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PRIMAL DUAL METHOD OF PARAMETRIC PROGRAMMING
AND IRI’'s THEORY ON NETWORK FLOW PROBLEMS

By REIJIRO KURATA
RAND Inssitute of JUSE, Tokyo

INTRODUCTION

Primal dual algorithm of linear programming problems was first
applied to the network flow problem by Ford and Fulkerson [2] [3). In
1959, Kelley [1] pointed out that this is nothing but a method for solving
parametric programming problem. In §1, we shall describe the primal
dual method of parametric programming in a general fashion. The con-
tent is essentially the same as that of [l], except for that the simplex
method and the concept of basis are avoided, as they are not neccessary
for our discussions and we treat the “general form”™ of the linear pro-
gramming. This method was applied by Kelley [4] and Fulkerson [6]
independently of each other, to a problem in planning and scheduling,
which is now called CPM (Critical Path Method).

On the other hand, in 1960, Iri studied the network flow problem
from an entirely different viewpoint. He developed a general algebraic
and topological theory of electric circuit and noticed the analogy of the
transportation problem with the circuit.

A few important points should be noted about Iri’s theory. The
first of them is his methodology. In his theory, the input voltage and
total input current are increased alternatively starting from 0 so that the
solutions of problems are found out. A technique called “@-matrix
method ” used at the voltage increasing steps forms the most important
part in [5]. Iri’s alternative increasing steps are regarded as an illustra-
tion of a method which is applicable to the general problem of parametric
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programming.

In §2 we introduce this method, under the name “double para-
metrization method ”, and show that it is as equally efficient as the method
in §1 in the sense that the number of iterations to reach at a parameter
value 1 is the same for both the methods. In general, in formulating a
parametric programming problem, various ways are possible according as
which variable is taken as a parameter. For instance, if the input voltage
is taken as the parameter of the network flow problem we get Ford and
Fulkerson’s method. A different approach, of course, is obtained if the
total flow is taken as a parameter. In the former, the maximal flow is
found by a labeling method which is well-known as one for solving the
restricted primal problem, while in the latter, the maximal input voltage
is found by the @-matrix method. Just as the labeling method in Ful-
kerton’s theory gives the optimal solution of not only the restricted primal
problem but also its dual problem, ©-matrix method gives the optimal
solutions of both the restricted primal and the dual problems simultaneously
(this fact is not remarked in [5]). These two methods are discussed in § 3.

In §4, we apply Kelley-Fulkerson’s and Iri’s methods to the problem
of CPM in parallel to §3. Iri’s method in CPM has not yet been pub-
lished. Iri himself, however, was aware of the possibility of the application
as early as in 1961 and wrote an ALGOL program at the RAND Institute
of JUSE, Tokyo. It is shown in §5 that if we apply the primal dual
method directly to the problem with many parameters, a certain very
strong condition on the solutions of restricted primal problems is required.

However, if we regard the network flow problem with many sources
as a multi-parametric programming problem with many input flows as
parameters, the condition above stated is fulfilled. Thus it is the third
feature of Iri’s method that his @-matrix method can be applied to the
network flow problem as a multi-parameter programming, as discussed in
§6.

Transportation problem of Hitchcock-type turns quite naturally to

be a multi-parameteric programming, for which a numerical example
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solved by the method in §6 is attached in §7.

§1. PRIMAL DUAL METHOD OF PARAMETRIC PROGRAMMING
IN GENERAL FORM

Let P[2 and DJ4 denote respectively the following parametric pro-
gramming problem and its dual problem.

P|4 x;=0 if jes (P1)
Daixi=bi, if ieT,

(or )J;ai,»xj-upbi, =0, it ieT,)) , (P2)
éaijxj=bi, if 1T,

minirilize f(x)=§(6j+ldj)x,-, (P3)
D|z ;ai,-_yi_g_cj—Hd,-, if jes,

(or lZaijyi+wj=€j+2dj, w;=0, if jes,) (D)
Taijyi=c;+d;, if je&Ss,

_):120, if ieT, (D2)

maximize g(y):Zi)yib,-, (D3)

where : ranges over the set of integers {1,2,-..,m} and jover {l,2,-..,n},

and T (resp. ) is a given subset of {l,2,--.,m} (resp. {1,2,---,n}).

1.1. Our aim is to trace the optimal solution of P|2 or D|4, when
A increases from 4,, being given the optimal solution of P[4, or D|4,.

Let (x;, u;) and (1, w;) be the optimal solutions of P{1 and D|4
respectively and let us define the restricted primal RP|4 and its dual
restricted problem RD|4, based on (y:, w;), as follows.

RP|2
%=0, if jes, (RPI)
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Yaixi=zbi, if 1T,
(or Jzaijxj—upb,-,, u;=0, if ieT) (RP2)

é(lijx_j:bi , if 1T

L xw;=0,
7es (RP3)
i;jTuiyizo ’

minimize fi(x)=Xd;x;. (RP4)

RD| ’

lzdij(fiédj, if w;=0, and jES§, (RDI)
;dijgi-:dj, if j&S§

a.=0, if =0 and ieT, (RD2)
maximize &(o)= )':oibi . (RD3)

Proposition 1,1,

A feasible solution (x;, u;) of P|Z is optimal, if and only if it is a
feasible solution of RP|A.

Proof.

If (xj, us) resp. (yi, wy) is a solution of PiA resp. D|4, then we have
easily Y (c;4+Ad)xy=biyi+ ¥, wix;+ Y uiyi, and T wx=0, 7 u;p.=0.
J i jes ieT jES ieT
By the Duality Theorem, (x, #;) is optimal, if and only if 3 w;x;=0

jeSs

and AZTUi'inO, that is, (x;, u;) is a feasible solution of RP|4
=]

Proposition 1,2,

If (»/) is a feasible solution of D|i+68 for some #>0, and if (4;)
satisfies ( 9/)=(p:i)+0(0s), then (a;) is a feasible solution of RD|A.

Proof.

By our assumption, (y:+0s:), is a feasible solution of D|i+4.
So that,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



108 Reijiro Kurata

Dai yit0o)<c;+(A+0)d; for j&S, (L.
;aij(yi—i—ﬂoi):cj—k(i—i—ﬁ)dj for ]EES, (1.2)
xL+00,gO for ieT (1.3)

From (1.1) and (1.2)

(;aijo'i— W<w; for JjESs, (1.4

(XLaioi—d;)i=0 for  Jje&S. (L.5)

Hence g; is a feasible solution of RDJA.

Proposition 1. 3.

