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1. INTRODUCTION 

The theory of queues is concerned with the development of mathe­
matical models to predict the behavior of systems that provide services 
for randomly arising demands. Many types of systems that have been 
studied in the theory of queues deal with the following type of situation: 
The succesive service times of the customers are independent of the 
queue length. 

The problems in which the service time is dependent on the queue 
length, however, arise from the properties of the customers and the 
capacity of the server. This paper is concerned with such a problem. 

In § 2 we define the system with such a service mechanism and in 
§ 3 we refer to the two lemmas due to Takacs [3, 4J in order to investi­
gate the stochastic properties of the queue length and of the busy period 
of the system. In § 4 we consider the transient behavior of the queue 
length and in § 5 we consider the limiting behavior of the queue length. 
In § 6 we consider the distribution of the busy period. In the last section, 
we consider a special case. 

In [5J by applying the method of the imbedded Markov chain [1, 2J 
the author obtained some theorems which provide criteria for determining 
whether the system is ergodic, transient, or recurrent, and obtained the 
equilibrium distribution of the queue length and the waiting time. 

In this paper the approach we employ is based on the above method. 

2. DESCRIPTION OF THE SYSTEM 

The description of the queueing process considered in this paper 
consists of three parts: 

Ca) Input Process: The input process is assumed to be a homoge­
neous Poisson process of density i1. Suppose customers arrive at the counter 
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148 Takeji Suzuki 

at times 7'1, 7'2, ······'7'n' .... · (0<7'I<7'2< ...... <7'n< ...... ). Then the inter­
arrival times 7'n-7'n-l (n=l, 2, ...... ,7'0=0) are independently and identically 
distributed random variables with distribution function P{7'n-7'n-l~X} = 
F(x) where 

(1) 
_{l-e-'X for x~O 

F(x)- 0 for x<O 

(b) Queue Discipline: The policy followed here is the" first come­
first served" policy. 

(c) Service Mechanism: There is only one server at the counter. 
A service period commences only when there is some customer waiting 
in the queue to be served. 

Let NI, N, ...... , Nz be integers such that 0<N1<N2< ...... <Nz<00. 
Define No=O and NZ+l =00. Let us denote by H1(x), H 2(x), ...... , H Z+1(x) the 
1+ 1 service time distributions and we shall suppose that such distribution 

H.(x) has a expected value p.= 100 xdH.(x) (s=l, 2, ...... ,1+1). Let Xn 

denote the service time of the nth customer (n=l, 2, ...... ). The service 
times Xn (n=l, 2, ...... ) are assumed to be mutually independent positive 
random variables and also are independent of the sequence {7'n} too. 

Let t;(t) denote the queue length at the instant t i. e. the number 
()f customers waiting in the queue or being served at the instant t. 

Let 7'/, 7'2', ...... , 7'n', ...... denote the instants of the succesive depar­
tures. Define t;n=t;(7'n'+O) so shat t;n is the queue length immediately 
after the departure of the n th customer. 

Let 7'/', 7'2", ...... , 7'n", ...... denote the instants at which the services 
()f customers commence. The service time Xn of the nth customer is 
assumed to be distributed according to the distribution function H.+ 1(x) 
if N.+1~t;(7'"n)-2N'+1 (s=O, 1, ...... , I). 

3. AUXILIARY LEMMAS 

Throughout this paper, we shall use the following lemmas due to 
Takacs [3, 4]. Let Hex) denote the distribution function of a positive 

random variable and let p= 100 xdH(x)<oo. 

Introduce the transform cjJ(s) = 100 e-'xdH(x) for R(s)~O. 
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Lemma 1. If Ca) R(s)~O, Iwl<l or Cb) RCs) >0, Iwl~l or Cc) }.p. 

>1, RCs)~O, Iwl~l where O<},<oo, then the equation 
z=wsb[s+}.(I-z)] 

has exactly one root z=r(s, w) in the unit circle Izl <1. We have 
_ = ~ _}.W)J-l (dJ- 1 [sb(y)]i) 

(2) res, W)-WL., d j-l 
j~lJ. Y 11=1+8 

If res, w) is defined by (2) for R(s)~O, Iwl~l, then in this 
extended domain rCs, w) is a regular function of sand w, Ir(s, w)l~l 

and z=r(s, w) satisfies the equation 

Let 
(3) 

(4) 
and 

(5) 

z=wsb(s--}.(l-z)). 

We shall introduce the following abbreviations: 

r(s)=r(s, 1), 

g(W)=i'(O, w), 

(I)=r(O, l)=='rCO)=g~I). 

Lemma 2. If AP. > 1, then (I) is the exact one positive real root of 
the equation 

z=sb[}.(I-z)] 

and (1)<1. If }.p.~I, then (1)=1. Further we have 

(6) r'(O)= --~ 
Ap.-l 

if }.p.<1 

=00 if }.p.=I, 
and 

(7) g'(I)= }-
1-}.p. 

if }.p.<1 

=00 if }.p.=1. 

4. THE TRANSIENT BEHA VIOR OF {~n} 

Let lIn (s) denote the number of customers arriving at the counter 
during the nth service time in which the service time has the distribution 
function H.cx). Then we see that if N8+1~~n~N8+!' 

(8) ~n+1=[~n--1]++l.i;:11 

where [a]+=Max (a, 0). Hence the sequence {~n} of random variables 
forms a homogeous Markov chain. We shall say that the system is in 
state El at the nth step if ~n=j, so that the state space is {Eo, El, _ .. "., 
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0 

• • 
• 
N, 

En'·····}. From (8) the matrix of transition probabilities llptkll (i, k=O, 1, 
2, ...... ) where 

Pik=P{~n+! =kl~n=i} 

has the following form. 

