1.547 
ID 5 .285 .533 1. 066 3.657 00 

ID ID 3.142 5. 866 11. 733 40.228 00 

10 I 15 6. 000 11. 200 22. 400 76.800 00 

10 I 20 8.857 16.53333.066 113.371 00 

10 130 14.57127.200 54.400 186.514 00 

10 140 20.285 37.866 75.733259.657 00 

ID I 50 26.000 48.533 97.066 332.800 00 

10 2 0 00 17.731 9.547 6. 7~ 5.391 4.540 
10 2 I 00 13.298 7. 160 5.0924.0433.405 
10 2 3 00 4.432 2.386 1.697 1. 347 1. 135 
ID 2 5 .500 .888 1. 600 3.637 00 

10 210 3.000 5. 333 9.600 21. 942 00 

10 2 15 5.500 9.777 17.600 40.228 00 

10 2 20 8.000 14.22225.600 58.514 00 

10 230 13. 000 23. 111 41. 600 95.085 00 

ID 240 18.000 32.000 57.600 132.657 00 

ID 2 50 23.000 40.888 73.600 168'228 00 

10 4 0 00 14.321 7.638 5.3914.256 
10 4 I 00 9.547 5.0923.5942.837 
10 4 3 OPTIMAL k=7 
10 4 5 .800 1.333 2. 133 3.6.57 8. 126 00 

10 410 2.800 4.656 7.465 12.800 2B.444 00 

10 4 15 4.800 8.000 12.800 21. 942 48. 761 00 

10 4 20 6.800 11. 333 18. 133 31. 085 69.079 00 

10 4 30 10.800 18.000 28.800 49.371 109.714 00 

10 4 40 14.800 24.666 39.466 67.657 150.349 00 

10 4 50 18.800 31.33350.133 85.942 190.984 00 

10 7 0 00 15.2765.3913.405 
10 7 I 00 5.092 1.797 1.135 
10 7 3 .461 .727 1.066 1. 567 2.438 4.432 14.321 00 

10 7 5 1. 076 1. 696 2.488 3.657 5.688 10.343 33.417 00 

10 7 10 2.615 4.121 6.044 8.881 13.815 25.119 81.156 00 

10 7 15 4. 153 6.545 9.600 14.100 21. 942 39.896 128.895 00 

10 7 20 5.697 8.969 13.155 19.330 30.069 54. 672 176. 634 00 

10 7 30 8.769 13.81820.266 29.779 46. 323 84. 225 272. III 00 

10 7 40 11.846 18.66627.377 40.228 62.577 113.777 367.589 00 

10 7 50 14.92323.515 34.488 50.677 78.831 143.330 463.067 00 

1010 0 OPTIMAL k=IO 
ID 10 I .250 .380 .533 .731 I. 015 I. 477 2.386 5.092 00 

10 ID 2 .750 I. 142 I. 600 2.194 3.047 4.432 7.160 15.276 00 

10 10 5 I. 250 1'909 2.666 3.657 5.079 7.388 11. 934 25. 460 00 
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158 H. Makabe and .H. Morimura 

(x>r) Fi(x) = I-exp{ -ai(X-r)fi} 

=0 (x~r) 

(i=I,2, "', p) 

(3.1) 

then, the discussions in § 2 of [3] may hold substituting T.+r for T., and 

C.-r for C. in (2.7) based on Theorem 2.2 and Corollary 2. I in [3]. 

The tables show the values of p that is the mean life time after rand 

is given by p=a-l/fi . r ( 1+ ~) as illustrated in Table 1. In practice 

firstly we shall estimate rand p, then have to find out the position of p 

in the corresponding row. Table I shows that in a example with the value: 

Cm=l, C8 =1O, T.=4, r=lO, p=6, 

since 

4. 666<p=6. 0<7. 466 

we can 'see the optimal replacement time ko=3. Such tables were already 

constructed in the following cases: 

~=4/3, 2, 3, 4 

Cm=O.OI, 0. I, I, 5, 10, 50 

p=C./Cm = 1, 5, 10, 20, 30, 50, 100, 500 

T.=I, 2, 3, 4, 5, 7, 10,20,30,40,50 

r=O, I, 3, 5, 10, IS, 20, 30,.40, 50 

where we shall assumed that T mCo= I without any loss of generality. 

