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SUMMARY 

The purpose of this note is to state and give a simple proof of all' 
equivalence theorem associated with maximizing (minimizing) a certain 
nonlinear function subject to linear equalities. Two duality principles are 
also derived from this equivalence theorem. 

INTRODUCTION 

An equivalence theorem gives the necessary and sufficient conditions. 
for solving certain constrained maximization problems.1) There does not 
seem to be in the literature an explicit statement of the equivalence 
theorem that is associated with maximizing a differentiable concave fun­
ction subject to linear equalities, despite the fact that such a theorem is 
nothing but a special case of the more general and powerful Kuhn-Tucker 
Equivalence Theorem [7, Theorem 3]. In what follows we shall state 
such a theorem and give an elementary proof that is considerably simpler 
than that of Kuhn and Tucker. 

In certain cases duality principles may be derived from an equiva­
lence theorem [9J, [5J, [6J, and [8]. A duality principle relates a con­
strained maximization and a constrained minimization problem in such a 
way that the existence of a solution to one of these problems insures a 
solution to the other and the extrema of the two problems are equal. One 
of the two problems is called the primal and the other the dual. 

Once again the literature does not seem to have an explicit and 
precise statement of the duality principles which we shall derive in this 
note from the equivalence theorem mentioned earlier. For instance, 
Courant and Hilbert [2J have a somewhat heuristic discussion of this 
duality that lacks the explicitness of the principles given here. Our results 

1) A minimization problem may be readily reduced to a maximization problem by multiplying:. 
the function to be minimized by-I. 
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are again special cases of the more general results, [4J, [9], [5J, [6], [8J, 
but are more explicit and in some cases more precisely stated. 

In what follows, matrix notation will be used. With obvious excep­
tions, lower case Roman letters will denote column vectors, capital letters 
matrices, and Greek letters scalars. A prime will indicate the transpose 
of a vector or matrix. Thus x'y will indicate the scalar product of the 
row vector x' by the column vector y. The operators \l, \l" and \l v are 
colum vectors whose components are respectively 

(a:l' ...... , a!-J', (/~, ..... , a~J', (a~~' ...... , a~J'· 
A function <p(x) is convex if for 0;£ a;;;; 1 

(l-a)<p(xl) +a<p(x2) ~<p[(1-a)xl+ax2J 

for all Xl and x 2 in the (convex) region of definition of <p(x). If <p(x) is 
convex and differentiable, then it follows from the definitions of convexity 
and differentiability that 

<p(Xl) -<pC X2) ~ (X l _X2)'\l <pCX2). 

A function is strictly convex if the equality sign holds only for Xl =x2 

or a=O, 1. 
A function <p(x) is concave if --<p(x) is convex, that is the above 

two interpolation inequalities hold with;;;;instead of~. 

EQUIV ALENCE THEOREM 

Theorem. If <p(x) is a differentiable, concave, scalar function of the 
n-vector x, then the necessary and sUJJicient condition that XO be a solution 

of the maximum problem 
Maximize <p(x) 
subject to Ax-b=O, 

where A is an m by n matrix of rank m(m;;;;n) and b 
that XO and some m-vector UO satisfy 

cjJ(x, UO) ;;;;cjJCxo, UO) =cjJ(XO, u) 

for all x and m-vectors u, where 

cjJ(x, u)=cjJ(x) +u'CAx-b) 

(1) 

(2) 

is an m-vector, is 

(3a, b)2) 

(4) 

2) The inequality between tjJ(x, u') and tjJ(x', u'; is referred to as (3a) and the equality between 
tjJ(x', u') and tjJ(x', u) as (3b). 
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Proof of Sufficiency 
Assume that (XO, UO) satisfies (3a, b). Then by (3b), (u-uo)'(Ax 

-b)=O for all u. Thus Axo-b=O and XO satisfies the constraints (2) of 
the maximum problem. Now 

rp(x)+uO'(Ax-b)=cjJ(x, UO) 

~cjJ(XO, UO) (by 3a) 
=rp(XO) +uO!(AxO -b) 

=rp(XO) (by 3a) 
Hence rp(XO)~rp(x) for Ax-b=O. This completes the sufficiency proof. 
Proof of Necessity 

From the elementary theory of Lagrange multipliers [lJ, the neces-­
sary conditions that XO be a solution of the maximum problem (1), (2) 

are that there exists an m-vector UO such that the gradients of the La­
grangian function cjJ(x, u) with respect to x and u vanish at (XO, UO) 

that is 
V' cjJ(XO, UO):= V' rp(XO) + A'uo =0 

V'ucjJ(XO, uO):=Axo-b=O 

The validity of these conditions is insured A having rank m. Now 
cjJ(XO, u)=rp(xO)+u'(AxO-b) 