(n=O, 1, 2, ...... ) 

0 

(') 
Po 

p(1) 
0 

1 •••••••• N, - 1 N, •••••••••• Nz - 1 N2 • • ••• 

, I ' 

(1) .: : : P, ••••••• ~ •••••• ~ •••••••••• ~ ••••••••••••••••••• 
~ I 

(1) t I I I 

P 1 ••••• • • ~ •••• • • ,e • • • • • • ••• • -I- .... • ...... • .... • • • 
, 
I 

p~') 
(1) I , P ••••••••• ~ ••••••••••••••••••• 

1 , I 

I I 
- - - - - ---r - - --r- - --

N + 1 
(2) : : 

p ••••••••• ~ ••••••••••••••••••• 
o I I .' 

• 

100 ot)j . 
Wherepj')= e-lt-.~,-dH.(t), J=O, 1, 2, ...... , s=1, ..... , 1+1. 

o J . 

I 

I 
(2) 

p •••••• 
1 

0) 
Po •••• 

The chain is aperiodic and irreducible. Let us denote by Ilpi1) II the 

nth power of the matrix Ilpijll. Then we have that limpi1)=l'rj always 
1Z~OO 

exists and is independent of i; and further that either l'rj>O for any j or 
l'rj=O for any j. The chain is ergodic if and only if l'rj>O for any j. With 
respect to the states of the chain {~n} the following results (a) to (c) 
have been obtained in [5]. 

(a) The chain {~n} is ergodic if and only if APl+! < 1. 
Cb) The chain {~n} is recurrent if and only if A.uI+!~1. 
(c) The chain {~n} is transient if and only if Apt+! > 1. 

Let P8=AP8 (s=l, 2, ...... , 1+1). We introduce the generating fun-
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= 
ction of the sequence {1!"J}, P(z) = L 1!"nZn for Izl ~1 and further we define 

n=J 

~ M 
Q.(z)= L 1!"nZn for Izl~1 (s=2, 3, ...... , 1+1) and Ql(Z)=L 1!"nZn for 

n=N,-1+1 'U=1 

Izl~1. Let Qs*=~·Q) if 1!"o>O. Then if pl+l<I, the following relation 
1!"0 

has been shown in [5J: 

(9) I-P8=1!"a[I+ ~Qi*(Pi--PS)J (s=I,2, ...... , 1+1). 

If we put 

fjJ.(a) = 1= e-axdH.(x) 

then we have the equation 

for R(a)~O, 

= 
(10) LP)"zJ=fjJ.[A(1-Z)J 

j=O 
for Izl~l, s=l, 2, ...... , 1+1. 

Assuming that the server is free at time t=O, ready to start the 
first service, we take throughout this paper "<0'=0 and ';0=';(0). 

m 

We denote by 11:;'[V(Z)J the partial sum L ViZi in the power series 
i=n 

expansion of a function V(z). 
The higher transition probabilities 

p1~l = P{ I; n = kil;o = i} 

are given by the following 
Theorem 1. For Izl ~1 and Iwl <1 we define the following functions: 

(11) A1(z, w)=w(z·-I)fjJl[A(I-z)], 
(12) B1(z)=zi+!, 

(13) 

(14) 

(15) 

8 

A.+l(Z, w)=A1(z, w)+ LwAW(z, w) 
j=l 

(fjJj[A(l-Z)J -fjJJ+l[A(I-z)]) 
(s=l, 2, ...... , I), 

s 

B.+l(z, w)=B1(z)+ LwBW(z, w) 
j=1 

(fjJj[A(l-Z)J -fjJ.+l[A(I-z)J) 
(s=l, 2, ...... , I), 

A (8l( )_ N. [. A.cz,w) ] 
N Z, W -I1N.-l+1.Z_wfjJ.[A(I_z)J ' 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



152 Takeji Suzuki 

A(I)( )_ Nl[ A1(z, w) ] 
N Z, W -ao z-w1'I[A(I-z)] , 

B(·) ( )- N. [ B.(z, w) ] 
N Z, W -aN_.+l z-w1'.[A(I-z)] , 

and B(')()- Nl[ B1(z, w) ] 
N Z, W -ao z-w1'I[A(I-z)] , 

Let g(w) be the root in z of the equation 
z=w1't+1[A(I-z)] 

in the unit circle Izl <1 and assume A t+1(g(w), w)=O. Then 

(16) Q(z, w)= L Lpi~)wnz/c 
n=Ok=O 
At+1(g(w), w)Bt+1(z, w)-At+1(z, w)Bt+1(g(w), w) 

(z-w1't+1[A(1-z)])At+1(g(w), w) 

for Izl;$;1 and Iwl<l. 
Proof. By the theorem of total probability, we can write that 

(17) 

Thus we have 

(19) 

and 
Nl N2 

(19) Pi~+I)=pi~)P(l)+ LPlj)Pil2j+1+ L Pl~)Pic22j+l+""" 
j=1 j=Nl+l 

k+l 
+ j=~+lij)Pic'~}l1 if N.;$;k;$;N.+1-1 (s=I,2, ...... , I). 

Now for fixed i and Izl ;$;1, introduce the generating function 
= 

(20) U)n)(z) = Lpi~)Zk, 
k=O 

then by (18) and (19) we have 
(21) U10)(z) =Zi, 

(22) Ua!)(z) = Ul!)(z), 

(23) Uj1)(z)=zH1'.[A(I-z)] 

and 

(24) zUin+1)(z) =z1'I[A(I-z)]Pi~) + (1'I[A(I-z)] -1'I+l[A(1- z)]) 
~ ~ 

LziPij)+······+(1't[A(1-z)]-1't+1[A(I-z)]) L zip1j) 
1=1 j=N!-l+1 
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(n=l, 2, ...... ). 

