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§ 1. INTRODUCTION 

In critical-path scheduling sometimes some method of activity 

aggregation is used for reducing the effort required to solve extremely 

large project scheduling problems. Quite often large portions of a project 

diagram form individual projects in their own right. They connect into the 

whole project at only two points, their origin and terminus, respectively. 

If each of these subprojects may be replaced by a single activity with the 

same utility function and duration limits, major projects will be simplified 

to solve however large they may be. One method for this purpose is 

stated in Kelley's paper [4]. Our paper also is concerned with establishing 

an alternative algorithm to solve easily large project scheduling problems by 

Critical-Path Method, where the project has a special structure that it can 

be partitioned into several or many subprojects. 

In Kelley's aggregation method every subproject is solved separately 

as one CPM problem in advance and a group of its solutions, project 

duration limits, and a utility function obtained in each case are used as 

duration limits and a utility function for the corresponding aggregated 

activity. However, as the utility function for an aggregated activity 
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50 TatBuo Aonuma 

obtained in this manner is non linear (piecewise linear) and concave, in 

order to reduce it to the linear case the subproject must be essentially 

replaced by a series or parallel') of y activities with a linear utility func­

tion, but not by one activity, in the project diagram. So it seems that 

Kelley's aggregation method is not suitable enough for automatic process­

ing by the fact that the method has two computational phases, solving 

the subproject problems, and describing the renewed arrow diagram and 

then solving it, where it requires the unpredictable number of activities, 

denoted above by y. 

It appears to us from our experience by this time that a computer 

equipped with tape units is necessary to solve a critical-path scheduling 

problem of practical size. So before establishing our algorithm we assume 

that a computer with tape units is always available for CPM computation, 

and that the possibility of partitioning a project into several subprojects 

is admitted for all projects that we shall deal with. 

In both Kelley's and Fulkerson's CPM algorithms a principal part 

of computation will be the labeling process. The first aim to establish 

our algorithm is to reduce the time required in the labeling process as 

much as possible by making use of the assumed special structure of the 

matrix. The second aim is to make it possible to solve even a larger 

project scheduling problem by a computer with limited fast access work­

ing storages (for example, core storage and/or magnetic drum storage, 

etc.). The fast access storages are mainly used for computational opera­

tions in the computer with tape units, so the economical and computable 

size of the project (i.e., the maximum possible number of activities and 

events in the project) depends on the size of this storage. However large 

the size of the original project may be, we shall be able to solve its 

scheduling problem using our partition algorithm stated in this paper, if 

only the size of every subproject obtained by partitioning the project is 

1) Only the series technique to handle a nonlinear CPS problem is stated in 
Kelley [4]. The parallel technique is illustrated in Sekine [5]. 
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On a Partition Algorithm for Critical-Path Method 51 

within the limit. 

In Section 2 we shall deal with partitioning a project. It will be a 

preliminaly work required for our algorithm. And in Section 3 two basic 

problems in our algorithm, called Partitioned Network Problem and 

Aggregated Network Problem, respectively, and the detailed computational 

steps of our algorithm will be given. In the final section a simple example 

will be solved by means of our algorithm. 

§ 2. PARTITIONING A PROJECT 

That a project P can be partitioned is that P includes at least one 

subproject Pk• An origin Ok and a terminus nk belong to Pk, which 

connects into the whole project P at only two events, Ok and nk, respec­

tively. If a portion of activities and events between these two events 

are completely separated from P when we exclude these two events from 

P, then the project P will be able to be partitioned as well. 

We assume that P includes m subprojects, Pk(k=l, 2, ... , m), which 

have no activity in common with each other. As some of the origins 

and termina may be common to several subprojects, each number of them 

will be generally less than m, and the case of Pi~Pr=l=O (i=l=j) may occur. 

