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I. INTRODUCTION 

Continued from the previous paper [1] we consider the following system. 

There are two counters in series. Customers arrive at the first 

counter at the instants '0, 1'1, '2, ... , 'n, . .. The coustomers will be 

served in order of their arrival. 

The output of the first counter comprises the input into the second, 

and no queue is allowed to form before the second counter, whereas an 

infinite queue is allowed before the first. This results in blocking of service 

at the first counter even though the service of a customer has just been 

completed and there is a queue. The first counter opens for service when 

the customer can go to service in the second counter when the latter 

becomes free. 

Let R~l) denote the service time in the first counter of the n-th 

customer and let R~2) be the service time of the n-th customer in the 

second counter. Let gn='n+l-'n (n;;;;O). 

We assume that each of the three sequences {R~l), n;;;;O}, {gn, n;;;;O}, 

{R~2),n;;;;0} is a sequence of independent and identieally distributed random 

variables and that the three sequences are mutually independent. Further­

more we assume that the R~l)'S, g~s and R~2)'S are non-negative random 

variables and that ER(2)<=, Eg<=, ER(2)<=. 

Let Wn be the time of completion of service of the (n-1)-th custo­

mer at the first counter minus the time t:n of arrivel of the n-th custo­

mer at the first counter. Then max (0, Wn) is the waiting time for the 
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n-th customer. 

In Theorem 1 and 2 below, we shall find criteria for the existence of a 

limiting probability distribution of {Wn}. The criteria include the ones 

obtained in [1]. 

The author wishes to express his sincere thanks to Dr. H. Morimura 

for his encouragement. 

11. ERGODICITY 

Let aVb denote the maximum of a and b, and let a/\b the minimum 

of a and b. Then we have 

(Wn~O) , 

(Wn<O) . 

Therefore we may immediately write the following equation: 

(n~l) . (1) 

In addition, let Pn=R~I)-Yn and Qn:::R~221-Yn for all n; then equation 

(1) may be written 

Wn+I=[R~I)-Yn+ Wn-O/\ W n ]V[R;,221-Yn+ W n] 

=[R~,I)-Yn+OV W n] V [R~221---Yn + Wn] 

=[R~I)-gn]V[R~ILgn+ Wn]V[R~221-gn+ W n] 

=Pn V[Pn VQn+ Wn] . (2) 
Let Zn=(Wn, R~221)' The sequence {Zn} is a Markov process with 

stationary transition probabilities. 

Let t, x, y and p be real numbers. 

Lemma 1. P(Wn~tl Wl=x, Ra2)=p)~P(Wn~tl Wl=Y, Ra2)=p) 

~P(Wn<tl Wl=Y, R~2)=O) 

for all n, p, x and Y where x~y. 

Proof: Fix a point Q) in the sample space of Ri l
), .... , R~ll, Yt, 

.... ,gn, Ri21, .... , R;;2l and let 
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Then 

Thus 

From this 

Therefore 

W 1(W, x, p)=X, 

Qk=PkVQk+ Wk 

Takeji Suzuki 

W 1(W, y, p)=y, 

for 1~k~n-1. 

[Jl(W, x, p)=P1(W)VQl(W, pH W 1(w, x) 

=P1(w) V Ql(W, pHX~Pl(W)VQl(W, pHy 

=Ql(W, y, P)~Ql(W, y, 0). 

W 2(W, x, p)=P1(W)V Ql(W, x, P)~Pl(W)VJJl(W, y, p) 

= W2(w, y, p)~ W2(w, y, 0). 

!J2(W, x, p)=P2(W)VQ2(W, p)+ W 2(w, x, p) 

~P2(W)VQ2(wH W 2(w, y, p)=!.J2(w, y, p) 

~[J2(W, y, 0). 

W 3(w, x, p)~ W 3(w, y, p)~ W 3(w, y, 0). 

In the same way we have 

Wk(W, x, p)~ Wk(w, y, p)~ Wk(W, y, 0) for all l~k~n. 

This concludes the proof of Lemma 1. 

Lemma 2. P(Wn:(;tl W 1 =0, Ra2)=0)->Fo(t) as n->oo where Fo may 

not be a probability distribution function. 