Further if we introduce the generating function 
00 

(25) Q(z, w)= L Ujn)wn= L Lpl~)wnz\ 
n=O n=Ok=l 

which is convergent if Izl~1 and Jw <1. Furthermore we introduce the 
generating function 

00 

(26) Qik(W) = L pl;;'wn for Iwl <1, 
n=O 

and we define 
NI 

(27) P1(z, W)= LQin(W)Zn, 
n=o 

and 
N. 

(28) p.cZ, W)= L Qin(W)Zn (5=2, 3, ...... , I), 
n=N,-1+1 

then by (21)-(24) we obtain that 
(29) Q(z, W)={Zi+l+ w4'1[A(I-z)](z-I)Qw(w)+wP1(z, w) 

(4'l[A(I-z)] -4'z+1[A(I-z)])+······ +wPz(z, w)(4'z[A(I-z)] 

-4'Z+1[A(1-Z)])} / (Z-W4'Z+l[A(1-Z)])). 

Now Q(z, w) is a regular function of z if Izl ~1 and Iwl <1. In this domain, 
the denominator of (29) has one and only one root z=g(w) in the unit 
circle Izl <1 by lemma 1. Consequently z=g(w) must be a root of the nomi­
nator of (29) too. Hence to determine QiO(W) we have to observe the follo­
wing relations between QiO(W), P1(z, w), ...... , and Pl(z, w). By (18) and 
(19) we have 

(30) 

( Qio(w)-Pl~) =Pil)WQiO(W) +Pci1!WQi/W), 

Qil(w)-Pl?) =Pil) WQiO (w ) +Pil)WQil(W) +Pcil)WQi2(W), 

Qi,N.-1(W) -Pi~1"-1 =Pi);.~_lWQiO(W)+Pi);.~_lWQil(W) 
+Pw'_2WQi2(W) + ...... +Pcil)wQiN.(w), 

QiN,(w) -pjo)'t =pW,wQw(w)+PW,WQil(W) +Pi);.i_1wQi2(W) + ..... . 
+Pil)WQIN,(W)+P62)wQi,N,+1(W), 

(31) Qi,N.-1(W) -Pl~lv2-1 =Pi);.;_lWQiO(W) +Pi);.;_lWQil(W) +Pw'-2 

WQi2(W)+······ +Pi);.;-NlWQi,N,(W)+PW,-Nt-l 

WQi,N,+1(W) + ...... +P62)wQi,N.(W), 

and so on. 
From the above relations we see that Qtn(W) (n=l, 2, ...... ) are 
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able to write down in linear forms of QiO(W) and further the relation (30) 
is similar to the corresponding one in the queuing system M/G/1 (e. g. 
[1]) : 

{Jo(z, w) = {Zi+1 +wsbl[A(l-z)] (z-l)QIO(w)} / {z-wsbl[A(l- z)]} 

In the other words, for j=O, 1, .... '., NI we have 
coefficient of Zi in {J(z, w) = coefficient of zJ in {Jo(z, w). 

Now we shall proceed to obtain the expression of QiO(W). In the 
first we shall treat the case 1=1 and denote {Jo(z, w) by {JI(Z, w) in this. 
case. 

Let us define the following functions 
AI(z, w)=w(z-l)sbl[A(l-z)], 
B I(z)=Zi+1, 

AW(z, W)=I1t'{z--W~I~[~(~2z):rJ 
d B (1)( )_ Nl[ BI(z) ] 

an N z, w -110 z- wsbl[A(l-z)] , 

Then we obtain that 
(32) PI(z, w)=AW(z, w)Qio(w)+BW(z, w). 

In the case 1=1, we have 
(33) {JI(Z, w)= {zi+1+ wsbl[A(l-z)](z-l)Qio(w)+wPI(z, w) 

(sbl[A(l-z)] -sbz[A(l-z)])} / {z-wsbz[l-z)]}. 

We now define the following functions 
Az(z, w)=AI(z, w)+wAW(z, w)(sbl[A(l-z)]-sbz[A(l-z)]), 

Bz(z, w) =BI(z)+wBW(z, W)(sbl[A(1-Z)] -sbz[l-z)]), 

A(Z)( )_ Nz [ Az(Z, w) ] 
N Z, W -I1N ,+1 Z-Wsbz[A(l-Z)] , 

and B (Z) ( ) - N, [_~z(Z'l£L-J 
N z, w -I1N, + 1 z- w sbz[A(l-z)] . 

Then we have 
(34) P 2 (z, w)=AW(z, w)Qio(w)+BW(z, w). 

Along the same lines as the above procedure, we define the following: 
functions 

• 
A.(z, w)=AI(z, w)+w ~ AW(z, w)(sbj[A(l-z)] -sb.[A(l-z)]), 

. )=1 

8 

B.(z, w)=BI(z)+w ~ BW(z, w)(sbj[A(l-z)] -sb.[A(l-z)]), 
J=1 
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AW(z, w)=a%:.,+1[A.(z, w)/{z-wy'i.[A(I-z)]}], 

and B1)(z, w)=a%:.,+1[B.(z, w)f{.z-wy'i.[A(l-z)]}] 

(s=3, 4, ...... , 1+1). 
Then we have 

(34)* p.(z, w)=AW(z, w)Qio(w)+BW(z, w) (s=3, 4, ...... , 1+1). 

By (32), (34) and (34) * we can rewrite (29) in the following form. 
(35) Q(z, w)={A'+I(Z, w)Qio(wHB,+I(Z, w)}f{z-WsV,+![A(l-Z)]}. 

Hence if A H1 (g(W), w)""O then we get 
(36) Qio(w)=-B,+!(g(w), w)/A'+l g(w(w), w). 

Finally we obtain (16) if we insert (36) in (35). 

5. THE LIMITING BEHAVIOR OF {~n} 

Now we consider the relation between the limiting behavior of {~n} 
and the result which has been obtained in [5]. 

