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1. INTRODUCTION

We consider single Poisson queuing system which has the inter-
arrival and holding time distributed by exponential distributions with
means 1/4 and 1/g¢ respectively. In this paper we shall discuss the
transient behavior of this queuing system and we shall get the results on
how fast the state probabilities and the mean value of the units in the
system tend to their equilibrium limits when these exist. We shall easily
see how small the absolute values of the differences between above men-
tioned quantities and their limits are for time ¢ large enough whatever
the initial state of the system may be. Moreover, we shall discuss how
fast the queue length approaches to an asymptotic linear function in
non-equilibrium case.

To get these results we introduce some notations; £, represents
the state of the system that there are n units waiting in the queue and
being served at the counter, P,(¢) (=0, 1, ) are the state probabilities
that the system is in the state E, at time ¢, (p,) is the equilibrium
distribution of the states E, when it exists and let p be the relative
intensity which is equal to the ratio 41:p.

It is well-known fact that for any initial state of the system the state
probabilities P,(f) (=0, 1,..--- ) satisfy the difference differential equations

AP0 — 3Pyt ePy(0),
(D
P8 — it PO+ APu O+ Bt (12D)
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at any time £ To make our calculations slightly simple we put p=1

into these equations. Then we obtain the equations

ﬁdot@ =—pP(#)+ Py(t),
)
PO = — (14 PO+ pPacs()+ Praalt) (1),

It is well-kknown* that if Pi0)=1 the solutions of (1’) are given by

the formula
@ Pn(t)=e—<1+ﬂ>t{(v;)n—iln»i(zv';t)+(«/;)n—f—11n+,;+l(2«/;t)
= B, (Vo ey o)
and in the case when n=0 we have
@) Piy=e ot )@Y O+ (V) (@Y D
+1=p) 2 (Ve @V b},
where

In(2) =(2)™ ge?!%ﬁfn} i

which we call modified Bessel function. The formula (2) is very important,
from which we shall start to discuss.
If we want to have the solutions of (1) we can easily get them by

only changing ¢ on the right side of (2) into put.

2. PROPERTIES OF MODIFIED BESSEL FUNCTION

To continue the discussion we must use some properties of modified
Bessel function :
3 LO)=1, L0)=0 (n=l, 2,...),

*> See, for example, the recent publication [1], pp. 88—96.
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4 Lx)=I.(x),
(5)  x(Luoi(%)— Log () =2n1,(x),

for positive x,
7 Lx~ £ (x—+o0),
D) L~ S5 ot

x 1

8) eZ(’y +y)= § (%)
which is one of the formulas of Neumann’s expansion of elentary func-

tions in terms of Bessel function.

3. BEHAVIORS OF THE STATE PROBABILITIES P,.(t)

We can conclude from (2) that if p=1, then P.($)—0 (f—+ o),
because, using the properties of modified Bessel function (6) and (7), we
can easily see
82«/‘271 e—(\/;—l)2

DL (D s ) ) m gLt - -
@Vo ) Vor@yvpt) T V2124 b)

—(0

(t->+ o0
for any n, and

np—(L+pdt

et (V) (2 p < Ve L@V p o0 o),

1—— =
Vo
for any n and p(>1).

If p<1, then we can not immediately conclude even that the summation
on the right side of (2) or (2') converges.

However, from (2) we can easily prove that

O Pu()>0

for positive p and ¢, and
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10) % Puny=1+
n=0
Using the property of Bessel function (8), we get

Po(t) =40 (v Y Lo 2 p DF+(V o ' asisn2V 0 D)

—(=pprfecror— 5 (Vv bl

Then we have the formula

A1) PO =(=p)prre o (V) hi@Vp 1)

where the first term on the right side represents the equilibrium limit
pn of Pu(t) when p is less than unity.

