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1. INTRODUCTION 

Problems of preventive maintenance have recently drawn the atten­

tion of several researchers1),2),3),4). 

Basically there are the following reasons for adopting a preventive 

maintenance procedure: 

(a) To exercise control over production costs as compared with the 

best currently available alternative. 

(b) To exercise control over the wtal maintenance costs including 

both scheduled and unscheduled attendance to, and operation 

of the equipment. 

(c) To sustain a specified level of reliability. 

For further development of this ji.ne of thought, it IS necessary to 

define properly several terms which are used in the context of preventive 

maintenance in the wide sense: 

Preventive replacement is concerned with the change or renewal of a rela­

tively independent piece of equipment*. 

Preventive maintenance (in the narrow sense**) is concerned with attendance 

to equipment during its lifetime, and carrying out such operations that 

are deemed necessary to keep it in running order. 

* While, for reasons of convenience, we shall discuss the maintenance problem 
in terms of physical equipment, it is by no means limited to this. The same line of 
reasoning can be equally well applied to other "equipment" such as manpower, etc. 

** As from here the term preventive maimenance will always refer to its narrow 
sense. 
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Preventive inspection is concerned with systematic observation, by some 

specified rule, which may possibly lead to further action such as preven­

tive maintenance or replacement. 

In actual practice, the operations of preventive replacement, main­

tenance and inspection are frequently interwoven. 

The purpose of this paper is to describe and define a specific situa­

tion where both preventive replacement and preventive maintenance are 

of importance in connection with the minimization of total maintenance 

costs. 

2. DEFINITION OF THE PROBLEM 

We consider a piece of equipment rendering some service which is 

measurable in physical units such as time, volume of production, etc. 

For convenience, the physical unit chosen will be time. The equipment 

is subject of breakdowns which are random in the following sense: the 

life span, that is the time elapsing from the beginning of its operation 

to its termination (by breakdown), IS a random variable governed by a 

density J(t). 

The level of preventive maintenance will be defined by the invest­

ment per unit of time, m say. It is then assumed that there exists a 

response Junction which links the level of preventive maintenance to the 

distribution of the life span, in particular to its expected value. 

There are two distinct situations associated with the notion of replace­

ment. In one, the old equipment is physically replaced by a new unit 

of the same type. In the other situation the equipment is subjected to 

a complete overhaul, reverting it to its initial condition. These two 

physically different situations are mathematically equivalent. As indicat­

ed in the definition of preventive replacement the word" replacement" will 

be applied to whichever method is in current use and no distinction will 

be made between them. 

It is assumed that a cost S( <0) is associated with replacement. A 

second cost arises in connection with unscheduled replacement. The 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



On a Problem of Preventive Maintenance 5 

stochastic character of the life span distribution is preserved even if the 

equipment is held at a high level of maintenance; hence it is liable to 

break down at unforeseen times and cause expenses additional to those 

connected with the replacement itself. We shall, then, assume a total 

cost R(>S) to be associated with the process of unscheduled replacement. 

A third cost, previously mentioned, is proportional to the effort expended 

in preventive maintenance, and is designated by m. A policy will con­

tain rules specifying: 

(a) a period T (measured from the last replacement) at the end of 

which the old equipment is replaced. 

(b) an expenditure m per unit of time to keep the equipment at a 

required maintenance level. 

It is desired to determine a policy which minimizes the total cost of 

keeping the equipment in running and producing order. The set of 

feasible policies to be examined will contain all pairs (T, m) including 

the extreme cases (T, 0) and (00, m). 

While the problem is now defined in terms of a cost criterion, it is 

necessary for the construction of the mathematical model to make speci­

fic assumptions regarding the life span distribution of the equipment as 

well as its response to preventive maintenance. 