Theorem 2. For Izl::S;;1 we define the following functions: 
(37) Ql(z)=(z-I)y'il[A(I-z)], 

(38) 

(39) 

and 

s 

Q.(Z)=Ql(Z)+ L Q}?)(z)(y'ij[A(I-z)] -y'i.[A(I-z]) 
}=1 

(s=2, 3, ...... , 1+1), 

QW(z)=a%:,+JQ.(Z)/ {z-y'is[A(I-z)]}], 

QW(z)=af('[Ql(z)/ {z-y'il[A(l-z)]}]. 

If PHI <1, the limiting distribution 
lim P{~n=k} =1:"k (k=O, 1, 2,.·····) 
n_oo 

exists and is independent of the initial distribution and and for Izl ~1 we 
have 

(40) i: 7rkZk=-, }_=et+ ____ • Q'+l(z) 
k=O 1+ LQt(Pi--P'+l) Z-y'iI+l[A(I-z)] 

1=1 

QI+l(Z) 
=7r0---------

Z-y'iI+l[A(l--z)] . 

Proof. Clearly we observe in § 4 that the sequence {~n} is an irre­
ducible and aperiodic Markov chain and also we have lim P{~n=k} =7r/c 

n->= 

always exists and is independent of the initial distribution. Furthermore, 
either every 7rk>O and {7rd is a probability distribution or every 7r/c=0. 

Using the Abel's theorem we have 
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00 00 00 

~ 1I"dl;=lim(1-w)~ ~pl~)wnzk for any i, 
k=O w-l n=Qk=O 

and in order to calculate the right side of the equation we have to use 
(16) are lemma 2. 

Now we define the following functions: 
Ql(z)=(z-l)sUl[A(l-z)], 

and QW(z) =af' [Ql(z)/ {Z-sUl[A(1-Z)]}]. 

Then we have 

QW(z)=lim AW(z, w) 
w~1 

and Qi=Iim QW(z). 
6-1 

The avoid a complicate calculation we shall consider the case I=L 
The case 1"i;;,2 will be treated in the same way. Then we have 

Q(z, w)={zi+!+wBW(z, W)(sUl[A(1-Z)]-sU2[A(1-z)])+(A1(z, w) 

+wAW(z, w»(sUI[A(l-z)] -sU2[A(1-z)])Qio(w)} / {z-wsU2[A(1-z)]} 

hence 

r (1- )Q( )=P~[AQ.-Z)](z-1)+QW(z)(sUl[~(1-z)]-sU2[A(1-Z)]) 
!~ w z, w z-sU2[A(1-z)] . 

lim (l-w)QiQ(w)=-~~~- ·lim(l-w)QiQ(w), 
W_I z-sU2[A(1-z)] w_1 

where Q2(Z) =Ql(Z) +QW(z)(sUl[A(l-z)] -sU2[A(1-Z)]). 

Using lemma 2, we have that if p2<1 

Noting that 

g(w)--41 (w--41) and g'(1) = __ 1 __ ~. 
1-p2 

QiO(W) = {- [g(W)]i+l_ (wsUI[A(l-g(w»] -g(w»·BCj)(g(w), w)} / 

{w(g(w)-l)sUl[A(l-g(w»] +(wsUl[A(l-g(w»] -g(w»AW(g(w), w)}, 

we have 

lim (1-W)QiO(W) = 1 ( 1 ) 
w-l __ + 1+-~---- Q* 

1-p2 1-p2 1-p2 1 

1 

1-p2 
=-----=11"0 

1+Cpl-p2)Qt . 

We shall prove now a more general theorem than theorem 1. 
Theorem 3. Let us define 
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(41) Un(s, z)=E{e-·(,· .. ,-,·I)~'; ... } (n~O) for R(s)~O 
and Izl ~l. Then if A Z+1(g(w), w)~O we have that 

'" 
(42) wzU(s, z, W)=WZL Un(s, z)wn 

n=o 

=[AZ+1(g(w), w)[(z-w1'!+l[J(l-z)])Bz+1(s, z, w) 

+w1'Z+1[s+J(l-z)]Bz+1(z, w)]-Bz+1(g(w), w) 

[z-w1'z+1[.A.(l- z)]) {WZ1'l[S+ J(l-z)](1'(s)-l) 

+Az+1(s, z, w)}+w1'Z+1[s+J(l-z)]Az+1(z, w)]] 
l(z-w1'z+1[,l(l-z)])Az+1(g(w), w)-zi+! 

for R(s)~O,lzl~l and Iwl<l, where 

1'(S) = 1'" e-S"dF(x), 

I 

A Z+1(s, z, W)=W1'l[s+J(l-z)](z-l)+ LwAW(z, W)(1'j[s+J(l-z)] 
j~l 

-1'Z+1[s+J(l-z)]), 
I 

and B Z+1(s, Z, w)=BW(z)+ LwBW(z, w)(1'j[s+.A.(l-z)] 
j~l 

-1'Z+1[s+J(l-z)]). 
Proof. We can write 

T"n+1'=T"n'+Xn+1 +enon (n=l, 2, ...... ) 

{
I if ~n=O 

where en = 0 if ';n>O 

and {Xn} (n=l, 2, ...... ) and {On} (n==O, 1, 2, ...... ) are independent seque-
nces of mutually independent random variables and {On} are random va­
riables with distribution function P{iin~X}=F(x) given by (1). Using (8) 
for n~O we get 

Un(s, z)=E{e-S( .... '-.. )z· .. ·} 
= E {e-'(Z"+l+."a.) ze1l+ 1 } 

=P{';n=OI~o=i} ~ ('" ('" e-S("'H)zke-l",Ox)k dH1(x).A.e-aldo 
k~OJo Jo k ! 