A part of our tables will be published in [5] in near future. If pub­

lished the whole tables, they will consist of about 500 pages. 

ii) Interval reliabitity of Policy III 

The numerical computations of (3. 10) in [3] for some parameters T m, 

T" a, ~, and k were done. It is assumed that p= I without any loss of 

generality. Some considerations upon the results will be given in § 6, so 

we shall not add any discession here. 

iii) Limiting efficiency of Policy II (J3=2) 

Since the limiting efficiency Ejjr;,\t) is given by (2.3), one can find 
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the optimal replacement period t* which maximize (2. 3) by differentiating 

it. But, the calculations are tedious except the case {j=2, then, we calculate 

the limiting efficiency of Policy 11 for the case (j=2 only. 

Firstly we compute t* for some parameters T •. p, r using the follow­

ing expre~sion 

t*=.J r2+ 1'1'? 
a m 

(3.2) 

and the limiting efficiency for t* Next, for the sake of getting some 

knowledges concerning with the robustness of Policy 11, the limiting 

efficiency for parameters T., p, r, and to* which is the optimal replace­

ment period for T., Po and ro are computed. 

If the limiting efficiency for T., p, rand to* not so small compared 

with the one for T., p, rand t* which is the optimal replacement period 

for T., p, r, one can say that the policy has a high robustness for varying 

p and r. Some discussions from the view point will be given in § 4. 

iv) Limiting efficiency of Policy III 

To find ko which maximizes (2.4) has no any difference between the 

distinct two {j's in the difficultness of its numerical computation. But, 

since we shall compare the robustness or absolute values of the limiting 

efficiency of Policy III with these of Policy 11, our present computations 

are limited to the case (j=2. And, an analogous computing plan to iii) 

are done. 

v) Maintenance cost rate of Policy II 

Based on (2. 1), one can calculate the maintenance cost rate of Policy 

II under the condition {j=2. Of course, without· any loss of generality 

put T m= 1. Firstly, t* which minimize the maintenance cost rate for a 

set of parameters (Cm, p, T., r, a) is calculated by the following formula 

(3.3) 

where 
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160 H. Makabe and H. Morimura 

B=2a(CmT.-C.T m)=2aCm(T.-p), 

p=C./Cm. 

Then, C~>Ct*) for the corresponding set of parameters and for some set 

of parameters which departure from it on a and r are calculated. 

vi) Maintenance cost rate of Policy III 

Using (2.3) and the statement in i), analogous computations to v) are 

possible. Combining the results in v) and vi) the comparison of robustness 

between Policy II and III for varying rand f1 (or a) may be done numeri­

cally. The following section will be devoted to do this. 

§ 4. ROBUSTNESS OF POLICY III COMPARED 
WITH THAT OF POLICY 11 

At preventive maintenance policy of type Ill, whether a minimal 

repair ought to be done or an overhaul to be done is decided not by the 

total running time but by counting the number of minimal repairs. Thus, 

we can see intuitively that Policy III may be robust for the variation of the 

location parameter r. 
In general, if the life time distribution has a location parameter r(>O), 

do not encounter with trouble in time interval (0, r) and hence have no 

minimal repair. Thus the location parameter r will effect the decision of 

the optimal replacement period of maintenance policy. But the estimation 

of location parameter r is usually difficult. In such a circumstance, the 

total running time t* till the next overhaul in Policy 11 will be effected 

directly by acccuracy of the estimate r of r. More precisely, the bias of 

the estimate br=r-r is interpreted as deviation of t* from the optimal 

one. This fact will be illustrated through some graphs of the limiting 

efficiencies and the maintenance cost rates (Fig. 1-4). 

On the other hand, in Policy HI, as the number of times of minimal 

repairs are only counted and the number of times of failures oceuring 

in [r, rl (or ri, r]) may be expected rather small, Policy III that use the 
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162 H. Makabe and H. Morimura 

optimal replacement times is rather tough for variation of r. This property 

will be desirable in partical cases. 

Now, henceforth, we observe the numerical results obtained in § 3, 

and discuss on toughness of Policy Ill. 

As were given in § 2, the limiting effeciency or maintenance cost rate 

is decided for a set of paranltters (p(or a), r, Ts, T m, Cs, Cm and ~), and 

as was noted in § 3 we have computed that quantities under the assump­

tion CoT m = 1 and (3 is fixed. Based upon the computational results we 

observe in the following illustrative figures how the limiting effeciency 

or maintenance cost rate depart from its optimal value when p or r varies, 

while the other parameters are fixed. For example in Fig. 1, the limiting 

effeciency are plotted as functions of r ; 
i) the curve IIF shows the limiting effeciency of Policy II Ejj<;')(r; t) 

where t is found as the optimal replacement period for a value of ro=20 

and p=20. O. T s=20, ~=2, 

ii) the curve IIo shows the one of Policy 11 where the replacement 

period t* is decided to maximize the maintenance cost rate for each r, 
that is, t is always optimal for varying r, 

iii) the curve III shows the one of Policy III whose k is decided to 

be k=8 optimal for r=40 and k= 15 for r<40. 