3. LIFE SPAN DISTRIBUTIONS 

The life span of equipment is the period elapsing between the time 

it is put into operation (either new or renewed) and the time at which 

its activity is terminated by a breakdown. This quantity is a random 

variable and its variability may be represented by a function setting 

forth the probability of the life span exceeding time t; this is distribution 

function (cumulative to the right) F*(t). Other useful representations* are 

a) the density function J(t) which is l:he negative derivative of F*(t), 

and b) the intensity function ACt) which is the negative logarithmic 

* Assuming, of course, that the distribution function is continuous and differen­
tiable everywhere in (0, 00) 
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derivative of F*(t). The latter function, in particular, appears to be con­

venient for describing the notion of reasonable life time distributions since 

ACt) is a measure of the breakdown tendency as time proceeds. In prin­

ciple the only restriction imposed on intensity functions is nonnegativity; 

however, in the context of mechanical equipment and its maintenance, 

non-decreasing intensity functions only appear of represent real pheno­

mena. 

A further requirement which we impose on the selection of our inten­

sity functions in the number and specification of parameters. In this 

study we shall concern ourselves with two-parameter functions. On the 

one hand such functions are quite flexible and thus may be well abjust­

ed to a wide range of possible real situations; on the other hand arbi­

trariness is rather circumscribed in the two-parameter families. 

One of these parameters, a, will possess a physical dimension which, 

obviously, must be a power of the dimension of t; no generality is lost 

by arranging the dimension of a to be that of reciprocal time. The other 

parameter, {j, will be a pure dimensionless number representative of rela-

Note on Weibull distribution: The conventional representation is not displayed 
in this Table; it may be obtained by an elementary transformation. 

Note on Gamma distribution: Values of the functions associated with the gamma 
distribution are available in Pearson's Tables of the Incomplete r·function 

[5] and in Molina's Tables of Poisson's Exponential Limit [6]. 
Note on the truncated logistic distribution: The integral in the formula express­

ing the second moment is related to Euler's dilogarithm. This function has 
been discussed in some detail in a recent monograph [7]. Some numerical 
tabulations may be found there, but it is not difficult to derive numerical 
values by expansion into a series (setting f3=I+,): 

2 (I)' 00 I 
= 1[6' + n

2
'-+L: (_I)i ,i%'2- ([21) 

i=1 
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TablCil I. Some Distribution Functions of non-Negative Random 
Variables and their Properties 

. -! 

Gamma Truncated Logistic 
Distribution Distribution Distribution 

Properties 
-------- ---~-~ 

I i 
Distribution r(aOP I __ aP ~-f t'P-1e-at'dt' f3e- at 

F*(t) 
I r(f3) ~~tSfl2 

1+(f3-I)e at 

I r(f3) 

Density f(t) aPf3tP-le-(aOP afit~'l·-~e_at af3e-·t 

rCE) [1 +(f3-I)e-·tp 

Intensity A (t) afJf3tP-l aPO~e-at 
rat (f3) 

a 
~f + (f3-I)e-at 

First Moment -~- r( I+}) L f3ln f3 
E(t) a a(f3-I) 

Second Moment 1 1'(1+ 2) @i!~U3) 2f3 JP In f3' , 
E(t') a' f3 a~ a'(f3-I) 1 f3'-1 df3 
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tive spread and (possibly) of other properties of the distribution function. 

Specifically in this study we are concerned with three families of dis­

tributions all associated with non-decreasing intensities (for a suitable 

choice of ~): a) Weibull distributions, b) gamma distributions, and c) 

logistic distributions truncated on the left. Their relevant properties are 

summariszed in Table 1. 

The distributions as displayed in Table I are not necessarily in their 

conventional parametric form. Rather, they are being presented with a 

choice of parameters* such that a) they are significant in our context if, 

and only if, ~ does not fall short of 1, b) for j3 = 1 all three families yield 

the exponential distribution with parameter a, and c) they are meaning­

ful as distributions even for the interval (O<~<l) albeit they possess de­

creasing intensity functions. 