'" ('" OX)k 
+P{';n=ll';o=i} t;oJo e-S"zke-l"---;;!dH1(x) 

+P{~n=Nll';o=i} L e-S"zN.-l+ke-l"_-dH1(x) '" 1'" OX)k 
k~O 0 k ! 

+P{';n=N1 +11';o=i} L e-S"zN.+ke-l"_-dH2(x) '" 1'" Ox)!: 
; k~O 0 k ! 
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=sf!I[s+A(l-z)] {Pi:)sf!(s)+pl~)+pl~)z+""" +Pjr;.)lZN.-1 

~sf!2[s+A(1-z)] {Pt1-1+1ZN'+ ...... +Pl~1-2ZN.-1} 

+-sf!l[S+ A(1-Z)] {Pl~1-'_l+1ZN.-1+ ...... +Pl~1-,ZN.-1} 
+sf!Z+1[S+ A(l-z)] {Pl~1-'+IZNI+ ...... } 

= l {sf!I[S+A(l-z)]Pi:)(sf!(s)z-l)} 
z 

+sf!I[S+A(1-Z)] -sf!l+1[s+A(l-z)](pl:)+PI~)z+······ +Plr;)lzN') 

+sf!z[S+ A(l-z)] - sf!Z+1[s+ A(l-z)] (Pl~1-1-1+1zNI-'+1 ..... . 

+P!~1-,zNIHsf!l+1[s+A(l-z)] Ufn)(z)} 

where ut)(z) is defined by (20). If we define 
= 

U(s, z, w)=~ Un(s,z)wn for Iwl<l, 
n=O 

we have that 
zU(s, z, w)=sf!I[s+A(l-z)]Csf!(s)z-l)Qio(w) 

-!- (sf!I[S+ A(l-z)] -sf!l+1[S+ A(1-z)])P1(z, w) 

+- (sf!l[s+A(l-z)] -sf!l+1[s+A(l-z)])Pz(z, w) 

+sf!l+1[s+A(l-z)]Q(z, w) 
where QiO(W), P 1(z, w), ...... , Pl(z, w) and Q(z, w) are defined by (26), 
(27), (28) and (25) respectively. Using (35), we get 

zU(s, z, w)={sf!I(s+A(l-z)](sf!(s)z-l)+AW(z, w)(sf!I[s+A(l-z)] 

-sf!l+1[s+A(l-z)])+ ...... +AW(z, W)(sf!l[S+A(1-Z)] 

-sf!l+1[s+A(l-z)]}Qio(w)+ {B~J.l(Z)(sf!I[S+A(1-Z)]) . 

-sf!l+I[S+A(l-z)])+······ + BW(z, w)(sf!l[s+A(l-z)] 

-sf!l+l[s+A(l-z)])} +sf!l+1[s+A(l-z)]Q(z, w). 

Now if we define 
l 

A l+1(s, z, w)=wsf!l[s+A(l-z)](z-l)+ ~wAl4-(Cz, w)(sf!j[s+A(l-z)] 
J=1 

-sf!z+b+ACl-z)]), 
l 

and B l+1(s, z, w)=BWCz)+ ~wBl4-)Cz, w)(sf!j[s+A(l-z)] 
j=1 

-sf!Z+1[s+A(l-z)]), 
then we get 

wzU(s, z, w)= {wsf!l[s+A(l-z)]Csf!(s)z-l)-wsf!l[s+A(l-z)]Cz-l) 

+Al+1(s, z, W)}QiO(W)+ {BZ+1(s, z, w)-B~V(z)} 

+Wsf!l+I[S+A(l-z)]QCz, w) 
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= {wzsbl[s+A(I-z(](sb(s)-I)+ A Z+1(s, z, W)}QiO(W) 
+ B Z+1(s, z, w)+wsbZ+1[s+A(I-z)]Q(z, W)-Zi+1 

=[AI +1(g(w), w)[(z-wsbl+1[A(I-z)])Bl+1(s, z, w) 
+Wsbl+![S+A(1-Z)]Bz+!(z, w)]-BI+I(g(w), w) 
[CZ-Wsbl+![A(I-z)]) {wzsbl[s+A(I-Z)](sb(s) -1) 
+AI+I(s, z, w)}+wsbz+![S+A(I-z)]AI+!(<:, w)]]/ 
(z -Wsbl+![A(I-z)])AI+I(g(w), w) -Zi+! 

provided Al+!(g(w), w):'\=O. 
Remark 1. If we put s=O in the above theorem, we get theorem 1. 

6. THE DISTRIBUTION OF THE BUSY PERIOD 

Let us denote by Gnk(x) the probability that the busy period is at 
most of length x, consists of at least: n services and at the end of the nth 
service, k customers are present in the queue. Denote by Gn(x) the pro­
bability that a busy period consists of n services and its length is at 
most x. Then we have that 

(43) 
Write 

(44) 

and 

(45) 

then by (43) 
(46) rn(s)=rno(s). 

if R(s)~O 

if R(s)~O, 

Theorem 4. For R(s)~O, Izi~l and iwi<l, we define the following 
functions: 

(47) CI(s, z, w)=-wsbl[s+A(I-z)], 
(48) DI(s, z, w)=-zCI(s, z, w), 

i 

(49) Ci(s, z, w)=CI(s, z, W)+WLCW(S, z, w)(sbj[s+A(I-z)] 
)=1 

(i=2, 3, ...... , 1+1), 
i 

(50) Di(s, Z, w)=DICs, z, w)+wLD;fl(s, z, w)(sbt[s+A(I-z)] 
i~1 

-sbi[s+A(I-z)]) (i=2, 3, ...... , 1+1), 

(51) CW(s, z, w)=aZ:_1+I[Ci(S, z, w)/{z-wsbi[s+A(I-z)]lJ 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



160 

(52) 

and 

Takeji Suzuki 

(i=2, 3, .... ", I), 
q~)(s, z, w)=agrl[C1(s, z, w)/{z-w¥'l[s+;((l-z)]}], 

DW(s, z, w)=a~:_1+1[DtCs, z, w)f{z-W¥'t[s+;((l-z)]}] 
(i=2, 3, ...... , I), 

DW(s, z, w)=agrl[D1(s, z, w)/{z-w¥'l[s+l(l-z)]}]. 