Let (0:) be a feasible solution of RD|Z and put (8,)=(d;— La:00),
then (y+00) is a feasible solution of DA+ (F>>0), if and only if 01<0§[)0
where 6, is defined as follows.

{min(—wj/ﬁj; B;<0, je8) if there exists j such that 8;<0,
1:

00 otherwise,
{min (—yi/oi; 0:<0, i€T) if there exists { such that ¢:<0,
2:

oo otherwise,
Oy=min (4,, 05).

Proof.

Note that #,>0 and 60,>>0, because B,<0 implies w;>0 for jES,
and ¢;<{0 implies ».>0 for i€T, by RDI and RD2. Now from the proof
of Proposition 1.2, (y:+fo;) is a feasible solution of D|2+0, if and only if
(1.3) and (1.4) hold, that is if and only if <0; and 0=<0,.

Proposition 1.4.

Suppose that 0<<6=<6,, where 0, is defined as in Proposition 1.3, and
that (x;) is a solution of RP[A Then (x;) resp. (y:+800;) is an optimal
feasible solution of P|A+6 resp. DjA+0, if and only if (x;) resp. (s:) is an
optimal solution of RP|Z resp. RDJ4.

Proof.
Proposition 1, 1~1, 3, together with the following relation and Duality
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Theorem imply the proposition.
J&= Lle;+ @+ 0)dixs= b yit00:)=g(y+07)
Siw)y= X dx;= Y oibi=h(0o).

Proposition 1.5,

If the optimal solutions of P{1 and 1|2 exist for some 2, the neccessary
and sufficient condition for the existence of the optimal solutions of P4’
and D|#, ¥>2, is the existence of the optimal solutions of RP|2 and RD|4.

Proposition 1.6,

An optimal solution of RP|Z is a feassible solution of RP|2+ 8 where
0<6=<4,.

Proof.

Let (xj, u:) resp. (s:) be the optimal solution of RP|2 resp. RDJ4,
then (y/, w/) defined by

Yi'=yi+ba;,
wi=w;+08; for jES, (1.6)
is the optimal solution of D]|i+#. For, from D1 with 1+6
Zaij(y—l—00,~)+wj'=cj+(l+!?)dj, for ]ES.

To prove that (x;, u;) is a feasible solution of RP|A+4, it suffices to show
that

% xwi =0, 1.7
jes
N ui}’i’=0. (1.8)
ieT
Now
Zxwi= % x{w;+08;) by (1.6)
jes jes
= 2, xw;+0 3, %
jes jes
=03 xB;
jEes
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and

Z uiyi’=_)] u yi+00;)

ieT ieT

=03 u;0:.
ieT
While for an optimal solution (x;, u:) resp. (o) of RP|21 resp. RDJ4, we
have Y x;8;=0 and Y w;5:=0 because from RPI-3 and RD-2,
jes ieT

Zdjx]'= Z:U'zbt+ Y o+ 2 lgjxj
7 i ieT jes

and
Tow= Y  ow=0, ¥ Bim= N  Bx=0
jEes

ieT ieT and y;=0 jES8 and w;=0
therefore, ¥ sa;=0 and ) 8;x,=0 by the Duality Theorem.
ieT jes

Thus we can formultate the following procedure to solve P{ or DJ4.

1. Start with an optimal feasible solution (xj, u;) resp. (y: w;) of
P|4 resy. D|Z for some 4.

2. Construct RP{2 and RD|2 making use of ( y;, w;).

2a) 1If taere is no optimal solution of RP|1 and RD|1 (e.g. RP|4
has no bounded solution) then, there exists no optimal solution of P[#
and D|¥ for >4 In this case, give up the procedure.

2b) When we can get optimal solutions (x;, #;) resp. (¢;) of RP|Z
resp. RD|4, put Bj:dj—'zi:dijo'i,

{min(—wj/ﬂj; B;<0, je8), if there exists je§ such that p;<0,
" e otherwise,

3

o, otherwise

{min(—yi/of; 0:<0, i€T), if there exists i€T such that ¢,<0,
2:

and
00=min (01, 02) .

3.
3a) If Gy=o0, then (x;, us) resp. (pi+0o;, w;+08;) is the optimal
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solution of P|i+6¢ resp. DJa+0¢ for any 6>0. Thus, the procedure is
terminated.

3b) If 0,<oo then (x;, w;) resp. (yi+0ors; w;+0,8;) is an optimal
solution of P|i+0, resp. D|i+0. In this case return to step 2 (and here,
Proposition 1.6 is very useful), and continue the process.

1.2, Next we shall get the optimal tolution of P|4’ or D|¥, i'<2,
starting with the optimal solution of P|1 and Dja.

This time we consider the following RP‘|2 and RDja.

RP'|4
x=0, if jes, (RPD)
2 aigx= by, if ieT,
J
(01‘ Zaijx—uizbi, uIQO, if ZET,) (RP.‘Z)
J
Dax;=bi, if €T,
J
L xw;=0,
j€s (RP3)
igTuiinO,
maximize fi(x)=Yd;xy, (RP4)
J
RIY|4
Yaijoi=d;, if w;=0 and jES,
i (RD'])
Za{jlf:dj, if j(ES,
a;=<0, if =0 and :ieT, (RD2)
minimize A(o)= L o:b. (RD3)
J
In this case 6,, 8; and 0, are defined as follows.
{min w;/Bj, if there exists j&§ such that 8,>0,
Oy= { 85>0
oo, otherwise,
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min y:/s, if there exists i=T such that ¢,>0,
02—— at>0
oo, otherwise,

!90: min (01, 02).

Moreover, for @, 0<0<0,, (%, us) resp. (y;i—0oy, w;—0B;) is an optimal
solution of P|2—0 resp. D|1—4.

§2. A METHOD OF DOUBLE PARAMETRIZATION

Again, we consider P|2 and Dj4, and now we introduce a new
variable g in P|A.