This fact shows that an arrow diagram obtained after the aggregation of 

Fig 1 A project with two subprojects 
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Fig- 2 An aggregated project 

X, 

\ 
-- A ---------------- B ----

/ 

subprojects may not satisfy the fundamental rule of it. This situation is 

illustrated in. Fig. 1. Two groups of activities above and below the 

horizontal dotted line bettween an event A and an event B form 

subprojects respectively. Their common origin is the event A and their 

common terminus B. If we substitute two aggregated activities, Xl and 

X 2, for these two groups, an arrow diagram which does not satisfy the 

fundamental rule, as shown in Fig. 2, will be obtained. 

In order to eliminate the inexpedience mentioned above, we shall 

establish a partitioning rule as follows: 

Partitioning Rule 
1) For every k relace the origin and the terminus of Pk by events 

Ch and nk which satisfy the conditions, ih=l=oj and nc=l=nj for i=l=j, and 

oi=l=nh for all i and j. Each of several activities, (Ok, • )'s and ( . , nk)'s, 

is replaced by (Ok, ·)'s and (', lh)'s respectively. The origin of the 

new subproject Pk obtained in this manner is Ok and its terminus is nk. 
2) Introduce two dummy activities, (Ok, Ok) and (nk, nk). A utility 

of zero and durations of zero are assigned to these two activities. These 

activities will be called connecting activities. 

3) Perform a rearranging operation, i.e., topological ordering of a 

list of new events, E~{Ok, rlk, k=l, 2, ... , m}, where E is an event set 

of P, on the basis of the partial ordering relation defined by the new 

arrow diagram to which the connecting activities and events {Ok', rh·, 
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k=l, 2, ... , m} have been newly added. Then we shall obtain a new 

project P. 
These two P and Fare essentiallye qui valent. P has the following 

property, which follows readily from the way in which P has been 

generated. 

Theorem 1. A rearranged project jJ can be written 
_ 7/t_ 

P= UPk~(connecting activities)~R, 
k=l 

where Pi~~=O (i* j), and R=(P- U Pk)~ U (Ok: nk). 
k=l k=l 

m 
Especially, in case of R= U (Ok: n,) P is called" totally partitioned," 

k=l 

and the project consists only of its subprojects and connecting activities. 

Let there be n+ 1 events in F. The origin of P is given the label 

o and the terminus is given the label n. Only the project P is required 

for our algorithm. 

Fig 3 An example of a totaJly partitioned project 

~----~+-------~~ 

§ 3. PARTITION ALGORITHM 

The mathematical model upon which Critical-Path Method is based 

is given as follows2} : 

Find Yij and t i , (i, j) EP, that mClKimize the utility function 

2) The notation corresponds to that used in Kelley [4]. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



54 TatBuo Aonuma 

subject to 

Yij+ti-tj;£O, (i, j)EP, 

tn-to;£A, 

O;£dij;£Yij;£DiJ, (i, j)EP. 

Next we shall state the ouline of Kelley's algorithm: 

( i) Generating the initial schedule. 

( 1 ) 

\ 2 ) 

(3 ) 

(4 ) 

The schedule {y, t}, defined by Yij=DiJ, (i, lyE?, to=O, tj=max 

(YiJ+ti), l;£j;£n, is an optimal schedule, for ).=tn • 
(i, j) 

(ii) Solving the network flow problem using labeling process. 

subject to 

Maximize 1: Uin 
(i, n)~Ql 

;£aij, (i, j)EQL, ... ,Qz 

=aij, (i, j)EQl-(Ql'-'Qa'-'Q4) 

~aij, (i, j)EQlr----Q4 

=0, (i, j)EP-QI, 

(5 ) 

(6 ) 

(7 ) 

where Q/s (i = 1, 2, 3, 4) are the same ones that are defined in [4]. 

(iii) Solving the restricted dual problem of (1 )-( 4 ). 

1, if (i, j)EQl-(Qa'-'Q4) and iEI, jEj 

aij= -1, if (i, j)EQl-(QZ'-'Qs) and iEj, jEI (8) 

and 

0, otherwise, 

ih= { 0, iEI 
1, iEj 

(9 ) 

constitute an optimal solution of the problem, where I is the set of labeled 

nodes and j the set of unlabeled nodes obtained at the termination of the 

labeling process. 
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(iv) Changing the present schedule to a new schedule. 