Let res, w) be the root in z of the equation 
Z=W¥'l+l[S+l(l-z)] 

In the unit circle Izl<l, and assume Cl+1(s, res, w), w)*O for Iwl~1. 

Then we have that for R(s)~O and Iwl~l 

(53) 

Hence we have for R~s)~O 

(54) r(s)="i:,rn(s)=_DI+1(S, res), 1). 
n-I CI+1(S, reS), 1) 

Proof. By the theorem of total probability, we can write that 

1
x (Ay'k 

(55) Glk(x)= 0 e-11l -
k
-j-dH1(y) (k~O) 

and 

1'" NI _ (Ay)k-J+l 
(56) Gnk(x)= 0 ~Gn-l,J(x-y)e 11/ (k-j+1)! dH1(y) 

1
x N, (Ay) "-J+1 + ~ Gn-1,tCx-y)e-11l -. __ -. --dH2(y) 

o )-NHI (k-;+l)! 
+ ...... 

j
'X k+l (ly)k-J+l 

T ~ Gn-I,tCx-y)e-11l (k ·+l)·-,dH.(y) 
o j=N.-l+l -; . 

if n~2 and N'-I~k~N8-1. 
Taking Laplace-Stieltjes transforms of (55) and (56), we get 

(57) rll,(S) =1«> e- U+') 11 (t-{dHl(Y) for k~O 
and if n~2 and Ni-l~k~Ni-1 

NI 1«> (Ay' k-J+1 
(58) rnk(S)='l1rn-bJ(S) 0 e-U

+&JlI (k_f+1)!dH1(y) 

N, 1«> (Ay)k-J+l 
+ ~ rn-I,J(S) e-Cl+')Y(k '+1),dH2(y) 

J=Nt+l 0 -;. 

+ .......... .. 
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k+! 1= (Ay)k-j+l + 2: rn-l,is) e- lC+S)lI---.---dlft(y). 
j=N'-l+1 0 (k-J+I)! 

Let us introduce the generating function, 
"" (59) Vn(s, z)=:E rn/c(s)zk, 

k'=O 

which is convergent if R(s)~O and Izl;£1. 
Then we have from (57) and (59) that 

(60) VI(S, z)=if!ll)+A(1-Z)], 
and 

(61) Vn(S, z)=if!I[s+l(1-z)] (I'n-I,I(S) +zrn-I,z(S) + ...... 
+zN.-lFn_I,N.(S)} +~MS+A(1-Z)] {zN'Fn-1,N,+l(S) + ...... 
+ZN.-lrn_I,N.(S) } 
+ ...... 
+if!l+I[s+A(I-z;] {ZN,rn-I,NI+l(S) + ...... } 

(n=2, 3, ...... ). 
Also we can rewrite (61) in the following form, 

(62) z Vn(s, Z)=Cif!I[S+A(1-Z)] -if!l+tCs+A(I-z)])(Zrn-1,I(S) + ...... 
+ZN·rn-1,N.(S)) + (if!2[s+A(1-z)] -if!lds+A(l-z)]) 
(zN·+lrn_I,N,+l(S) -+- ...... + zN·rn_I,N.(S)) 
+ ...... 
+ (if!I[S+ A(1-Z)] -if!I+l[S+ A(I- z)])(zN,-·+lrn_l,N,_.+l(s) 

+ ...... +ZN1rn-I,Nl(S))+if!l+1[S+A(l-Z)]( Vn-1(s, z) 

-rn-l,o(s)) (n=2, 3, ...... ). 
Further we introduce the generating functions 

= 
(63) R/c(s, w)= 2: rn.k(S)wn for Iwj <1 (k=O, 1, 2,""")' 

n=l 

and we define for jzj;£I and Iwl<I, 
NI 

(64) Tl(s, z, W)=:E R/c(s, W)Z/c, 
k=O 

and 
N, 

(65) Ti(s, z, W)= :E R/c(s, W)Z/c 
k=Nt-l+l 

(i=2, 3, """,1+1). 

Furthermore if we introduce the generating function 
"" (66) T(s, z, w)=:E Vn(S, z)wn for RCs)~O, jzj;£I and Iwj <1, 

n=l 

then by (60)-(62) we obtain that 
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(67) T(s, z, w)= {w1'l[s+A(I-z)](z-Ro(s, w) 

+wT1(s, z, w)(1'I[s+A(I-z)]-1'l+1[S+A(I-z)]) 

+ .. ····+wTl(s, z, w)(1'l[s+A(l-z)] 

-1'l+1[S+ A(l-z)])} / {Z-W1'l+1[S+ A(I-z)]}. 
The left side of (67) is a regular function of z if \z\~I, R(s)-;:;;O and \w\ 
<1. In this domain, the denominator of the right side has exactly one 
root z=r(s, w). This must also be the root of the numerator. Hence to 
determine Ro (s, w) we have to observe the following relations between 
Ro(s, w), T1(s, z, w), ...... , and TICS, Z, w). By (57) and (58) we have 

(68) 

(69) 

( 1 
-wRoCs, w)-rlOCS)=rIOCs)R1Cs, w), 

w 

i I R1(s, w)-rllCS)=rlO (s)R2(s, w)+rU(s)R1(s, w), 
w 

J R2(s, W)-rI2(S)=rIO(s)R3(S, w)+rll (s)R2(s, w) 
w 

+rI2(S)R1(s, w), 

)-RN.-l(S, W)-rl.N.-I(S)=rlO(S)RN.(S, w)+rU(s)RN.-l(s, w) 
w 

+······+rl,N.-l(s)R1(s, w), 

1 wRN.(s, W)-rl,N.(S) = r:O(s)RN.+l (s, w)+rll(s)RN.(s, w) 
w 

+ ..... + rl,N. (S)RI (s, w), 

L RN.+1(S, w) - r l ,N.+1(S) =rio(s)RN.+2(S, w) + rll(s)RN.+l(s, w) 
w 

+······+rl ,N.+1(s)R1(s, w), 

where rl~(S)= 1~ e- CHS )ydH2(y). 