P|4
x;=0, if jeS§ (P1)
%}ai,-xj;b,-, if ieT
(or szijxj—"ui:bi, u;=0, if ieT), (P2)
%:aijxj=bi, if ‘¢,
—Zdxj=p, (P3)
minimize f(x, p)= Y cxi—am (P4)
DA J
;aijyi§0j+2dj, if jeS,
(or Zi}ai,-y,:—i—wj:cj—i—ldj, w; =0, if jes,) (DD
;ai:’)’i=€j+1dh if je&S,
220, if ieT, (DT)
maximize g(y)zzjlb,:yi.
RP|2

%20, if jes, (RPI)
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Daix=by, if ieT,
7
(or Taymy—ui=b:, u=0, if ieT) (RP2)
7
}:azjszb;, if Z€ET,
)
-~ Zj}d ixy== gty . (RP3)
X xJWj:"‘Q,
= (RP4)
izos
G
minimize —gp (RP5)
RDj2
}:auo‘igdj, if wy=0 and jEES,
¢ (RD)
%:aijagﬁd; if 35589
20, if p=0 and ieT, (RD2)
maximize A(o)= L bio:. (RD3)

Now in PJ4, we regard ¢ as a parameter, and consider the following

problem
D
x>0, if jes, (D)
Tagxi> by, if ieT,
3
(or Dayxj—wi=bi, u:;20, if ieT,) (D*2)
J
%:aijxjﬂ bi, if iGET,
w)ﬁj}djxj—"-p, (*3)
minimize f¥*x)= e {(D*4)
J
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The primal problem P*[z which is the dual of D¥|x is defined as follows.
Here, 2 is regarded as a variable corresponding to (D*3).

P*|
Laijyissci+4d;, if jes,
(or Xaiyitwi=c;+2d;, w;=0, if jes,) (P*1)
Zai_i_yi-—-—cj—i-/idj, if  ja S,
=0, if 1T, (P*2)
maximize g¥*(y, )= yibi+pA (P*3)
RP*|p
Zaijyi+Wj=Cj+ldj, wjgo, if T,ES,
¢ } (RP*1)
Ziaij_yi=61+1dj, s jeSs,
=20, if ieT, (RP*2)
Z w]'xj=07
jes } (RP*3)
Y yiui=0,
ieT
maximize A. (RP*4)
RD*u
&,=0, if =0 and j&S, (RD*1)
Naiifi= if v,=0 and €T,
i } (RD*2)
Z[lijszo, if ZGET,
E]
—yd5=1, (RD*3)
minimize X¢;§5. (RD*4)
i

Proposition 2. 1.
(xj, p) resp. () is the optimal solution of Pj4, resp. D|1 if and only if
(x;) resp. (¥i, 4) is the optimal solution of D*{u resp. P#|p.
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resp. { »*) is the optimal solutions of P|4* resp. D|4*. The number of steps
required by the double parametrszation method, that is, the number of
the values of 2i(43<{2:<{4.) for which the problem have to be solved, is the
same to that of the method described in § 1.

§3. TRANSPORTATION NETWORK FLOW PROBLEM

Let N be a network with m branches having proper orientation and
n+1 nodes 0, I, 2,--+, n. Let the source and the sink be denoted by 0
n respectively. Further, let B be the set of all orientated branches of M.
Then the standard form of the transportation network flow problem which

corresponds to D*[z in §2 is the following.

D¥*|pe
Y xj= Y, xx  for every nodes j(x0, n) (D*1)
(. HEB . Hes
0<xi<ey, (D*2)
2 Xyg= N Xa=g, (D*3)
©, DeB G, nyeB
minimize Y dix (D*4)
@, HesB
where, cij=0, di;=20 for (i, j)EB.
And its dual is
P*|g
wi =dij+uj—ui+w; =0, for (i, j)eb, (P*I)
w;; =0, for (i, j)eB (P*2)
Up—Un=2, (P*3)
maximize pl— Y ¢ wi;. (P*4)
(iH)es

we define further
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Proof.

If (%, p) resp. () is a feasible solution of P[4, resp. D[4, then (x)
resp. (i, 4) is a fessible solution of D*|y resp. P*|gz. On account of the
optimality of (xj, g) resp. (y:) for P|4 resp. Di4, we have

?ij'j—/zﬂzzi:yibi.
Hence
JHx)= JZ:CJ'xf: Zil}’ibi+3#=g*(ya A,

by the duality theorem, our proposition follows immediately. Now suppose
that () is the optimal solution of DI4, and that (x;, ) resp. (o:) is an
optimal solution of RP|Z resp. RDJ4, and define 0, as in Proposition 1,3.
By the method stated in §1, (x5, pr) resp. (y/=(pi+0:0) is an optimal
solution of P|% resp. D|# where #=1+0, Optimal solution of RD|2 are
not always unique, but we assume for a moment that 6, is uniquely
determined by RD|4, independently of various optimal solutions through
which it is constructed. Then the following proposition holds.

Proposition 2,2,

If (y*, 4*) is the optimal solution of RP*|g corresponding to op.
solution (x;, ¢) of RP|4, then *=21+10,.

Proof.

By the Proposition 1.6, the optimal solution (x;, z#) of RP|A is a
feasible solution of RP|A+8,, so we can easily see that ( y/, &) is a feassible
solution of RP*[x and we have #*=i+0,. On the other hand, (y*, %),
being an optimal solution of RP*|x, is an optimal solution of P*|u by the
Proposition 1.1. Therefore. (x;, ) resp. (»:*) is the optimal solution of
P|4* resp. D|i* by Proposition 2. 1. If we put 4*=4i+460 and y*+0oy (03)
is an optimal solution of RD|1 by Proposition 1.2. and 1.4. Hence we
have <6, by Proposition 1.3 and our assumption about #;,. Consequentely
we have A*=i46,. By double parametrization method, we mean a pro-
cedure which, starting with the optimal solution of (xj, ) resp. () of
P|2 resp. D2 for some A solves RP|2 and RP*T/;, alternatively. At some
stage of this procedure, if (»*, %) is an optimal solution of RP*{n, (x;, )
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minimize — pd+ Y xyd;. P4)

And the corresponding restricted problems are

RP|4
0= =cij, (RP1)
@ §e3xij:(j, k‘),_,“EB Xjks for each nodes j(=0, n) (RP2)
X o xi= YN Xam=p, (RP3)
©. =B (i, n)=B
xi,-=0, if wi,-'>0,
} (RP4)
Xij = Cijs if wij>0,
maximize p, (RP5)
and
RDJ4
ai—oj—pij§0, if wij’:0,
(RDD)
=0, if wy=0,
gp—an=1, (RD2)
maximize — 3 ¢ (RD3)

we may assume that w;; in P*[p, RP*|g¢ and D|4 satisfy the following
conditions
if dij+u;j—u;=>0, then w;;=0,
and if dij+u,~—zti<0, then wijzu,-——u,-—dij.

Therefore, we assume that w;;-w;;/=0.