Indeed, if p<l, considering the properties of Bessel function (6)
and (7), we can easily sece that the summation on the right side of (11)
converges and that other terms than the first on the right side of (11)
tend to 0 when ¢—+o. Then we find immediately that

(12)  Put)—pu=(1—p)o"  (t—>+co).

Moreover, after some calculations, we shall have the formula (13)
mentioned below. Let Py and —N; be the sum of the positive or nega-
tive terms in the brace on the right side of (11) respectively, then, using

(6), we get
Pi=(vp ) hhci2V p )+ (W p ) si04(2V g )
<A+ p XV p 20 )

and

N1=(1—(’)P"k=_):i_ Vo2V )

*> Sec also [1], pp. 93—95.
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<(A—p)p"

yn—-i-1
Ve vy

vp
=+ VPV L2V p b)-
Then we have the formulas
(13) 1 Put)—=pn | <M+ Vp )V p Il [(2v/ 5 1)-0 (1> +o00)
and
| Pu®)=pu 12 pu<(l— /5 ) (W p) it U2 )
-0 (t—+ o).

Finally we can change the formula (11) into other expression. The
expression in the brace on the right side of (11) can be changed as

follows ¢

(Vo P heil@V 5 O+ (V5 a1V p 1)
=(Vp ) i p )= (Vo )" wi(24/p 8)

X VeV D= B (Y p ¥y )

k=—n—

o
=(Vo V" i@V g ) =(Vp ) Eaai@ 1)

—r 2 WirEevn-1.eve o)

k=-n--1
=(Vp )" etV p )= (V5 Y s 2V 5 1)

5 AV HE=DLL@V D
k=—n—i+1 2‘/;"] .

7
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Then, using the property (5), we obtain the following results;

19 Puy=(—p)rteto L 5 k(v M@V

k=—n—1

+(Vp P b )— L2y 51} |
and in the case n=0

e A+pdt

14)  Poty=1—p+°" """ T K/p M@V D).
In the case when i=0 we have very simple formula

15) Py=(=ppr+ " T K5 MRV O

4. BEHAVIOR OF THE MEAN VALUE L(#) OF THE UNITS
IN THE SYSTEM WHEN p IS LESS THAN UNITY

81

In this section we shall obtain the formulas on the mean value

L) of the units in the system at finite £ and observe the behaviors of

L({t) at large ¢.

We can calculate L(t) in the following way. Using the formula

(2) of P.(t), we get

Lo)= EnPudy=—1+ Lo+ DPu)
=—1eaor] £+ DV 525 )
+ Bk D P i@V 1)

+(0— p)"zo(n+l)p'k=:"§i+2('\/; V-2 5 ) } .
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The first term in the brace on the right side is equal to
E MY e, @p 0
The second term can be expressed as follows;

k:% K ) ()

=1, 5 KV IV p D= T 3 (Vo MRV D,
When p#1, by interchanging the summation, the last term becomes

=0, 8 "5 o Do/ p 12 )

=1

D L O SRV
:g: ('\/P) Ilc(2‘\/p t)— a= 1) , E (’\/P )ka(2\/;t)

m 2 VP 2V p O+ ’Jﬂ Ez(‘\/;)klk(Q‘\/‘;t)'
Then we get

Loy=—1+e o TRV eeia@ p 1)

1 3 — — 1 & — Nk ()
g, VRV B e

-1= p) . 5 (Vo r@vp D).
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The sum of the last three terms in the brace becomes
1 - N~k [ (D & v
LB, Wl Ve - 5 (VY b).
Then we obtain the equality

(16) L(t):-—1+e—(H-'")LIikilk(\/;)kdi_l]k—i—l(Q'\/E £)

O ~\—k a1 had g .

+ l—p{kgu(“/”) 12vp 1) "pT'k=;+1(*/p)1k(2x/p t)”.

Using the property (8) of modified Bessel function, we can see
k_Zi:ﬂ(x/?)‘ka@«/‘E £) =eclet _ki (VL2 5 t).