From the above relations we see that Rk(s, w) (k=l, 2, ..... ) are 
able to write down in linear forms of Ro (s, w) and further the relation 
(68) is the similar one which corresponds to the well-known queue MICII, 
i. e .. the corresponding one T;(s, z, w) to (67) in the queue M/C/l is 

T;(s, z, w)=w1'l[s+A(I-z)](z-Ro(s, w»/{z-w1'l[s+A(I-z)]}, 

and for j=O, 1,' ... ", N we have 
coefficient of zi in T(s, z, w)=coefficient of zi in T; (s, z, w). 

Let the corresponding one to (67) in the case 1=1 be Tt (s, z, w). 

Let us define the following functions: 
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C1(s, Z, w)= -Wo/l[s+A(I-z)], 
D1(s, z, W)=WZo/l[S+A(1-Z)]=-ZC1(s, z, w), 

CW(s, Z, w)=a,f"'[C1(s, Z, w)!{z-wo/l[s+A(I-z)]}], 

and DW(s, z, w)=a,f"'[D1(s, z, w)!{Z-Wo/l[S+A(1-Z)]}]. 

Then we obtain that 
T 1(s, z, w)=CW(s, z, w)Ro(s, w)+DW(s, z, w). 

In the case 1=1 we have 
Ti(s, z, W)={Wo/l[S+A(1-Z)](z-Ro(s, w))+wT1(s, z, w)(o/l[s+A(I-z)] 

-0/2[S+ A(I-z)])}! {Z--W0/2[S+ A(1-Z)]}. 
Then we define the following functions 

C2(s, z, w)=C1(s, z, w)+wC~)(s, z, w)(0/1[s+A(I-z)]-0/2[s+A(I-z)]), 

D2(s, z, w)=D1(s, z, w)+wD~)(s, Z, w)(0/1[S+A(1-Z)]-0/2[S+A(I-z)]), 

C~)(s, z, w)=a~:+1[C2(S, Z, w)!{Z-W0/2[S+A(1-Z)]}], 

and 
D~)(s, z, w)=a~:+1[D2(S, Z, w)!{z-Wo/z[S+A(1-Z)]}]. 

Then we have 

T 2(s, z, w)=CW(s, z, w)Ro(s, w)+DW(s, z, w). 

Along the above line let us define the following functions: 
! 

Cls, z, w)=C1(s, z, w)+w LCi?)(S, z, w)(o/j[S+A(1-Z)] 
}=1 

-o/i[s+A(I-z)]), 
'1: 

Dls, z, w)=D1(s, z, w)+w'}:DiPCs, z, w)(o/j[S+A(1-Z)] 
]~'l 

-o/i[S+A(1-Z)]), 
CW(s, z, w)=a~:_'+l[Ci(S, Z, w)/{Z-Wo/i[S+A(1-Z)]}], 

and DW(s, z, w)=a~:_'+l[Di(S, Z, w)/{z-wo/i[s+A(I-z)]}] 

Then we get 

(70) 

.Ci=3, 4, ...... , 1+ 1\ 

TiCs, z, w)=CW(s, z, w)Ro(s, w)+DW(s, z, w) 
Ci=I, 2, ...... , 1+1)_ 

Consequently if we insert (70) in (137) we obtain 

(71) T(s, z, w)={CI+1(s, z, w)Ro(s, w)+DI+1(s, z, w)}! 
{z-wo/lds+A(1-Z)]} . 

Then if CI+1(s, res, w), w)='i=O for Iwl <1 we have 
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(72) Ro(s w)=- Dl+l(s, r~s-, w), w) 
, Cl+l(s, res, w), w) 

From (46) we obtain (53). If further CI+1(s, res, w), w)""O for Iwl=l, 
then the left side of (53) is a regular function of w for R(s):?;O and 
I w I ~ 1 and then by lemma 1 we can show (72) to be true for I w I ~ 1. 

00 
Putting w=l in (53) and defining r(s)= ~ rn(s), we get (54). 

n=l 

Throughout the following statements we shall keep the imposed 
assumptions in theorem 4. 

Let G(x) denote the distribution function of the length of the busy 
period. 

Corollary 1. If pl+1~l we have 
(73) lim G(x)=1. 

x~= 

Proof. Clearly we have 
"" 

G(x)= ~ Gn(x), 
n=l 

then lim G(x)=lim res). Using (54) and lemma 2, we get (73). 
X_DO 8-0 

Corollary 2. The expected length of the busy period, p*, is given by 

(73) p* =100 xdG(x) 1 Pl+~ {1+ ± (Pi-PI+!)Qt} 
o -PI+! i~l 

PI+! 'f 1 =---- 1 PI+! < . 
7ro 

Proof. If Pl+l <1, G(x) is a proper distribution function and by 
·definition 

. dr(s) 
p* = -hm - -- . 