3.1. Ford and Fulkerson’s method

Ford and Fulkerson’s or Kelley’s method for solving tronsportation
network flow problem can be characterized as a method for solving P|4
and DJ4 given in §1. As an initial optimal solution of P2 resp. D|2 for

2=0, we can take x;=0 and p¢=0, resp. w;;=0 and w;/=d;; for all (i, j)eB
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RP*|
w =di+uj—ui+wi; =0, for (i, j)EB,
w;; =0, for (i, j)eB,
Uy—Un=4,
w; /=0, if  x,;>0,
w;;=0, if x<ey, }
maximize 4.
RD*|p
£,=0, if x;=0
£,;=0, if =i }

5 Suy= X & for each nodes j(=0, n)
(i, HeB (Jj, HeB

Z o= 2 5L’n=13
O, DeB (i m)es

minimize Y, &ydij.
G, HeB

Here, D|4 and P|4 described in §1, §2 are written as follows

Dja
wij’:dij+uj-—ui+wijgo, for (i, j)EB,
w;;=0, for (i, j)ebBb,
Ug—Un =14,
maximize -— Z\ Cijlyij.
@G, HeB
P|4
O_S_xij=<—_5iia for (i, j)EB;
Noxy= L Xk for each nodes (=0, n)

G per” (G, Bes

L K= N Kin=h
0, DeB G, meB
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(RP*1)
(RP*2)
(RP*3)

(RP*4)

(RP*5)

(RD*1)
(RD¥*)
(RD*3)

(RD*4)

(DI
(D2)
(D3)
(D4)

(P1)
(P2)

(P3)
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and u;=0 for all nodes i. An essential point of this method lies in the
so called labeling process in solving RP{4 and RD|A.

3.1.1. Labeling method for RP|4

The labels of the form (zi, k) are attached to nodes according to
the fo[lowing rules.

1. Label source 0 with the label (* o),

2. Consider any labeled node i with the label (*%, ) not yet
scanned.

a. For any unlabeled nodes j such that (i, j)eB, if x,:<¢;; and
w';;=0 we attach the label (+:imin[4, ¢;;—x;;]) to j. Otherwise j is left
unlabeled.

b. For any unlabeled node j such that (j, ¢)eB, if x>0 and wy
=0 we attach the label (—i min [4, x;:]) to j. Otherwise j is left unlabeled.
When then the process 2 is over for all j such that (i, j)eB or (j, i)€B,
i is scanned.

3. When the sink n has been labeled with (i, /&), we have obtained
the path 0=i,, i5,---, i;=n where i, is labeled (&ix-;, f), then we change
Xixlery tO Xigteor+h if Gk ike)EB and to atwggic—h if (ker, t)€B. Thus we
have increased the total flow by % and return to process 2.

4. When the labeling process has terminated, if the sink » is not
labeled, the maximal flow, i.e. an optimal solution of RP|4, have been
obtained. Next we will solve the restricted problem RD|A. First, let
be the the set of all labeled nodes and J the set of all unlabeled nodes.
They will be utilized in the course of solution.

3.1.2. The optimal solution for RD|4

g; and p;; are defined as follows

1, if iel
| | @1
0, if e},
1, if G, )el] and wiy'=0,
pi= ——1, if (l, J)EJI and w[,->’0, (3.1.2)

0, otherwise
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Proposition 3.1,

(015 pi;) defined by (3.1.1) and (3.1.2) is an optimal solution of RDJ4.

Proof.

The feasibility of (o;, p¢;) for RD|A is obvious. The optimality of
(045 pi;) for RD|Z is proved as follows.

When (i, j) €], w;/ >0 implies x;;=0 and w;/=0 implies x;=c:j
for otherwise j would be labeled from i. Altogether, we have xi;=ci;p:;
for (z, jyel].

When (i, j)eJ 1, wi;>>0 implies x;=c;; and w;;=0 implies x;=0,
for otherwise ¢ would be labeled from j. Therefore, we have xi;=—cypi;
for (1, j)eJ-1L

On the other hand we have

D xy=Lxy—XLxy, o and 3 X=X Gipig.
O, peB s JI ©, Hes G, HEB
Hence by the duality theorem (xi;) resp. (o: p;;) is an optimal solution of
RP|Z resp. RD|4.
3.1.3. Determination of 6,
#, described in §1 is determined as follows.

min .. Wil where o;—g;—p;;>0 if there is (i, j)eB
0i—=0;—0ij such that O'i—Uj—pij>0,
01—_—'
o if there is no (i, j)=B suth that
gi—0;—pi;>0.
That is,
{ min w;; where (i, j)eI- J and w;/>0,
01:
) if there is no (i, j)=I- J suth that w,;/>0,
min — %Y =minw,;, G, j)e]- I and w;>0
P Pij Pij
=
o if there is no (i, j)eJ -1

such that w;;>0,
fy=min (¢, 0s).
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3.1.4. In the course of the labeling process in 3.1.1, if it turns
out that maximal flow become oo, no optimal solution exists for P|#, D]
with 4’ larger than A If the maximal flow is finite, x; determined by
labeling process, together with u;+06:0 and w;+ ;0 with <6, are optimal
solutions of P|2+6 and D|i4-6.

3.2, Iri’s theory on network flow problem

Iri’s original theory for solving network-flow problem is nothing
but the method of double parametrization. The “voltage increasing step”
in his theory exactly corresponds to the problem RP*|x¢ and “the current
increasing step” to RP|4. In what follows we shall solve P*|u resp. D¥*|z
by the method given in § 1, where Iri’s “©-matrix method” will take an
essential part in solving restricted problems. It is pointed out that it is
utilized for the solution of RD*|y as well as RP*{pu.

3.2.1. O-matrix method for solving RP*|z..

For any pair of two nodes (i, j) we define a matrix (8), which will

be called @-matrix,

0, if i=j,

—dy, if (G, j)eB and x>0,
dpy, if (j)eB and x;u<ej

0i=

J

oo, otherwise.
k
v; is defined for any nodes i recursively as follows.
o oo, if ixn,
U=
0, if i=n,
k4t A k
v; = min (6] +v,).
j
Proposition 3,2 (Iri’s theorem c.f. [5])
k
(a) vik=1,2,-..) rapidly converges, i.e. we have for some N(<n—1)
N N4 o

[} 1
Vi>v> - >v=0; =-+-:=v; for any nodes ¢
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we put here ui=j)oi (notice that u,=0).

(b) u; and w;;=max (u;—u;—ds;, 0) is a feasible solution of RP*|pu.

(c) For any feassible solution (u;") of RP*|y satisfying u.’=0, u;=u;
holds for any nodes i, and u;w;;A(=u,) obtained by the above @-matrix
method is the optimal solution of RP*|pu.