The schedule {y', t'}, defined by 

Y;j=Yij-Oaij, (i, j)EP. 

t~=ti-Oai, 

55 

(10) 

is an optimal feasible schedule of duration ),1 =),-0, where o.,;;,().,;;,()o as 

defined in [4]. 

Now we shall consider the following two problems, called Partitioned 

Network Problem and Aggregated Network Problem respectively. 

Partitioned Network Problem (PNP). Consider the following two 

types of network flow problem for each of the subnetworks Nk'S cor­

responding to the subprojects Pk's. The capacity restrictions of each arc 

and the flow conservation equations in these flow problems are the same 

as obtained from equations (6) and (7) by restricting all (i, j) within Pk • 

PNP-I. Find Uij, (i, j)EPk , that maximize the total flow ~_uu j= 
jEP k 

~ Ui;: subject to the network restrictions stated above using the labeling 
iEP

k 
k 

procedure. Then we denote the max· flow of the network by Fk , the set 

of labeled nodes by lk' and the set of unlabeled nodes by h at the 

termination of the labeling process. The min-cut of the network will be 

represented by (lk' h). 
PNP-II. Find Uij, (i, j)EPk , that minimize the total flow of the 

same network as in PNP-I, using the following modified labeling rule. 

1. Let the initial feasible solution to the subnetwork Nk be {Ufj), 

where {ufj} is an optimal solution to PNP-I of the network Nk • At first, 

label terminus rh with the label (-, (0), and then proceed to attach a 

label to each node using the same labeling rule as used in (I). The 

backward labeling will by mainly used. If origin Ok is labeled, proceed 

to 2. If the origin is not labeled, this algorithm terminates, the minimum 

flow having been obtained. 

2. If origin Ok is labeled (-P, h), change the present flow to a 
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new flow along the labeled chain. Namely, if node k is labeled (- j, .), 

replace uZj by uZj - h. If node k is labeled (+ j, .), replace UJk by uJ, + h. 

Now proceed in the same manner to consider node j. Eventually terminus 

nk will be reached. At that time this flow change terminates. Using the 

new value of Uij and erasing all labeles, Procedure 1 is repeated. 

Then we denote he min-flow of the network by /k, the set of 

labeled nodes at the termination of the labeling process by i k , and the set 

of unlabeled nodes at that time bY]k. " Max-cut" will be represented 

by (lk, ]k). It will be seen from Theorem 4 to be mentioned below that 

we shall have not to solve PNP-II more than once throughout the whole 

computation. 

Now we can always obtain expressions Jk=[(lk, h), Fk ; (/k, ]k), Fk] 

for every subnetwork Nk as the result of the two procedures above. 

Aggregated Network Problem (ANP). In a network N correspond­

ing to the project F, replace every subnetwork Nk by a single aggregated 

are (ih, nk) with a maximum capacity Fk and a minimum capacity /k, 

respectively. As a result of it, a new aggregated network N* will be 

obtained. Then solve the network flow problem for N* using the labelling 

process. In the network flow problem defined by (5 )-( 7 ), if we replace 

all the restrictions, which include flow variables Uij of each subnetwork 

Nk as their variables, by the following only three restrictions, 

Uo 0 -u;; n- =0, 
k k k k 

U" n -Un n =0, k k k k (k=l, 2, ... , m) (12) 

respectively, we shall be able to obtain the network flow problem for N*. 

In the labeling process the aggregated arc with the capacity restriction, 

+k:-::;Uo n ~Fk, will be able to be treated as follows; 
JI - k k 

(i) If ih is labeled and not yet scanned, consider it as an arc 

with capacity O~u""n-k~Fk' attaching some label to the unlabeled node 11/,. 
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(ii) If nk is labeled and not yet scanned, consider it as an arc with 

capacity fk-;;;,uoknk, attaching some label to the unlabeled node Ok. 