A distinguishing line may be drawn between the Weibull distributions 

and the two other families. In the Weibull distributions the intensity func-
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tion tends to infinity with increasing time; III the other families there 

exists a limiting value which is approached asymptotically by the intensity 

function A(t). 

4. RESPONSE FUNCTIONS 

The response function represents the connection between the preven­

tive maintenance effort and the life span distribution. The effort may 

be measured in expenditure per unit time or per unit of output. 

We make one basic assumption regarding this connection: the 

response of the life span distribution is time-homogeneous. This means 

the following; whenever preventive maintenance at any level is applied, 

the form of the distribution function is not changed and the parameter 

{1 is not affected; the preventive maintenance makes its influence felt 

only through alteration of parameter a. In other words: on applying 

preventive maintenance the form of the survival function F* (distribution 

function to the right) is preserved but the scale along the axis of time is 

homogeneously contracted. 

Requirements of a reasonable response function are the following: 

a. It is a positive, non-increasing function. 

* We note, in passing, that our choice is associated with conveniently simple rela­
tions (precise or approximate) connecting the parameter 13 and the coefficient of varia­
tion, r. 

1) Weibull distribution. 

Rough approximation: 

Good approximation: 

2) Gamma distribution. 

Precise relation: 2 1 r =--
f3 

3) Truncated logistic distribution. 

Rough approximation: r2::::; ~ 
VfJ 

Good approximation .2 ~ I I (13 -I )" ) ~:;;f3 + 1813+ 1 
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b. It is continuous and differentiable. 

c. When m tends to infinity am approaches asymptotically a value 

aoo(~O). 

We do not impose the requirement that the second derivative of a: is 

positive over the whole range; however, the actual response functions 

chosen possess this property which appears to us to represent real pheno­

mena. Two relatively simple functions conforming to the above require­

ments are: 

(4. 1) 

and 

(4.2) 

were k is the response constant of the function, and w the fraction of ao 

which may be eliminated by applying preventive maintenance (w=(ao­

aoo)/ao)· 

There exists, of course, a multitude of functions other than (1) and 

(2) which possess the reasonable properti~s given above; however, a very 

few only possess the property of simplicity. In the following, (1) and (2) 

only make their appearance whenever explicit response functions are 

being utilized but it is not difficult to apply the theory to other func­

tional forms. 

5. COST FUNCTION AND OPTIMIZATION PROCEDURE 

Consider the policy (T, m). The total expenditure in unit time, q, 

is then given by 

_ R[l-F*(T, m)]+SF*(T, m) 
q------L~T, m)--- +m (5.1 ) 

where L(T, m) is the expected life span under preventive maintenance 

effort m and truncation T. We have then 
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L(T, m)=~: F*(t, m)dt (5.2) 

The postulated property of time-homogeneity of the response enables 

us to utilize the various functions associated with the life span distribution 

in a dimensionless representation. In other words, it is possible to repre­

sent these functions in such a manner that they are made to depend on 

the product at (and, of course, on the parameter 13) throughout the 

optimization procedure. The moments of the distribution of at are 

functions of 13 only, in particular 

E(at) =aE(t)=K1(f3) (5.3) 

and 

(5.4) 

For the purpose of comparing several distribution functions among 

themselves it is useful to introduce a standardized variable, T' say, whose 

expected value equals one. Thus we have 

(5.5) 

and the coefficient of variation, r, is given by 

(5.6) 

Corresponding functions (on t, a t and T', resp.) are related to each 

other in the following way 

F*(t; a,f3)=G*(at; f3)=I])*(T'; 13) 

f(t; a, $) =a g(a t ; 13) =-K~f3)CP (T'; 13) 

A(t; a, (3) =(x h(a t ; (3) = K
1
(f3) 7; (T'; 13) 

L(t; a, 13) = 1 .1(a t ; 13) = K1(f3) <p (T'; 13) 
a a 

(5.7) 

(5. 8) 

(5. 9) 

(5.10) 
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and we note again that these transformations are of an extremely simple 

type-all they involve is a linear change of scale in the variable. 