3.2.2. The optimal solution of RD¥*|x is obtained as soon as the
solutior:o of RP*|y has been found by @-matrix method. By the definition

of u;=v;, uy=2 can be written in the following form, provided that u,% oo

u0=0§1+0ff+ .. .+0’:" +oees +0’:”“1+07

k-4 tm-z ' Tim—y
where
i —dixiz-, if (i, ix_,)EB,
k—1
dik_ik if (ik_l, lk)EB,

Now, we define &, for (i, j)eB, by
-1, if (¢, j)=@xtx-1) and (ixix_)EB
in the above expression of u,

1, if (¢, j)=(lk-1ix) and (fr_ ix)EB
in the above expression of u,,

Ny
!
<

0, otherwise,

E
the following proposition is straight forward from the definition of v; and
from the fact that 2=u,= Y di;&;

G, eB

Proposition 3. 3.
&;; defined above is the optimal solution of RD*|zu,
3.2.3. 6, is defined as follows

{ min (¢;;—x;;) where &;,=1,
6,=

oo if there is no (i, j)eB such that &;=1,
{Emin Xij if there is (i, )& B such that &,=—1,
o= &ij=—1
oo otherwise,
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00:min (013 02)a

if uyp=o00 in the G-matrix method, then there is no optimal solution of
P¥pf, D¥|¢ for ¢/ >p, if uy<<oo then (i, wiy), x;;4-0%;; is a optimal solution
of P¥|u+6, D*[p46 where 0<0<6,.

§4. CPM

CPM (the critical path method) is the method for solving the follow-
ing parametric linear programming

D|
yutti—t;20  for (i, j)EB, (D)
di;=yi;=Dij, (D2)
fn—to=4, (D3)
maximize U(R):(l_, j)z(‘,EB)c“y,;j. (D4)

Again B is the set of all branches of given network with z+1 nodes
and m brances. Here branches are called activities or jobs, #; are node-
times, i.e. starting times of jobs (i, j) for (i, j)eB, and y:;; are durations
for jobs (i, j). Di; resp. di; can bhe interpreted as normal resp. crash
duration for job (i, j), 2 means the total duration of this scheduling.
U= ZGBCij_yij where ¢;;=0 is called project utility function. The dual

G, J
problem of D|4, considered as the primal has the following form

P2

ﬁi’ Gijs h,,gO fOI‘ (19 J)EB, (P‘)
fi= ¥ Jfu for every nodes j(=0,n), (P2)

G, jyeB G, byeB
2 Ju= L fa=m (P3)

, =B (i, n)ERB
Jiitgij—hij=cij (P4)
minimize ]/,t+ Z D” gij— Z dijhij- (P5)

G, HEB @, HDeB

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



124 Reijiro Kurata

4.1. Kelley and Fulkerson’s method.

4.1.1. To find an optimal solution of D|4, for a sufficiently large
A We put py=Dy, ty=0, t;= max (pi;+t;) for j(%0), and M= max
(Din+t:). Then yist: and tu= ,5 give an optimal solution of D|i for 2>M

4.1.2. Solution of RP|4

RPM|2
Jin gipy hiyz0 (RPM®1)
G %leaﬂj:(j’ %Eéfjk for j(=0, n), (RP<H2)
Jist gii—hiy=cu;, (RPM3)
Jii=0, if pis+ti—1;<0, '
£;=0, it yi;<Dij (RP4)
hi;=0, if  yi;>dyy,
maximize “ "Z%B fi"=(o, ngB Jos (RPW5)
RDJA
a1+ 06;—6;20, if pi;+t:i—8;,=0, (RDI1)
0120, if  yi;=Duj, (RD2)
0:;=0, if yuy=di, (RD3)
— By 8a=1, (RD4)
minimize G, ngB €ij0ije (RD5)

RPM|4 has various equivalent forms, that is
RP®|1
fi;=0 (RP®])

7 [¢5]
W D= D fe for J(x0m), (RP®2)
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Jii=0, it Di4t:--t;<0,
Sii=ci, if Dijt+ti-—t;>0, (RP®3)
JiiZe, if di+ti—t;<0,
maximize @ g);gfin(:(u. %;EBﬁj). (RP®4)
RP®|2
Jiiz0, (RP®1)

=2 fi for (=0, n), RP®2)

(’j)ZéB‘ﬁ (k)eB
JiZe, i (G ))EQiNQs,
Su=ey i G, )HEQ—(QUQsUQW,

(RP®3)
Jizey, i G ))EQiNQe
Ji=0 if (G, j)€B—0,
maximize " n)ZEB ﬁ"(:(o, %;EB Jor)s (RP®W4)
Qi={G, j)| yis+ti—t;=0},
Q2= A, J)|yiy=Di;>di},
Qs=1{G, J)ldiy= p:;=Du},
Qa={G, ) yi;<Dis}.
RP® |2
f@, j, £)=0 for (i, j)eB, k=1, 2, (RP®])

n (fGpD+fG 2= L (fUk D+ 1)k 2)
G, DB (j, H)=B
for j(=0, n), (RP®2)

fGs Js R)=c, 4s k), k=1, 2, (RP®3)
(s j, B)=c(, j, k), if a(i, j, K)+t:—8,>0, k=1, 2,
JG g J J (RP<4)
f(i, j, k):O, lf a(i, j, k)+tl—t]<0, k.—_. 1, 2,
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maximize(i")):EBf(i, n, D+ fG, n, 2)), (RP®5)
here,
i, js D=¢ij,  a(i, j, )=Dij,
iy §, D=o00,  ai, j, 2)=di;
Proposition 4, 1.
RPMIL, RP®|2, RP®|32, RP®|2

are mutually equivalent problems.

Lemma.

In D|2, we assume without any loss of generality, that #=0, t,=2
and yi;;=min (Dyj, t;—t).

Using the lemma and putting

Jistgii—hii=cij giy=max (0, ¢ci;—fis),

hij=max (0, fij—cij)s Ji=fG, j, D+SG, 4, 2)
and
f(l9 .ja 1):1’1’111’1 (Cij, ﬂf)? f(la ja 2)=max (0, ﬁj—fij)-

It is easily seen that we can transform any one of four equivalents of
RP|1 into another. By the first relation of (RP®4), (3, j, 2)+#,—t,>0
implies f(i, j, 2)=c0. Actually, since a(i, j, 2)+t;—t;=d;;+t:—¢,<0, the
statement, with an always false premise, trivially holds. Kelley took up
the form of RP®|4, and Fulkerson studied the form of RP®|i. It is to
be noted that RP¢|1 has the same form of maximum flow problem of
RP|2 in 3.1. Therefore, we max solve any one of the four equivalents
by the labeling method in 3.1.