(iii) Assume that every arc ({h, nk) always belongs to Qj. 

Theorem 2. The max·flow F of the network N*, obtained from the 

aggregated network flow problem, is equal to the max-flow of the network 

N. The min-cut of N* can be always regarded as the min-cut of N, if 

only we replace every arc (0", n,,) belonging to the min-cut of N* by either 

(i) the min-cut of N k, (h, jk), in case of chEf and n"Ej, or 

(ii) "max-cut" of N k, clk' ]k), in case of okEj and nkEf. 

Proof. Let the max-flow of N be F' = 2:_Ujn' whereu fj denotes an 
;ep 

optimal solution to the flow problem for N. We shall prove F' =F for 

each of the following four cases, which may occur at the optimal stage 

of the flow problem for N; 

Case (i). ch, nkEf. We have always /k<Uo 0 =U~, n <F" from the 
k k k k 

definitions of Fk and fk. On the other hand, it follows from the labeling 

rule that the optimality of the solution to the problem for N is not 

changed by modification of N" at the optimal stage if the modification 

does not change the values of Uo 0 a.nd Un n. So F' does not change 
k " " k 

even though we replace Nk by an arc (Ok, ne> with the capacity, fk-;;;, 

Uo ii -::;;,Fk • 
kk-

Case (ii) o"Ef, nkEj. We have the relation, u~ u =ui: n =Fk, in 
k k k k 

this case. Since nk also belongs to j because of Fk-U~ en =0 even though 
k k 

we replace Nk by an arc (Ok, n,,) with the capacity, O-;;;'uo;,nk-;;;,Fk , the 

optimality of the solution does not change. 

Case (iii) o"Ej, n"EI. We have the relation, u~" =u~ n =/k,i n this 
" k k " 

case. Similarly, even though we replace N" by an arc (i"h, nk) with the 

capacity, fk -;;;, U o n, 0" along belongs to j. So pt does not change as well. 
k k 

Case (iv) OkEj, nkEj. Similarly it will clearly result that F' does 
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not change. In such a manner, a network which have been obtained by 

replacing at the optimal stage each of m subnetworks in the network 

N by arc (Ok, nk), respectively, is no more than N*. So we have proved 

F'=F. 

Next, we shall prove that the min-cut of N* can be regarded as 

that of N. Let the flow on each arc (Ok, nk), obtained in ANP, be Uo it , 
k k 

respectively. Then such a feasible solution to the flow problem for N~ 

as its flow is just equal to Uu n , will be obtained in a way as indicated 
k k 

below: 

(i) In case of fk<U o n <Fk • The feasible solution will be obtained, 
k k 

if we use a labeling rule modified as follows; 

1. Label origin with the label (-, U Ok'\» and after the p-th flow 

p 

change, label origin Ok with the label (-, Uij n - ~ h~), where hk denotes 
k. k=l 

h-part of the label of terminus n. labeled at the k-th labeling process. 

The other rules but the following one are as usual. 
p 

2. If U o " - ~ hi=o, the labeling process terminates, and the flow 
k k i=l 

at that time is the desired solution. 

(ii) In case of Uu it =Fk• An optimal solution to the problem for 
k • 

N k , obtained in PNP-I, is the desired solution. 

(iii) In case of U o n = /tc. An optimal solution to the problem for N k, •• 
obtained in PNP-II, is the desired solution. 

If we replace the flow on every aggregated arc in ANP by the 

corresponding feasible solution obtained above respectively, we have a 

solution which is feasible to the network N, and it is also an optimal 

solution. Since in case of (ii) and (iii) the aggregated arc belongs 

to the min-cut of N*, (/k, !.t) must be in the min-cut of N in case (ii), 

and (fk, J:) in case (iii). This completes the proof. 