If wc define 

(5.ll) 

relation (3) may be rewritten as 

(5.12) 

Expressions similar to (14), where m was not considered a variable to 

be controlled, have been given by several authors2l41, 

Partial differentiation of q with respect to both T and m, and setting 

the derivatives equal to zero, leads to the optimal policy (T*, m*). The 

previously introduced assumption of time-homogeneity of the response 

greatly simplifies further analysis. The partial derivative of q with respect 

to T (for constant and arbitrary m) is given by 

( uq\) =a( uq ) = a (i/q ) 
uT '" o(aT) m K 1({1) \ ar '" 

_ A(aT);-lg(aT)-[ 1-_;-IG*(aT»)G*(aT) -Ra --- - ._-.- -_. . ----. --- ... -
A2(aT) 

-R ;-I1'(,)\O(r)-[I-; 1(/;*(r»)11*(r) 
- a Ti({1)cp2(r) 

(5.13) 

Setting expression (5.13) equal to zero yields the optimal value-deno­

ted by a star- of aT or, equivalently, of r. 

j(aT)*h«(~T)*+ G*(aT)* = l' ('*).j(r*)+ (/;*(r*) =; (5.14) 

Thus the optimal value or , (or, alternatively, of aT) does not depend 

on m. In other words, a quantity ,* may be found which depmds only 

on the functional form of the life span distribution (including, of course, 
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the value of the parameter f') ond on the external conditions as expressed 

by~. Once the value of r* has been established an optimal T m* may 

be found for any arbitrary m by the simple relation: 

The next step leads to overall optimization. 

and (5.14) results in 

* _ Rah(aT)* + _ Rar;(r*)+ 
qm- ~ m - . K1(f')f· m 

(5.l5) 

Combination of (5.l2) 

(5.l6) 

Minimization of q",* with respect to m yields the expression 

(5.l7) 

For the two alternative response functions (4.l) and (4.2) the optimal 

preventive maintenance expenditure, m*, is derived as 

m* =i In [aowk(R-S)h(aT)*] =} In [ao'LIk(R-S)r;(r*)KI-I(;3)] (5.l8) 

1 J 
m*=-r{[aowk(R-S)h(aT)*F-l} = 

= -{ -([aowk(R-S)r;(r*) K1-l(;3)]-tr -I} (5.l9) 

We may obtain numerical values of m* for the three life span distribu­

tions under study (as well as others) by inserting the optimal value of 

the intensity function r;(r*)-defined by (5.l4)-in (5.l8) or (5.l9). 

The optimal interval for preventive replacement (or renewal) is found 

on further developing (5.15) 

T*=(aT)* =K
1
({3) r* 

(X'II/* {X'm* 
(5.20) 

Total expenditure per unit time under an optimal replacement and 
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maintenance policy, q*, for the two rc:sponsc functions under considera­

tion are 

q*=-k - [lnqo*kw+qo*k(l-w)+ 1] (5.21) 

and 

(5.22) 

where qo* denoies the expenditure in unit time for an optimal replace­

ment policy with no preventive maintenance (rn=O), 

qo * = (R-S)aoh(aT)* = (R-S)aor;( r:*)K1-l(jj) (5.23) 

6. DISCUSSION 

The approach of this study to prentive maintenance and replace­

ment assumes detailed knowledge regarding both the life span distribution 

of the equipment under consideration and its response to the maintenance 

effort. In practice, the functional forms of the distribution and of the 

response function may not be available; again the functions may be 

known but the associated parameters must be estimated from experi­

mental data. Typically the information on hand is rather scanty-usually 

a few samples of life spans under varying maintenance policies are avai­

lable. This fact gives rise to a number of difficulties appearing on seve­

ral levels. 