Therefore we can change the form of L{¢) into the following:

Li=-1 +e—(“'””sz('\/?)k'i_llk_i_l@ \/; )

1 & (- - > — k2 -
+1—-T7{e(“m_k§—i(vp)klk(zv!) t)_k=Zi+1(\/ p VIV t>}:l )
Then we can finally reach the result

17 L(t)=lﬁ—p+e—“*ﬂ"[k);flkw;,k—i—llk_i_l(wpt)

1 (& i — & i _
and in the case when i=0 we get

A7) L= +e | E RV 9 @ 0
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_ 1 5 V(2T }
,l_pkglsn(vp) T2/ t)},
where E €nln=0y+ E 2an for any sequence (an).
n=0 n=1

The first term on the right side of (17) or (17') is equal to the
equilibrium limit L=p/(1—p) of L{) when 0<p<1.

Depating from (17) we can reach the formula (18) mentioned
below. Let P, and —N; be the sum of the positive or negative terms in
the brace of (17) respectively, then

Py= Slk(«/’;, Y AWl

1 1 -
<-(7§y T=Vp ¢ I2vp 1),

1 [, —-s g B i -
No=1{ B OV 0 ¥ 2 D)+ BV 5P eV D)

| _
<i= p{(*/p)(l“' )+(~/,o)(1 v )}10(2*/00

1 —
=V (1= v Ve b
Therefore, when the intensity is less than unity, we have
(18) |L(t)—L|<(\/ )z(l__ )2 ¢ (1+’)¢Io(2‘\/p £)—0 (t—+0)
and

- 1+
ag) HO-LI L'<p<«/p)<1—”«/ Y E P2V D0t oo).
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5. MEAN VALUE L(t) OF THE UNITS IN THE SYSTEM
WHEN p IS NOT LESS THAN UNITY

In this section we shall deal with the behavior of L{¢) when p=1.
Of course, we know that in this case L{)—+oco (—+o0). To what
function and how fast the function L(!) becomes asymptotically equal
when t—+o00?

First, we assume p>1. We depart from the equation (16)

LiH=—-1 —I—e'(“‘”"l:glk (‘\/;)k_';-llk—i—l(2’\/p t)

— L=+

_ 1 & -k _ 1 & % —
(B v ereve o= o 5 (Ve M2V t>}],
which is valid for the case when px1. Under the consideration of the

properties (5) and (8) of modified Bessel function, we can easily see
that

kzk(‘\/‘ﬁ )k—i'llk_i-l(Q‘\/‘B t) =k=mz;i k+i+ 1)(*/76)"-&(2/\/{} 0
=k=§_ HY L@V t>+(i+l)kii( TIEEV O
=t 5 (Vo {ha@vy =L@V ]

G+ 1){8(“1’”— > (Vo) VD) }

k=

and

k=§ll(\/‘; el (2\/‘;; t):klg;(Vp g 2 (2«/5 t)

— 1+ mt 7_5(Vb‘)—k1k 2vp )
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Then we have an equality

Lit)=:i+ .+te‘(“l'>’k§4(\/ p )yt {11%1(2\/‘; £

1
p(e—1)

~ L@V )| =" i1+ L) 5 (v o

The first summation on the right side of this equation can be changed

as follows:

2 o {1e@vo D= @V 1)

=0 % (Vo rk@vp )= T (Vp)lh@vp D
—(V ) L@V OV §) @Y 1)
=D E (VP Ve )

=(V ) L@V DV ) LY )
o= Dfecto— T (Vo) RV o).