Corollay 1. In ANP any ent~':lnce connecting arc, which means 

the arc (Ok, Ok) for a subnetwork NI., does not belong to any min-cut. 
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Because any entrance connecting arc always belongs to Ql~Q8, 

and if okEI, Ok will also belong to I because of Uo 0 =U,7 n >0. k k k k 

Corollary 2. In case of a totally partitioned project, the total flow F 

in ANP is infinite, whenever all Fk'S (k=l, 2, ... , m) are infinite in PNP-I. 

Because there is at least a chain, all activities in which belong to 

Ql and have an infinite capacity. 

Theorem 3. In the aggregated network problem the expression ilk 

of any aggregated arcs which precede or succeed any arcs belonging to 

some min-cut is invariant by the succeeding schedule change. 

Proof. It follows from equations (8) and (9) that (Jij and Oi, 

(i, })EP., for any aggregated arc I/J., n.), which precedes any arcs in 

min-cut, are zero. So {Yij, ti, (i, ))E:P.} is not changed by the succeeding 

schedule change. For any aggregated arc (op, np) which succeeds any 

arcs in min-cut, similarly we have {fij=O and oi=l, (i, })EPp • So {Yij, 

(i, ))EPp }, is not changed by the schedule change, but ti and tj, (i, })Efi;" 

decrease by a same amount. In either case, Q-status of all activities 

included in the corresponding subprojects is not changed by the schedule 

change (Q-status of an activity means which set of Q;'s the activity 

belongs to). This fact shows that the expression Llk of the arc sremains as 

it was, after the schedule change. The theorem has been proved. 

Generally, the labeling procedure must be repeated for all nodes in 

the network after every schedule change, but Theorem 3 shows that, in 

case our algorithm is applied to a partitioned project problem, we can 

omit the labeling process for the subnetworks which do not include any 

arcs belonging to min-cut after every schedule change. 

Theorem 4. Let the min-flow and the max-flow of each subnetwork 

Nk obtained in PNP be f~ and F~, respectively. And assume that those 

obtained in the preceding PNP were f: and F:, respectively. Then 

after having solved ANP, if okEI and n"Ej, the new min-flow Jk to be solved 

in the next PNP-II will be equal to F~. Furthermore, we can consider the 

new elk, ]k) as (j~, I~), where I; is a set of labeled nodes and j~ a set of 
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unlabeled nodes at the termination of PNP-I solved just before the 

schedule change. That is to say, we may regard new i k as j~ and new 

j~ as I~ in a sense of set of nodes, without labeling. 

If OkEj and thEI at that time, the new min-flow fk to be solved in the 

next PNP-II will be equal to t:, and the new (ik, ]k) can be regarded as 

(i~', j~'), where l~' and ]~' are sets of nodes, specified as usual, corresponding 

to t~' respectively. 

Proof. At a stage of a schedule change, we may enumerate all 

possibilities for every arc belonging to min-cut as follows; 

The status before a schedule change 

(i) (i, j)EQ1-(Q3~Q4)' iEI, jEj, Uij<,aij or =aij(uij=aij) 

Oi) ~i, j)EQ1-(Q2~Q3), iE)j, jEI, Uij"?;,aij or =aij(U'ij=aij) 

(iii) (i, j)E(Ql~(Q2~Q3), iEj, jEI, Uij2:.aij or 2:. 00 , (Ui'j=O) 

(iv) (i, j)EP-Qb iEI, jEj, Uij=O (ui'j=O) 

(v) ~i, hEP-Qi> iEj, jEI, Uij=O (u'!j=O) 

turn to, 

after a schedule change 

(i) (i, j)E)Ql~Q4 or Ql-(Q2~Q3 ~Q4)' Uij"?;,aij or Uij=aij. 

(ii) (i, j)E)Ql~Q2 or Ql-(Q2~Q3~Q4)' Uij2:.aij or Uij=aij. 

(iii) (i, j)E)P-Qb Uij=O. 

(iv) (i, j)E)Ql~Q2 or P-Qb Uij2:.aij or Uij=O. 

(v) (i, j)E)P-Qb Uij=O. 