It IS usually proper to assume that rn, Rand S are constant and 

known. Furthermore, it is ordinarily possible to carry out relatively sim­

ple experiments determining the values of K1(jj)/ao and of w. However, 

it is frequently not feasible-economically and/or physically-to evaluate 

jjwith desirable precision; we take note that knowledge of the value of jj 

is essential for utilization of key equation (16). It is also possibly rather 

expensive to obtain a good estimate of k, another prominent quantity in 
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optimality considerations. In short, one basic difficulty in the utilization 

of the theory of this study is the fact that-assuming the functional forms of 

distribution and rc)j/(I/lsc to be knuwn-important parameter values may be 

unknown and their substitution by estimates insufficient for the purposees 

of formulating optimal policies. 

Another difficulty is related to the above: Suppose that a reaso­

nable supply* of data exist for the estimation of 8 and of k, but that no 

prior information is available as to the functional form of the distribution 

and of the response; how are optimal policies formulated? Ordinarily, 

in such a situation the practitioner would select a functiOnal form for 

the distribution which is I) not too difficult to handle mathematically, 

and 2) compartible with the known mechanism of determination and 

breakdown as well as with the observations on hand; also he would 

proceed similarly with respect to the response function. This is certainly 

not an objectional procedure as long as one bears in mind that very same 

set of experimental data may be compatible with a number of different 

distribution and response forms. These may possibly lead to widely dive­

gent optimal strategies. Indeed one would suspect that a fundamental 

difference exists between distributions whose intensity functions grow 

beyond all b?unds with increasing time (e.g. the Weibull distribution) 

and distributions whose intensity functions tend to some asymptotic value 

with increasing time (e.g. th~ gamma and the logistic distribution). 

Clearly, in the latter category there exists-by (5.14)-a critical value of ~ 

(~crit=E(t»)'(=)=E(at)h(=)=E(r:)TJ(=» such that for ~>~crit the optimal 

policy is to have unscheduled replacement only. For the other hand, 

an optimal T* can always b;: specifiied. While the distinction between 

these two categories is of theoretical interest it usually has no practical 

significance: if ~ is large enough, $*(r:), the probability of undertaking a 

* By the expression " r~asonable supply of data" roughly the following is meant: 
Given th~ functional form of th? distribution and of the response, the experimental 
data suffice in order to construct confidence intervals (with given confidence coefficient) 
for k and (J, smaller than prescribed intervals. 
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schcduled replacemcnt, becomcs very :lmall so that the optimal strategy 

is (practically) associated with the rule of having unscheduled replace­

ments only regardless of the class to which the intensity function belongs. 

We find it difficult to make general statements about the robustness of 

our model if only because the set of feasible distributions (all possessing 

identical expectations and identical variances) appears not to have a 

simple metric us~ful for our purposes: we have no obvious way of estab­

lishing whether two different distribution assumptions are near to each 

other or are far apart. On a more pragmatic level we found that com­

bining a given resp()ns~ function with each of the tree specific investiga­

tions usually yielded similar results* in terms of q*, though frepuently 

the T*-s and the m*-s were rather different. Moreover substituting one 

response function for the other introduced no serious change if good 

care was taken that the two response functions were close to each other 

within the interesting range. 

The final (and possiby most serious) difficulty is concerned with 

the the assumed property of time-homogeneity of the response. In prin­

ciple, this property is verifiable but frequently in practice this does not 

appear to be feasible. The mathematical analysis of this paper hinges 

on the assumption and ond one cannot expect to retain robustness of 

the model-in the sense of approximate validity of the final results-in the 

absence of this property. Indeed it is difficult to hold on to any "final 

results" under such circumstances since the notions of k and j3-both 

appearing in final formulas-are defined only by means of this property. 

This fact places limitations on the (l.pplication of the theory of this 

paper, but at least they are clear and easily recognizable. 

It is our experience that the theory of preventive maintenance 

presented here closely reflects a class of real life phenomena. The area 

of its applicability is demarcated in the above Discussion. 

* That is, the positive cost increment-brought about by using parameters optimiz~d 
on assumptions other than those representing "reality "-is small compared with total 
optimal expenditure q*. 
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