4.1.3. An optimal solution (gi;, d;) is constructed by the labeling
method in RP|2 analogously to the way given in 3.1.2.

Put
pij=04i+08;—0;

and
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= min ( y;;+ti—t;)/pis

04j<0
O:= min { y;;—di;)/ 045,
oij>0
3= min ( y;;—D;)/0:;
aij <0
fo= min (6y, 03, 7).
*.1.4. The optimal solution (fi;, gis, h:;) of RP|Z resp. (yi;—8¢7is
t;—0:0,) is an optimal solution of P|A—6, resp. D|2A—0,.
4,2, Iri’s method and CPM
The problems D*|p or P*|gz in CPM can be defined by

D*|
Jin gis hi=20, (D*1)
Siitgii—hij=cij, (D*2)
L fu= ¥ fx  for j(=0, n) (D*3)

G Ses’” (i, Bes
= in = fh D*4
0, jz):eB‘ﬁ” (i,n?EBf #s ( )
minimize Y (Dijgii—dishij). (D*5)
G, HeB
By putting

.ﬁJ:f(l’ j9 1)+](Z, ja 2)9
SG, j, =min(ei;, fij)

and

SG, j, 2)=max (0, fi;—cij)

according to Fulkerson we have the following problem which is equiva-
lent to D*|p. ’

D*|p
Oéf(za j’ l)éci.f" 1 (D*’l)
0= fG, J, 2), f

TS g D+ S s 2)
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= % (f(k D+f, & 2) for j(x0,n), (D¥2)
G, Hes

WSO 4y DO, 2
= B m D+ Sy m 2)=p (D*3)
minimize (_Z) B(—.Dijf(i, J D=di; [, j, 2)) (D*4)
i, pe

This problem has the same form to D*|z in §3 except that there exist
two branches from 7 to j and d;; of (D*4) in §3 are non-positive in this
case. But the entire theory of Iri can be applied to this case.

4.2.1. O-matrix method for solving RP*|u

RP*|p
yigt+ti—t;=0, (RP*1)
diy= yuy=Dy, (RP*2)
Yutti—t;=0, if fi;>0, 1
2i5=Dij it gi;>0, ; (RP*3)
yij=dsj if 7 >0, ,
minimize A=t,—I,. (RP*4)
RD*|p
£,=0, if fy=0 )
7220, if gi=0, (RD*1)
€150, if  Ay=0, J
Eij+ni—ei;=0, (RD*2)
G, jz):eB&jz(j, gestk, for (50, m, l (RD*3)
. JZ):eBEOj: ” "X)]EBEinz 1, }
minimize “ %EBDUY)U—-({, §EBdijeij (RD*4)
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0 if i=j

—Dj; if (j, DeB and f(j, i, D)<csi (i.e. f5:<c)

—dji if (j, )eB and f(j, i, D=c;i (ie. fii=en)
Di; if G, j)eB and fG, j, V>0, fG, j» 2=0 (.. 0< fi;<ciy)
di; if G, j)€B and fG, j, >0 (ie. fi>e)

oo otherwise.

0§=

k
t; is defined recursively for any nodes i, as follows.
0 IOO, if izn,
Ti=
i 0, if i=n,
- ; k
=min(f]+z;).
j
. k o o .
Since t; converges to r;, we put £/=7; for every nodes i, and put ¢;=¢"—¢,
and y;=min(Dy;, ¢;—¢;). Then (¢ pi) is an optimal solution of RP*|y,
(ie. minimizing A=t,) satisfying £,=0.

4,2.2. ro—to can be represented in the form ): +D;;+d;; provided
that #ao0. If +Dy; resp. —D;; appears under the summation we put
7i;=1 resp. y;;=—1. On the other hand, if' +d;; resp. —d;; appears, we
put ey=—1 resp. e;=1 and & =z;--7y Otherwise 7;=e;=0. Thus
(&ijs Mijs €;) is an optimal solution of RD*|x and if we put

0= mln(“ JiilEi)s
£i5<0

(72: min Gijs
ny=—1

1932 min hij ’
erj=—1

Og= min (01, 02, 03)9
(fes+ 085, hij+07:;5 hij+Ocis)
is an optimal solution of D¥*|u+-0, where 0<0=<0, Further, if ¢y obtained
obtained by @-matrix method is infinite, then there is no optimal solution

of D¥|y for p/>p.
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§5. MULTI-.PARAMETRIC PROGRAMMING
Now, we consider the following problem with P parameters.

Pia, -+, 4,

x=>0, if je§, (PD)
Zaijxjgbi, if ZET, 1
K
(or §aijxj—ui=bi, u; =0, if ieT,) (P2)
Zaijxj:-bi, if &7, }
7
minimize T(c;+Adt+ - -+ Apd P (P3)
J

Dub R ’11)

aupitwy=cr+ Lads, w20, if jes.
» } (D1)
Zaij_yi:(fj'{“l;lzld‘tj if je&ES,
220, if ieT, (D2)
maximize ¥ yib;. (D3)

Given one optimal solution of (y:;, w;) of D|4y, «-+, 2, we shall give a suf-
ficient condition which ensures a procedure to solve DIJi,+8y, «--, A,+6,.
For this purpose we introduce variables (o}), ---,(o?) and a p restricted
dual problem as follows,

RDl(l:la 2, '5p)

Zaijgéédj’ 1f wj=0’ JES$
} (RD')
Za”ai=d§, if _]EES,
(72203 if _yz=0, ZET’ (RDLQ)

maximize 3 atb,.
4
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The dual problem of RD* far each I=1,-.--,p is given by

RP!
x;=20 Jjes, (RP1)
Dayxi—ui=bi, w20, if ieT, L
J (RP2)
Daixi= b, if 1T, f
j
L xw;=0,
JES (RP3)
iéZ = 0,
minimize Ydjx;. (RP4)
J

Generally speaking, the optimal solutions of RP* depend on [, but in some
particular cases, single solution (x;) happens to be the optimal for RP* [=
I, 2, ..., p simultaneously. As a condition which plays an essential role
here, and is somewhat stronger than the assumption made throughout
this paper, we assume the following condition C.

[Condition C]; There exists a simultaneous optimal solution (x;) of
RP, 1=1,3, ..., p. The following proposition clearly hold.

Proposition 5. 1.