It should be noted that the direction of the inequality in a capacity 

restriction of any arc belonging to min-cut has been reversed after a 

schedule change, as shown in the above cases. It OkEI and nkEj, an 

arc (Ok ri",) belongs to min-cut at the termination of ANP. Therefore, it 

is required only to show that any labeled node j in the case (ii) can not 

be labeled again at the termination of the modified labeling process in the 

next PNP-II to be solved after the schedule change. Because only such 
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arcs as in the case Cii) have the possibility that they might not belong to 

" max-cut" at the termination of' the modified labeling, as we can see 

from their Q-status and capacity restriction modified after the schedule 

change. There exists at least an arc belonging to the min-cut in each of all 

paths from the terminus to node j. Otherwise, the terminus would have been 

labeled. The type of the arc belonging to the min-cut is either (I, J) or 

(J, J). In case of (/, ]) since Q-status of the arc is either QI-CQ3~Q4) 

(case (i» or P-Ql (case (iv» before the schedule change, the node j can 

not be labeled by the modified labeling after the schedule change. In 

case of (J, J) since Q-status of the arc turns to either P-QI Ccase (iii) 

and Cv» or {QL-___ Q2 and UOij=aij} (case Cii» after the schedule change, the 

node j is also unlabeled_ Thus, we can not reduce the total flow of the 

network problem, modified after the schedule change, less than the max­

flow F' k, and also it will be easily seen from the above arguments that 

elk, ]:) may be regarded as Cl' k, J't), though there may really be an 

unessential difference between them. 

Also in case of {hE] and rtkEI we can prove it in a quite similar 

way, but we shall omit the proof. 

Now, by the several theorems mentioned above, we can establish 

a partition algorithm for Critical-Path Method as follows: 

1. l<eform a partitioned project P from the original project P using 

the partitioning rule. 

2. Obtain an initial optimal schedule by putting Yij=Dij, and then 

find Q-status for every activity. 

:1. Solve PNP's to obtain the expression ilk of every subnetwork N! .. 

4. Solve ANP to find min-cut (I, ]) of the network N. 

5. Change the present schedule to a new schedule, which will be 

a new characteristic schedule. 

6. Renew Q-status of all activities in R and in the subnetworks 

belonging to min-cut at the termination of the labeling process in ANP. 

7. Solve PNP-I only for the subnetworks with Q-status renewed 

in 6. PNP-II for these subnetworks need not be solved, if only some 
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replacements as stated in Theorem 4 are done. Then we have a renewed 

expression J k for each of these subnetworks. 

8. Formulate a new ANP, on the basis of these J k obtained in 7. 

Then turn to 4. We repeat these precedures from 4 to 8 untill the total 

flow F becomes infinite in ANP, or untill all Fk'S (k= 1, 2, ... , m) become 

infinite in PNP-I if the project is totally partitioned. 

When a problem is solved by means of our partition algorithm, both 

the total number of events and that of activities increase, for convenience 

of partitioning a project, at most by 2m respectively more than when it 

is solved without partitioning, and that, in PNP we must use two kinds 

of labeling routines. However, it seems to us that they are not great 

disadvantages, since the increase of the numbers is quite insignificant in 

comparison with the number of events and activities in the subprojects 

and PNP-II need not be solved except at the initial stage, as shown in 

Theorem 4. On the other hand, this algorithm has a real advantage in 

that the labeling test to have been performed for all nodes is restricted 

only for a few groups of nodes in our algorithm. When we partition a 

project into several subprojects, it is more effective to partition into many 

series subprojects rather than to partition into parallel subprojects, as 

illustrated in Fig. 4. 

Fig 4 Examples of parallel and series partitions 

parallel partition Series partition 
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§4. A SIMPLE NUMERICAL EXAMPLE 

The simple problem we shall solve by means of the partition 

algorithm is somewhat artificial, but will show the slight utility of the 

method even in case of simple partitions. 