Proof: Let H(x, P)=P(W2~X, R?)~pl W 1 =0, Ra2) =0). 

Then 

P(W"+l<:;;;tl W 1=0, R~2)=0) 

=~P(Wn+l:(;tIW2=X, Rf2)=p, W 1=0, R~2)=0)dH(x, p). (3) 

Since {Zn} is a stationary Markov process and because of Lemma 1, for 

x~O 

P(W"+I<:;;;tl W 2=x, RP)=p, WI=O, Ra2
) =0) 

=P(W,,:(;tl W 1 =x, R~2)=p) 

~P(Wn<:;;;tl W=O, Ra2)=0) (4 ) 
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and also for x < 0 

P(Wn:(tl W1=x, Ra2)==p) 

=P(W:(tl W1=O, Ra")=(p+x)VO) 

;£P(Wn:(tl W1=O, Ra2)=0). (5 ) 

Then, using (4) and (5) in (3) we have 

P(Wn+1:(tl W1=0, Ra2
) =0) 

;£ ~P(Wn:(tl W1=0, Ra2
) = O)dH(x, p) 

=P(Wn:(tl W1=,0, Ra2
) =0) . 

Thus P(W,,:(tl W1=0, R~2)=0) is Cl monotone sequence and therefore 

converges to a limit which we caU }~)(t). 

Theorem 1. If E max (RCll, R(2»<Eg, then Fo defined in Lemma 

2 is a probability distribution. 

Proof: Because of Lemma 2 we need only show that, under the 

assumptions in the theorem, {Wn } is bounded in probability, that is for all n 

where c(t)-->O as t-->oo • 

Iterating (2) we have 

Wn+l=P"V[PnvQn+ Wn] 

=PnV[Pn vQ,,+Pn-1 V(Pn- .VQ"-l + Wn-1)] 

=Pn V[P"vQ"+P,,-dV[P,, VQn+Pn - 1 VQn-l + Wn-d 

=Pn V[Pn vQ,,+Pn-dV[Pn VQn+Pn- 1 VQn-l +Pn-2] 

v [Pn-2VQn-2+ Wn-2)] 

=Pn V[P" vQ,,+Pn-dV[Pn VQn+Pn-1 VQ"-l +P,,-2VQn-2] 

(6 ) 

V[P"vQ,,+P"-1 VQn-l +Pn-2VQn-2+ Wn_2]=etc. (7) 

The iteration is continued until the l.:l.st term is reached and we note the 

conditions W 1 =0, R~2)=0, namely, 
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V .... V[PnVQn+Pn-1VQn-l+ .... +P2VQ2+Pd. (8) 

Replacing Pi in each term of the right hand by Pi V Qi, we have 

Wn+l ~ max { i:; [max (R~l\ R~~l)-gd}. 
lC;kC;n i=k 

k 

Define ~i=max (RP), R~~l)-gi and let U,,= L; ~i. Thus Uk is the 
i=l 

k-th partial sum of independent and identically distributed random variables. 

Then max (Un-Uk-l) has the same distribution as max Uk. Using the 
lC;kC;n lC;kC;n 

law of large numbers, under the assumption E max (RC1l, R(2) < Eg, max 
l~k~n 

U" converges to a finite random variable with probability one which im· 

plies that {Wn} is bounded in probability. See Lindley [2] and Sacks [3]. 

The following theorem shows the necessity of the condition of 

Theorem 1. 

Theorem 2. IfEmax (RC1l, R(2);:;;'Eg, then Fo(t)_O, where the case 

max (R<D, R(2)_g=O identically is excluded. 

Proof: Let W n * be the departure time of the n-th customer at the 

first counter minus the arrival time of the n-th customer at the first 

counter. Then 

Wn*={ Wn+max (R~l>, R~221) 

max (R~l\ R~221+ Wn) 

Therefore we may write the following equation: 

Also we have 

W n*= [R~l)+OV W n] V [R~221 + W n] 

=R~l)V[R~l)+ Wn]V[R~221+ W,.] 

=R~1)V[R~l)VR~221+ Wn]. 