Suppose thas ( ;) is an optimal solution of D|4;,..., 4, and ¢! are
optimal solution of RD%s. If the dondition C holds for RP! and if (x;)
is the simultaneous optimal solution of all RP!, then (x;) resp. (yi—|—é_‘,laﬁﬁl)
is the optimal solution of P|A,+6,,...,2,+0, resp. DI +0,,...,4,+0),
Where 6,, ***, 0, satisfy the following inequalities

™M=

0, Bi=—w;, if w;>0 and jES, B.1)

"
—

O 0i=— i if >0 and :ieT, 5.2)

i

-~

where

Bi=di— T ay v;.
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§6. TRANSPORTATION NETWORK FLOW PROBLEM
W.iTH MANY SOURCES

Let N be a network with m branches and n+p nodes which contains
p sources 0;,...,0,, and one sink n. Let B be the set of all branches of
N. We consider the following transportation netword flow problem with
p sources as a multi-parametric problem. As previously, we also formulate
the other problems related to it.

D*lluls cees My

Yox= Y Xk for every nodes j (=0, n), (D*])
G, HEB G, HeB

0=wi;=cij (D*2)
L X, =M, (I=L2,....p
(o, PEB J (D*3)
) py Xin=pM+...+tp,
(i, DeB
minimize > dijxij : (D*4'>
G, DEB
P¥lps oo ttn
wi=dy+uj—u+w;; =0 for (i, j)eB, (P*1)
w;;=0 for (i, j)eB, (P*2)
maximize f o, —un)— Y ciwyj. (P*3)
=1 G, NDeB
RP*
w’”=dU+uJ——ul+w”20 for (l, j)EB, (RP*I)
w;;=0 for (i, j)eB, RP*2)
w’i,-=0, lf xij>0, 1
. (RP*3)
wij:O, if x,;j<c7-,j, J
maximize g, —Uy. (RP*4)
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RD*

&,=0 if x;=0, (1, j)EB, 1
(RD*1)

£,=<0  if xy=ciy (4, j)EB, J

o I,= T_fu for cach nodes j(x0, m), (RD*2)

- E(l’u'z 4 t

O, j)eB (RD*LS)
Z Eli D= 15

G, n)EB) G m I

minimize Y Ehdi. (RD*4)

@, j)eB

Fortunately, the condition C is satisfied by RP*. Because, particular
feasible solutions u; obtained by Iri’s &-matrix method happen to be the
maximal one among all feasible solution of RP* for all [ (cf. Proposition
3.2). Therefore, the optimal solution of RD* can be constructed similarly
as in 3.2.2. We express uo, as uo, = . +di;, where (i, j) ranges over some
subset of B. For the (i, j)eB for which +d;; appears under the summa-
tion we put &;=1. For those for which —d;; appears, we put &,=~—1.
Otherwise we put &,=0. Then, it is easy tosee that (&};) is an optimal
feasible solution of RD*. #,,-..,0, are determined by

»
;lféjﬁlg—xij for .Xij>0, (6. 1)
P

Lzl Séj(hgcij—xij for cij—x,-j>0 (6 2)

It seems to be natural to impose the following conditions on #’s adding
to (6.1) and (6.2)

0,20, -+-,0, 20 (6.3)
and
maximize 0y+0s+-«-+0,. 6.4)
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)

Having got an optimal solution (x4 X £/6:) of D*|py 40y, <« -, pp+0,, we
=1

now take it as a starting point from which we carry on the procedure of

solving RP* by the &-matrix method.

Remark 1. We may consider another multi-parametric problem

Didy, -y 2p with (Ag, + -+, Ap)=(u0,—Un, ++ +, Up—u,) as parameters. In this

case RP; may be interpreted as that the maxima of all input flows

(ptay = oy prp)=( % Xoyjy-+--, Y. ;) are looked for. But here C is not
i O DeB T 0pHeB L i

satisfied by RP!, that is, iIn general there doesn’t exist the simultaneous

maximal flows.
Remark 2. CPM problems with many starting nodes can also be

solved by this method.

§7. A NUMERICAL EXAMPLE OF CAPACITATED
HITCHCOCKPROBLEM TREATED AS A
MULTI-PARAMETRIC PROGRAMMING

Hitchcook problem is

where
Yay= by
13 J
0=xi;=ci)
minimize Y.d:; %

We regard above capacitated Hitchcock problem as the following multi-

parametric programming with parameters g, s, -+, ttn

D*|P13 s U
Z_xijZ,Ui,
J
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);xijébj,

0=xi=cujy

minimize Y.d;; x;j.
P*pty, -, tm

0,20,

wing,

dijtoj—ui+wi; =0,

maximize Zyiui— }: ijj— Zcijwij,
K

if we add p=gy+--- +ptm, then we have one-parameter programming D*|pu.
7.1. Aprocedure for solving of P*|gy, -+, um or D¥|psy, o5t is as
follows.

a.
we have the optimal solution of D*{o, .-+, 0, P¥|o, ---,0.

b. To solve RP*|yy, -+, pm and RD*

Fiast of all we put x;=0 for all 7, j, u;=0v;=0 and w;;=0, so

RP*
v;2=0,
wi;=0,
dij+v;—u+wi;z20,
dij+uvj—ui+w;;==0, if x;>0,
w;;=0, if x;<eis,
maximize u;, (=1, 2,.--,m.
RD*®
) J(O if il
Al I i=1,
&, =0, it x;=0,
£,=0, it xy=cip
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Zgléos if Zx‘”=b1,
Y 3
minimize 3 &, d;;.
i, j

¢ Simultaneous optimal solutions of RP*! for /=1,

mined as follows.
é)— }/ 0, if 5,>0, where _bj—_—bj—izxij)
! 1 oo, if Zj=0,

-+, m, is deter-

2%+1 i 2%
a; = min (dij+‘8j),
JCrig<eys)d
%42 % 2kt
8; = min {8, ‘mln (a; —dip)},
i(x45>0)
o0
[ U= Qi
1 =3
v;=p;.
d. Optimal solution of RD** is determined as follows. When we
represent % in the form Y +di, if +d;; resp. —di; appears in ¥ +d;,

then we put £,=1 resp. £&,=—1, otherwise £.;=0.
e. Determination of 7;’s
We determine ¢, under the conditions

E Z E’L]—b]’ lf 57>03

Z (91 SU— x[j, lf xij>0,
D0 e —xy i X<l
L

and 6,20, making }.¢; as large possible.
I
f. To change flows
e change to w46,
xi; change to xi;+ ), E,{j(}[
7
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3 xid;; change to ¥ xidi+ ZL 0, % &hdij.
i J

Remark 1. As easily seen, } &,,=0 or 1 for j such that 5;>0,
}[: o, %} gl,<b; are very simple forrri, but the author is not aware of any
simple algorithm other than simplex method to determine ..