The example is given in an arrow-diagram form, Fig. 5. Figures 

on each arrows show the duration limits of the activity, and we assume 

that the decrease of the project cost per unit duration is two dollars for 

activities (C, E) and (D, E), and one dollar for activities (F, G) and (H, f). 

At event F, we can partition the project into two subprojects, PI and P2, 

fig.5 An example of a project 

Fig_ 6 A partitioned project of the example 

8--"- 2 
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respectively. The partitioned project becomes as shown in Fig. 6. Our 

algorithm will be applied to this project. 

Beginning with an initial feasible schedule constructed from the 

normal durations, the major data generated in the partition algorithm 

solution of this problem are given in the tables below. 

Table 1. Iterations for PNP 

Iteration No. PNP for NI 

1.~ 
~2-

I =(2,3,4,5), J =(6, 7) 

FI = 4-

1= (7), J=(2,3,4,5,6) 

fl = 0 

2.. Unchanged. 

3. Unchanged. 

I=(8,9,10), J=(1I,12) 

F2 = 1 

1= (12), J= (8,9,10,11) 

f2 = 0 

I=(8,10), J=(9,11,12) 

F2 =2 
I =(11,12), J=(8,9,10) 

f2.= 1 

F2 = 00 

f2 = 2 

1=(9,11.12), J=(8.10) 
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Ft = 00 

f t = 4 
1=(6,7) 1=(2,3,4,5) 

Un ch an g-e d . 

Note: 
shows the arc is jn min-cut. 

Table 2. Iterations for AN? 

Iteration No. Min-cut Set 

[ = (f, 2. 7. 8), J =. (J 2, 13 ), F = J. 

[= (1,2,7,8), J=(12,13), F=2. 

O~U~4 2SU~oo 

3. 0-----~~-----~~0-----@ 
[=(1,2). J=(7.8,12.13), P=4 

65 

4. As FI and F2 become infintte in PNP -'-1, the algorithm end because 

because of a totally partitioned project. 
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Table 3. All characteristic schedules generated at each iteration. 

N, Iter od s 1st. 2nd. 3rd. 4th. 

i V t; t. Q y t. ~ Q y t. t. Q y t. t Q 

LA 12 2 0 0 0 0, Q3 0 0 0 0 0 0 0 0 0 

2 3 5 0 5 0, " 5 0 5 5 0 5 5 0 5 

4 3 5 8 0, Q3 3 5 8 3 5 8 3 5 8 

3 

5 4 5 9 0, " 4 5 9 4 5 9 4 5 9 

P1 4 6 5 8 13 .9, Q2 5 8 13 5 8 13 4 8 12 O,Q4 

5 6 4 9 13 0, " 4 9 13 4 9 13 l 9 12 0, Q4 -
6 7 5 13 18 0, Q3 5 13 18 ~ 13 18 5 ~ .!2 

t.A 7 8 0 18 18 0, " 0 13 18 0 18 18 0 .!Z. 17 -

9 6 18 24 0, Q2 6, 18 24 2- 18 23 0; Q4 5 .!Z. 22 -
8 

10 2 18 20 O,Q3 2 18 20 2 18 20 2 17 19 

9 11 3 24 28 
(P-q, 

1 ,,,,Q3 3 24 27 0, Q3 3 23 26 3 22 25 

P2 
'<1-

10 11 8 20 28 0, Q2 7 20 27 O,~ 6 20 26 0, Q4 6 ~ 25 

11 12 2 28 30 0, Q3 2 27 29 2 26 28 2 25 27 
- - - - -

(.A 12 13 0 30 30 0, Q3 0 29 29 0 23 28 0 27 27 

Note: The underlined figures in the table show figures changed by a schedule 

change. 
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As seen in the example above, only one of two subproblems, NI 

and N 2, is solved at every stage of PNP except at the first stage, so for 

only about a half of all nodes the labeling process is repeated at every 

stage. If the project were partitioned into two parallel subprojects, such 

effect might be lost since it might occur that both aggregated arcs would 

be in min-cut at the same time. 
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