Then we finally find the formula

(19 L=i+ +(p—1)t

b
op—1)

+84(1+p)l[{(,\/; )—1+11‘L+1(2,\/p7 t)+ ('\/’E )—l+211,(2‘\/p_ t)
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—(p—1) lgiw;)-klk(w; lc)}:
{<z+1+ D5 (Vo RV )
+"E‘<?}i 1y 2 (VOIEYp t)}} :

Let P;, —N; be the sum of positive or negative terms in the brace

[ 1 on the right side of this equation, then

Pe< (ljigf’l @ 1) (r>0)
1
Ne<lo—1)-L) i 0
1—‘\/p
1
1 (_‘L?’__)i: 1 W?)
vp v

{1+«/ o iV p=Dtv g

I o Ty )}10(2v,;t).

Then we finally reach the result

(20) @L(t)—{i+pi(%17+(p—1)t”
B v (oeb o)
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— 1)
J2V )y AV iy W

T Wy V22,1 TWt VaN,
{t—+ o).

Next, we consider the case when p=1. In this case we obtain the
state probabilities P,(¢) from (2);

Pn(t)=e‘2‘{ln_i(2t)+ 1““1(2;)] )

Then we have an equality

L(t):nzjlnPn(t)
= #{ T nlus@)t 3 nharens@0)
Z{kiz kD@ §+2(k——i— 1)1,42;)}
=¥ {ikziﬂlk@t)— G+, §+2Ik(2t)

+ % KL+ 3 ka(Qt)].
k=—i+1 k=i+2
Using the properties (8) and (5) of modified Bessel function, we get

i f LE2H—(G+) f; L(2n
k=—1i+1 k=i+2

=i E Ik(Ql)— Z Ik(Qt)

k=—i+

=i z )= ety L)+ Zlk(Qt)
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and

5 RLEO+ 3 kL2
k=-1i+1 k=i+2
=t[ 5 i@ —hn@)+ % [1,,_1(2;)_1,,“@)}}
k=—z1+1 k=i+2

i+2
=t 3, Ik(2t).
k=i-1

Then we have a formula

@) Li=— -{-te‘z‘k:iilk(Qt)

71ﬁ
2
L4l 1 , 41
teuli 3L+ L)+ LK),
k=—i+1 2 k=1
from which we can obtain an inequality

w1
22) 0<L(t)—[te 3 L@ 72_}

<<2i2+2i+-g 7)3-2510(20

~(i“"+i+~2—>7%—>0 t—+o0),
where
i 2 ¢
te=2t )f'_:z-, Ik(Zt)~l;t (t——+ )
k=i-1 ‘\/ g

In the case where i=0 we have an inequality
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22y o< Lit)— [ te 2 {IO(Qt) +211(2t)+12(25)} _é}

<—g—e‘2‘lo(2t)—>0 (= o0).

6. FURTHER RESULTS
Departing from (2) we can calculate the probability that at least

m units are in the system at time ¢

g Pn(t)=e"(l+p)t[n§m(,\/;)n-iln_i(z,\/ﬁ t)
+ T (V) i@V )

+d -—p)ngmp"kzﬁﬁz(-\/?)"‘lk@ Vo t)] ’

By interchanging the summation the last term in the brace on the right

side becomes

e

m+i

(-p) %

= 5 pm(l=p ) ) 2 D)

k=m+i+2

=Pmk=1§i+2('\/;)_"lk(2\/; t>_k=7§i+2(«/;)k-2i_2lk(2‘\/ﬁ f)

k=m+i+

VPRV = (V0 easn@Vp )

Then we have an equality
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@) % P,,(z)=e—<1wk=§_ 0BV O+ f (V@ 0,
From the property (8) of modified Bessel function we have

L (VEM@Vp D=ctin B (v 02V D

k=m+i+

Substituting this into (23), we can reach the result

@) T P

=‘om+g—(Hm{k:g_i(\/;)klkev‘; t)_k=§_i(v;)k1k_2m(2v,7 t)] s

where the first term of the right side equals to the probability ., that
at least m units are in the system in equilibrium. From (24) we can
casily obtain the following inequalities ;

(‘\/p)

@) | £ PO —b | <L o205 00 (1t o0)

and

(«/ )’“

@) | EPw-bn| < LIV 0 (o)
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