(Wn*-gn;:;;'O) 

(9) 

Wn*-gn+R~l~l V R~2) 

W;t'+l= R~1~lV[Wn*-gn+R~2)] 

R~I~l 

(Wn*-gn<O, Wn*-gn+R~2»O) 

(Wn*-gn+R~2)<O . 

Then the above equation may be written 
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W~+l = [R~l~l +(Wn*-Yn)VO]V [R~2)+ Wn*-Yn] 

=Rnl V[R~~l+ Wn*--Yn]V[R~)+ Wn*-g,,] 

=R~~l V[(R~l~l-g,,)V(R~Lg,,)+ W n*]. 
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(10) 

Let P,,*=R~l~l-Y" and Qn*=R~2)-gn; then equation (10) may be written 

Iterating (11), we have 

W~+l=R~l~l V[Pn*VQn*+R~l)] 

V[P,,*V Q,.*+P~-l VQ~_1+R~121] 

(11) 

V ___ V[P,,*VQn*+P!_lVQ~_l+ - - - +Pl*VQ1*+RPl]. (12) 

Neglecting RP) in each term of the right hand, we have 

(13) 

Under the condition E max (R(J), R(2»~Eg where max (R(J), R(2»=I=g 

certainly, 

in probablity. This fact shows that W~+l~+ 00 in probability and then 

(9) shows that W,,~+oo in probability which proves the theorem. 

Corollary. (a) If ER(l)~Eg then Fo(t)=O, where the case RW-g 

= 0 indentically is excluded. 

(b) If ER(2) ~Eg then Fo(t)=O, where the case R(2) -g=O identically 

is excluded. 

Proof. For Ca) we have from 1:8) that 

Wll+1~ max [j:,(RP)-Yi) J. 
l';;;;k~n l=·,,, 

Thus we see that, under the assumption ER(l)~Eg where R(2)_g=l=O 

certainly, Wn~+oo in probability. 
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For ~b) we have from (13) that that 

W* > max [ ~ (RC2) - gi)] n+l= .L.J t • 
l~k~n ~=k 

Thus we see that, under the condition ER(2)~Eg where R(2)_g=/:-O 

certainly, Wn->+oo in probability. 

Remark 1. In the case where max (R(/), R(2) = g, R(/) = g identi. 

cally, then W,,=O. Thus Fo(t) is unit distribution with jump 1 at O. 

Under the initial condition W 1, 

Therefore 

Now we shall show that, under the condition in Theorem 1 the limiting 

distribution of {Wn } is independent of the initial conditions. From (7), 

Hence 

P(Wn+l~t I W 1=x, Ra2)=p) 

=P(Pn~t, P"VQn+Pn-l~t, ... , PnVQn+ ... +P2VQ2+Pl~t, 

P"VQn+ ... +P2VQ2+PIVQl~t-X) 

lim inf P(Wn~t I W1=x, Ra2)=p)~Fo(t), (14) 
n~oo 

since the second term in the right member tends to zero by the strong 

law of large numbers whenever EPvQ<O. But also from (4) and (5), 

then 

lim sup Pc Wn~t I W 1 =X, R~2)=p);;;;'Fo(t). (15) 
U-H>O 

(14) and (15) give us the desired result. 

If ZI = (W[, k~2)) has a distribution function Z(x, p), 
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lJ~~~ P(Wn~t I W1=x, R~2)=p)dZ(x, p) 

= r lim P(Wn~t I W1=x, Ra2)=p)dZ(x, p) In-CXl 

= Fo(t) 

by Lebesgue's theorem on limits of integrals. 

Clearly Fo(t) satisfies the equation: 

Fo(t) = ~ K(t, u)dFoCu) 

where 

(17) 

The previous paragraph state that there exists one and only one solution 

satisfying the equation (16) whenever E max (R(1), R(2))<Ey. To see it is 

unique, suppose there were another solution and that it was the distribu­

tion of W1 ; then it would be the distribution of every customer and hence 

the limiting distribution, which is impossible. 

Remark 2. In the case where Poisson arrival, exponential services, 

the solution of the equation (16) has not the following simple form: 

where 

{ 
1-Ae-Bt 

Fo(t)= (l-A)eCt 

D<A<l, B>D, 

(t~D) 

(t<D) , 

C>D. 
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