(5) 
(6) 

=rp(xO)+uo'(AxO-b) (by 6) 

=cjJ(XO, UO) 

=rp(XO) (by 6) 

~rp(x)-(x-xo)'V'rp(XO) (by the concavity of rp) 
=rp(x)+(x-x°),A'uo (by 5) 

=rp(x) +uO'(Ax-AxO) 

=rp(x)+u°,(Ax-b) (by 6) 
=cjJ(x, UO) 

Hence cjJ(x, UO) ~cjJ(XO, UO) =cjJ(XO, u), and the necessity proof is complete_ 

DUALITY THEOREMS 

Theorem I If XO is a solution of the primal (maximum) problem 
(1), (2) with rp(x) and A satisfying the restrictions thereof, then there exi­
sts some m~vector UO such that (XO, UO) is a solution of the dual problem 

Minimize cjJ(x, u):=cjJ(x)+u'(Ax-b) (7) 
subject to V'if; (x, u)§ V'q; (x)+A'u=O (8) 

Also rp (XO)=cjJ (XO, UO) (9) 
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Theorem 11 If ip(x) and A satisfy the restrictions mentioned under 
the maximum problem (1), (2) and if in addition ip(x) is twice continuously 
differentiable and strictly concave3) in the neighborhood of xo, then the 
converse of Theorem I is true, namely, thatf if (XO, UO) is a solution of 
the dual problem (7), (8), then XO is a solution of the primal problem 
(1), (2). Also equation (9) holds. 

Proof of Theorem I: 

Suppose that XO solves the primal problem (1), (2), then by the 
Equivalence Theorem proved earlier XO and some UO must satisfy (3a, b). 
Hence by (3a) 

Vq;(XO, uO)=V.p(xO)+A'uo=O. 
and thus (XO, UO) satisfies the dual constraints (8). From (3b) we have 
the fact that XO satisfies the primal constraints 

Now 
Axo -b=O. (10) 

CP(x,u)-CP(xO,uO)=ip(x)+u'(Ax-b)-ip(xO) (by 10) 
G(x-xo)'Vip(x)+u'(Ax-b) (by concavity of CP) 

=x'(Vip(x) + A'u) -xo'Vip(x) -u'b 
=x'(Vip(x)+A'u)-xo'Vip(x)-u'AxO (by 10) 
= (x-x o)'(Vip(x)+A'u) 

Hence CP(x,u)GCP(XO,UO) for Vq;Cx)+A'u=O, which is precisely the 
statement that (XO,UO) is the solution of the dual problem (7), (8). Equ­
ation (9) holds as a consequence of (10). This completes the proof. 

Proof of Theorem 11: 

This will be proved by showing that the sufficient conditions (3a, 
b) which guarantee that XO is a solution of the primal problem follow from 
the dual solution. 

Suppose (XO, UO) solves the dual problem (7), (8). The necessary 
conditions for (XO, UO) to be such a solution are that the gradients with 
respect to x, u and v of the Lagrangian function 

(J(x, u, V)=ID(x)+u'(A.r-b)+v'(Vip(x)+A'u) 
must vanish for (XO, UO) and some 1/0, where v is an n-dimensional vector 

3) For quadratic functions it is sufficient to require that rp(x) be merely concave and twice 
differentiable. See [3J. 
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of Lagrange multipliers. Thus4) 

\lO(XO, uO, vO)=\lqJ(xO)+A'uo+\lvo'\lqJ(xO)=O (11) 

\luO(XO, uO, vO)=Axo-b+Avo=O (12) 

\lvO(XO, uO, vO)=\lqJ(xO)+A'uo=O (13) 
. Pj2qJ(XO) 

If an n by n matrix R is defined whose i j th element IS a a then 
Xi Xj 

equation (11) becomes after sustitution from (13) 
Rvo=O (14) 

Because qJ(x) is assumed to be twice continuouslydiffer entiable and strict­
ly concave in the neighborhood of xO, R is a symmetric, negative definite 
matrix and thus nonsingular. It follows from (14) that VO =0. Equation 
(12) becomes 

and hence </l(XO, UO)=</l(XO, u). 

Now since (XO, UO) satisfies (8) 
\l</l(XO, uO)=\lqJ(xO)+A'uo=O, 

and since </lex, u) is a concave function of X 
</lex, UO)-</l(XO, UO)-;i,(x-XO)'\l</l(XO, UO)=O 

(15) 

Hence </lex, UO)-;i,</l(XO, UO). (16) 

Thus conditions (3a, b) follow from the relations (15), (16) and XO is a 
solution of the primal problem (1), (3). Equation (9) holds because Axo 

-b=O. This proves Theorem H. 
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