The graphs for various cases by changing the parameters systematically 

were observed. However, in this section some typical cases selected from 

the detailed list of § 3 will be only shown because they can be classified 

according to their tendencies ignoring some difference of magnitudes. 

Fig. 3. (a), the graph of maintenance cost ·rate explains the case where 

T,,=5, Cm =50 and C,=500. Optimal policy was decided as ko=2 for type 

IJI and t*=7.082 for type II, In this graph we can see the following 

fact. 

i) Suppose that location parameter r is fixed and equal to ro, and that 

the optimal value is t*. By curve Ih we see that the maintenance cost rate 

increases markedly for the value r larger than ro. On the other hand the 

maintenance cost rate for Policy III optimized as ko=2 decreases. 
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(Compare curves Ih and Ill.) 
ii) The curve IIh is not differ far from the curve IlIo, but curve Ih 

is above the curve 110 for large r. 
Curve IIh means the graph of the maintenance cost rate as a function 

of r where optimal value of k is decided for some fixed> value r or p., 
and curve IlIa means the graph where optimal value of k is decided for 
each r, that is always optimal for that r. 

3.0 

2.0 

5 10 
Fig 4· 

'ITlaioonl1nce r:Mt NJf.e. 
0=10. T.d=l. CJ~'100, Cm=IO. 8=2 

From the above consideration one can see the following facts, that is, 
in Fig. 3, the curve Ih and III teach us some aspects. If one under­
estimate the location parameter r as r «ro), and decide the policy of 
type 11 by t* so as to minimize the maintenance cost rate at r=r, then the 
maintenance cost rate at r=ro is large enough if bias ro-r is large. On 
the other hand, according to Policy Ill, the cost rate due to the decision 
k=kl obtained by estimation of r to be r is not so different from that due 
to the decision k=k2 obtained by the correct estimation of r to be ro. Thus 
we can conclude that if we estimate r to be smaller than ro, as sometimes 
occurs, in order to be in safe side, one must pay immense costs produced 
by using the policy of type 11. 
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§ 5. A SUPPLEMENTARY REMARK 

In the previous paper [3], it was shown that the type IH is an optimal 

policy from a practical view point and has robustness for the system of 

which mean life time is varying: that is to say, although it seem evident 

that limiting effeciency of the policy of type III is superior to that 

of the policy of type 11, any rigorous proof was not given. We shall 

add here a remark that the limiting efficiency of the type III is asymp­

totically larger than that of type 11 in the case when the life time dis­

tribution of the system is of Weibull type. The proof is at first begun 

by calculation of the limiting efficiency and then proceed to. the evalua-

tion of their expressions in terms of R 

be large in many practical cases. 

Theorem. 

which is supposed to 

When the systems of which the life time distribution is of Weibull 

type with a common shape parameter" and zero location parameter are 

performed by two maintenance policies of types n and Ill, we have the 

following relation for sufficiently large R 

Proof. 

We shall denote the limiting effeciency of Policy III which any over-

haul may be performed at every k-th failure as E.fJ:;/(k). This is given 

as 

(5.1) 

Of course, Eff~)(ko) = Eff~) which corresponds to the optimal pro­

cedure of Policy nI, where ko is the largest integer such as 
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Ejj(;/(k-l);:;;; Ejj';,>(k) 

and will be given as 

ko = [ko']+ 1, 

where k'o is ~he root of the following functional equation 

Ejj';,'Cko') = Ejj';,>(ko' + 1) 

and 

ko'= T.-::T m 

T m(f3-1). 

F or the Policy 11, optimal effeciency is given by 

E++(2) - c-t*-:-=_=-
:JJ 00 - t*+(al*P)T m + T. 

where 

*. ( T. )I/P 
t :::: a(~-l)Tm . 

Thit fact were often treated in previous papers [3], [4]. 

Hence, inserting t* into (5.5) we have 

(2) a-I/p 

E1100 = f3T {(f3- 1)T }VP a- I / p+--!... m. 
;3-1 T. 