• ~o ds 
To avoid a complicate calculation we shall consider the case 1=1. Then 

p*=_{_JL~_+ (_P2-. __ /12_)lim [CW(s, res), 1) + D2-1(s, res), l)J} 
p2-1 p2-1 p2-1 .~O 

= - {-~ + _f1.~ (PI-P2)Q{} = ~ {I +(pl-P2)Q{} = Pl-. 
p2-1 p2-1 I-p2 7ro 

In this evaluation we have to use lemma 2 and 
lim [C~.l(s, res), l)+DW(s, res), l)J=Q{. 
s~o 

10 prove the above equation we proceed as follows 

lim [C~.l(s, res), l)+DW(s, res), l)J 
s~o 
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=lim [C]3.l(S, res, w), W)+D]3.l(S, res, w), w)] 
.~o 
w~l 

=lim AW(z, w) 
w~l 

'~1 

=Q{. 

We shall deduce the distribution of the number of services in a 
busy period as follows. 

Let us denote by fanl the probability that starting from state Eo 
the system returns to the state Eo for the first time at the nth step. In 
other words fanl is the probability that a busy period consists of n services. 

Corollary 3. We have for Iwl~1 that 

(75) 'i:. fa"lwn= _ Dl+1(O, g(w), w) 
n~l CI+1(0, g(w), w) . 

Proof. We have that 

nnl = 1~ dGn(x)=rn(O). 

Putting s=O in (53), we get (75). 
Corollary 4. The expected number of services during a busy period, 

p.**, is given by 

(76) 1 {I } 1 p,**=---- I+L(Pi-P.:+l)Qt =-
I-pI+! i~l 71:0 

if PI+! <1. 

Proof. Define 
~ 

fo= Lfanl . 
n=l 

If fo=l, then {fa"l} is a probability distribution and we have 
~ 

p,* * = L nfJnl . 
n=l 

Now fo=lim('i:.fa"lwn) and using (7!» and lemma 2, we get 
W-+l tt=l 

fo=1 if PI+! <1. 
Hence we have 

p,* * =lim -~('i:. fanlwn). 
w~ldw n~l 

To avoid a complicate calculation we shall treate the case 1=1, then 

p,**=lim-d-Ro(O, w) 
w~ldw 
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= ---~~ + (_J'L ~_e~) lim [CW(O, g(w), w)+DW(O, g(w), w)] 
1~p2 1~p2 1~p2 w~l 

J {1+(pl~p2)Qn=)-. 
1~p2 ~ 

In this calculation we have to use that 

lim [CSP(O, g(w), w)+DW(O, g(w), wJ=Q{'. 
w~l 

Which is proved in the same way as that of corollary 2. 

7. SPECIAL CASE 

We consider the case 1=1 and we shall assume that Ift(x) (i=l, 2) 
are exponential distributions. Then we have 

and Bl(z)=zi+!. 
Therefore 

1 00 (Pi )k 1'i[A(l~z)J=--L --z 
l+pi k =o l+pi 
w(z~l) 

Al(z, w)=~l+ --, 
Pl~PlZ 

Al(z, w)f{z~w1'l[A(l~z)J} 

=l+z{l:e~ -I} 
+Z2{=el +2COQ+Pl)~ ~ l+el} 

w w2 W 

+za{2Cl (1+pl~(=e0 +aCo (1±el l ~ ~Pl ~2C (l+~0~} 
w 2 wa W 0 w2 

+Z~{2C2~=_Pl)2 +aCl (1~Pl~2(=e12 +~COQ±P_l)~ ~2Cl (1+pl)( ~Pl2 
~ ~ ~ ~ 

-aCo (1+ paa}+ ...... . 
Wa 

Generally if we put l+pl=a and -pl=b, then the coefficient of z2n is 
given by 

bn a2bn-l a2rbn-r a2n 
C ---+ lC -1---+······+ + C - --+''''''+2 Co-n n W n n+ n W n+1 n r n T W n+r n W 2n 

- C -1-- + +lC -2---' + ...... + +IC -1- +"""+2 Co-~ I ( 
abn-l aabn-2 a2r+lbn-l-r a2n-l ) 

n n wn n n W n +1 n n T W n+ r n W 2n- 1 

and the cofficient of z2n+l is given by 
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( 
bn a2bn-1 a2rbn-r a2n ) 

- C-++1C 2~~---+"''''++C ---+······+2nCOw2n,· n nwn n n- wn+ 1 n r n-r wn+r 

Hence 

AW(z, w)=l-z 

+z(1-z)!l­
w 

+z2(1-z) {! +2CO::} 

{ 
abn-l a2r+Jbn-l-r 

C -1---+······+ C 1 ----n n W n n+r n- -r W n+r 

+ZN-l(1-Z) (N=2n) 

(N=2n+l) 

C -+ ..... + C - --- +······+2 CO--{ 
bn a2rbn-r a2n } 

n n W n n+r n T W n+r n W 2n 

+ZN 

From the above A 2(z, w) is obtained easily. Now we get 

B 1(z)/ {Z-Wsbl[A(l-z)]} 

= _ !~[a+z(t£ +b)+Z2(ab +2CO a
3 

+ a!!) 
w w w w2 W 

+za(2Cl a
2
b +3CO a

4 

+ b
2 

+2CO a
2
b)+ ...... J. 

w2 w3 w w2 

Generally the coefficient of z2n is given by 

(N=2n) 
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+Z3(2Cl a;~ +3CO a:3

3

) 

+ ...... . 
Generally the coefficient of z2n is given by 

bn a*2bn-1 a*2rbn-r a*2n 
C -+ +lC -l-~-+"""+ + C - +······+2 Co-~ n n wn n n W n+1 n T n r W n+r n w2n 

and the coefficient of z2n+l is given by 
a*bn a*3bn-1 a*2r+lbn-r a*2n+l 

n+lCn n+1 + n+2Cn- 1 ---;;+2 + ...... + n+l+rCn-r n+l+r + ...... + 21,+l Co ~ . 
w w w w 

Hence CW(s, z, w) and DW(s, z, w) are obtained easily. 
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