Remark 2. The Hdtchcock problem can be treated as a one-para-
meter problem P*[z and D*|p dealt with in 3.2, by adding another source
node ¢ and m branches (ol), - -+, (om) related to it. An optimal solution of
RP*|p is given by u; and »; found in C together with uo— mm u; where
ai=a;— qu While that of RD¥|g, ff) is equal to E w1th 1 tor which
Up=1s. Further, an optimal solution of D*|u+6 is given by x;+0 E“’) 0,
is characterized as the maximal @ satisfying 025 ’<b; for j such that
b;>0, and 0<x”+¢9§(°)<c”

Values of d;j, ¢;; in capacitated Hitchcock Problem are given as

follows.

Table of dij, ai,

\b’ 3 5 4 6 3
LN !
‘ 9 10 20 5 9 10 !

4 3 10 8 30 6 |

8 1 20 7 10 4

Table of ¢;;

2 3 5 5 1
1 8 2 1 1
3 1 2 2 3

Step 0 Initial solution of x; and g
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[N v )

D | Y 3 5 4 6 3
| & .

o] 9 o 0o 0o 0o 0
] 0 : 4 0 0 0 0 0
ol 8 o o0 0 0 0

Step 1.

The case solved as a multi-parametric problem

(@) wi=X *dij uy=dys, Uy =dsy, uz=dy
(b) conditions for s

m

L O gb<p; for b5:>0

1=1

24033, f=<4

ij =

Y0, EV<—x; for x,;>0
13

2015” __c,,-—x” fOI‘ cij—xij>0

0,<9 0,<4 0;<8
(c) determination of 7, and next g
0,=4, O;=1, 0;=2
m=4 =1, =2
(d) change of x;
—»xL,+E 0. &5

x3=4, x21=1, Xy =2
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t b \ 0 5 0 6 3 ;
: a4 |
45 0 0 4 0 0o
1| 3 1 0 0 0 0 |
‘ |
2 6 2 0 0 0 0
Sept 2

(@) wm=du, us=dy, uz=dy
(b) 0:<6,  B+0,<3  0,<5, o<1,  6,<3,
05,  0,=3, 6;<6
() 6:=5, 0,=0, 03=3
(d) =5,  x;=0, x5=3, =9, =1, pm=>

o b 0 5 0 1 0 ’
S T o |
| 9 0 [ 0 0 4 5 0 ‘
1 3 1 0 0 0 3 ;
5 3 2 0 0 0 3 |
Step 3
(@) w=dis+ds+doa—ds —dss,
wy=dss,
us=ds +doy—ds;
1 &y
0 0 0 0 1
! -1 1 0 0 0
1 0 0 0 -1 ;
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@) &y
| 0 0 0 0 0
} 0 1 0 0 0
| 0 0 0 0 0 |
] R
@ &y |
0 0 0 0 0 |
-l 1 0 0 0 |
‘ 1 0 0 0 0 |
|
(b) O, +05+0,<5, —~0,—0=—1, —6,=-3

O], O40,<1, 0,40,+0,<8, 6,<0, 0,<3, 6,<3
© 6,=0, 0,=3, 0y=1
m=94+0=9, =1+3=4, 13=5+1=6
(d) x5;=0+0=0, am=2+1=3, %=0+3+1=4
a=1—1=0, x3;=3-0=3.

w | 0 1 0 1 0
. djﬂ\ B
9 | o 0 0 4 5 0
40 0 4 0 0 0
56 i 2 3 0 0 0 3
Sept 4

(@) wy=du, uz=dss, uz=dy,
(b) 6.1, 6,1, 6,0, 0,<4, 0,<2, 6,<0, 0,<0, 0,<2
©) 0,=0, 6,=0, O5=1,

m=9, =4 =7
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(d) xu=0+1=1

| N _—
| N o 1 0 o0
Lfili‘t ﬁi\\
|
00 o 0 4 5
|
40 o 4 0 0
7 35 0 0 1
; |

Step 5

@) w=dy us=dss Uy=ds

(b) 0+6:+0,=<1

01£39 0234, I)SSL Oléoy 02§0, BS_S_l
() 6,=0, 6:=0, 05=1, m=9, p=4 =8

(d) X32:0+1=1

|
m bs 0 0 0 0
Y
|
9] o0 0 0 4 5
40 0 4 0 0
i
8| o0 3 1 0 1

Step 1
The case solved as a single parametric problem

@) uy=Yx +di; Uy=us=dy,

(b) #y=maximum & such that

0;55951&7 for ;>0 and #&P=—x; for &P<0

and 0&9P<cij—-x; for &P>0
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(©)  xi—x;4+ 0P, o pt-0s X1 =3, r=3

\f”' | 0 5 4 6 3
a; \\\ - -
9 ; 0 0 0 0 0
4 0 0 0 0 0
|
5 1 3 0 0 0 0 !
Step 2

(a) up=us=dss
(b) #,=3

(¢) p=3+3=6, x;=0+3=3

b
N 0 5 4 6 0
G
9 0 0 0 0 0
4 0 0 0 0 0
2 3 0 0 0 3
Step 3
(a) wy=u1=dis
(b) 0024
(c) p=6+4=10, x3=044=4
N ]
~ b 0 5 0 6 0 |
a; > ]
5 o o 4 o o |
4 0 0 0 0 0 |
2 3 0 0 0 3 ‘
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Step 4
(@) uy=uy=d, (b) =5
(¢) p=1045=15, %4=0+5=5

| ) b 0 5 0 1 0
ai o

0 o 0o 4 5 0

4 o o0 o 0o 0

2 3 o0 0 0 3

Step 5
(@) up=ug=dy, (b) fy=1
(C> #=15+1=16, x34=0+l=1

N o 5 o o o
a;

0 o o 4 5 o0 |
4 o o 0o 0o 0

- 3 0 o0 1 3

Step 6
(@) uo=us=ds, (b)y 0,=4
() p=16+4=20, X =0+4=4

”f 0 1 0 0 0
i S —— —————
0 0 0 4 5 0
0 0 4 0 0 0
I 3 0 0 1 3
.
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Step 7

(1]
[2]

[3]

[5]

(a) uy=us=dy
(c) p=20+1=21, x2=0+1=1

0 o o0 4 5 0
0 0 4 0 0 0
0 3 1 0 1 3
I
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