On the other hand it is clear that from Fig. 5 

(3 
Effoo 

1<0 k'o+1 

LI~o ::-.(ko)+ 1 

r=-ifj 5 

161 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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because Eff':/(k) is an unimodal function of k. 

Inserting the value of ko' into (5.1), we have a little less optimal 

efIeciency Eff';;,)(ko'), and if we have 

(5.8) 

our proof of the theorem is complete. 

To get Eff';;,'Cko') from (5.3) and (5.4), 

Eff';;,)(ko') = p /3 __ 

p~+(ko'-l)-B( ko', ~)T m + B( ko', + )T. 

= _________________ a-_l/_p_r~(~~~)_,~--------~--
r(ko') r(~) r(ko') r(~) 

a-v'r(t)+(i~~~i) -l)~( k,~!y'+ r( •. '+tt 

r(ko') - ~T m + ~Ts 
r( ko' + ~) . - ~ -1-

(5.9) 

To prove (5.8), it is sufficient to show that 

or 
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where 

and 

r(~+~) 
_j9-I_j9_> R 
r(~) = (I+R)l-VP (j9_I)VP 

j9-1 

= (~)1 /fi(~)l-l /P 
j9-1 I+R 

R= T.-Tm r-l, 
Tm 

R T.-Tm k' 
j9 - I = T m(j9 -I) == o· 

T. r=­
Tm 

The left hand side of (5.10) can be expanded as 

(5.10) 

r( R ~) I (I -I) 
T-1~=(~)l/fi{l+~YY +o( I 2)} r( R ) j9 -I 2 R ( R ) 

j9-1 j9-1 j9-1 

On the other hand, the right hand side of (5.10) is expanded as 

( __ ~)l/P(~)l-l/P = (~)l/P{ I+(~ _I)~ 
j9-1 I-R j9-1 j9 R 

+ (t-I~~t-2)(~),+···1 
comparing the second term, we have 

or 

}-I:::;; I 
2j9 -

for P~l, 

Hence, neglecting th;) term O(~2)' (5.10) or (5.8) is valid. 
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§ 6. A GRAPHICAL DISCUSSION ON THE INTERVAL 
RELIABILITY OF POLICY III 

As were shown in the previous paper [4], the interval reliablity can 

be calculated expanding in powers X=~ when X is sJ;Ilall, and in this 
f.l 

case, the tables for the determination of the optimal k which minimizes 
maintenance cost rate was nsefull for that of k which minimizes the inter­
val reliability. But when X is not small, some elaborated computations 
are necesary. This computations were skectched in § 3, by which we 
have·' conclusions that 

i) the interval reliability for X=~ (that is, the probability that the 
f.l 

system continues to operate under Policy III for the time interval (t, t+x) 
for some t) continues to have optimal value in (0, Xl) for k, which is 
optimal for X=O, and then ko-l becomes optimal in (Xl> X2) and ko-2 
becomes optimal in (X2, Xa) and so on; 

ii) but as shown in Fig. 5, the interval reliability for ko does not 
different from those of ko-l or ko-2. 

/.U 
(2G' 

@ dO) 
W I@ 
~' --@ 

0.5 

0.3 

0.1 
(0) '-

0.2 0.5 

Fig 6 Ca) 
;AuwaR Mii»..(J~t ~ 

. w=0.3, Tm=OOI, 8=2 
tk rwrn./J.in in 0 J~ tftR. wJiv-e. ~ k 

1.0 >: 
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>- 0.9 10 
i- " ~ 
20.8",,;0 
a:J ® ",.~. 
:::SOl "~, 
--J . '<i. 

lJJ Or- "-er::: .b - \', . , ' 

---l " 
:;: Q5 - ", ". 
n:::: '. """ 

~ 03 '.'.' ....... '~.~.~"."' .. ""." 
. ....... . .... -. ____ K=2 

...... --K-5 
........ ' ........ ,....... -

---. ___ K=lO 

0.1 0.0501 -02 05"" 1.t=2~ 
fIll .6 (-8) 

1/n1vL~N1W~ 
T4 == 0.1. Tm=o.C4. B=% 

Hence, summarizing the above remarks we can say that after we 
decided ko, the policy continues to be optimal nearly in (0, X) for some 
small X. In practical use, X is not so large since the interval reliability 
is small for large X, and so we may use ko as a basis for optimal or near 
optimal procedure for the interval reliability. 

Fig, 6 shows some typical cases by which we concluded as above. 
And the other cases have the similar shapes except their numerical dif­
ferences, 
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