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1. INTRODUCTION

The theory of queues is concerned with the development of mathe-
matical models to predict the behavior of systems that provide services
for randomly arising demands. Many types of systems that have been
studied in the theory of queues deal with the following type of situation :
The succesive service times of the customers are independent of the
queue length.

The problems in which the service time is dependent on the queue
length, however, arise from the properties of the customers and the
capacity of the server. This paper is concerned with such a problem.

In §2 we define the system with such a service mechanism and in
§ 3 we refer to the two lemmas due to Takécs [3, 4] in order to investi-
gate the stochastic properties of the queue length and of the busy period
of the system. In §4 we consider the transient behavior of the queue
length and in §5 we consider the limiting behavior of the queue length.
In §6 we consider the distribution of the busy period. In the last section,
we consider a special case.

In [5] by applying the method of the imbedded Markov chain [1, 2]
the author obtained some theorems which provide criteria for determining
whether the system is ergodic, transient, or recurrent, and obtained the
equilibrium distribution of the queue length and the waiting time.

In this paper the approach we employ is based on the above method.

2. DESCRIPTION OF THE SYSTEM

The description of the queueing process considered in this paper
consists of three parts:

(a) Input Process: The input process is assumed to be a homoge-
neous Poisson process of density 2. Suppose customers arrive at the counter
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at times 7, g, cccc- Tyt O<L <o eimeee Lrp<orrens ). Then the inter-
arrival times t,—7,-; (#=1, 2,----- ,70=0) are independently and identically
distributed random variables with distribution function P{r,—7,-1Sx}=
F(x) where
1—e¢2= for x=0
(1 F<x>_{0 for =<0
(b) Queue Discipline: The policy followed here is the “first come-
first served ” policy.
(c) Service Mechanism : There is only one server at the counter.
A service period commences only when there is some customer waiting
in the queue to be served.
Let N, N, , N, be integers such that O<N;<Np<:---- <N;< oo,
Define N,=0 and N,;=oc0. Let us denote by H\(x), Hy(x), -+ , Hi,/(x) the
I+1 service time distributions and we shall suppose that such distribution

H,(x) has a expected value /1.,=fm.rst(x) (s=1, 2, - ,I+1). Let 3,
0

denote the service time of the »nth customer (=1, 2,------ ). The service
times y, (n=1, 2,----- ) are assumed to be mutually independent positive
random variables and also are independent of the sequence {z,} too.

Let £(¢) denote the queue length at the instant ¢ i. e. the number
of customers waiting in the queue or being served at the instant £.

Let ¢/, z, - ,Taly denote the instants of the succesive depar-
tures. Define £,=&(z,+0) so shat &, is the queue length immediately
after the departure of the # th customer.

Let 7,7, 7", - s Tn st denote the instants at which the services
of customers commence. The service time y, of the mth customer is
assumed to be distributed according to the distribution function Hg. (&)
if Ny+1=8(r"2)ENgwu (=0, 1.+, D,

3. AUXILIARY LEMMAS

Throughout this paper, we shall use the following lemmas due to
Takacs [3, 4]. Let H(x) denote the distribution function of a positive

random variable and let /,z=f xdH(x) <o,
0

Introduce the transform ¢(s)= f me‘”dH(x) for R(s)=0.
]
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Lemma 1. If (a) R(s)=0, |w|<1 or (b) R(s)>0, [w|=1 or (c) Ay
>1, R(s)=0, |w|<1 where 0<A< o, then the equation
z=w¢[s+A1(1—2)]
has exactly one root z=7(s, w) in the unit circle |z|<1. We have
DERY ! j
If y(s, w) is deﬁned by (2) for R(s)=0, |w]=1, then in this
extended domain y(s, w) is a regular function of s and w, |y(s, w)|=1
and z=y(s, w) satisfies the equation
z=w¢(s--1(1—2)).

We shall introduce the following abbreviations:

Let
3 7(&=7r(s, D,
4> &w)=y(0, w),
and
(5) 0=7(0, D=y(0)=g{D.

Lemma 2. If 2x>1, then o is the exact one positive real root of
the equation
2=¢[i1-2)]
and w<1. If A¢<1, then w=1. Further we have

’ _ ¢ :
(6) T(m_zy—l if ap<1
=co if =1,
and
(7 (1)—1 Tu if Ap<1
=00 if Ap=1.

4. THE TRANSIENT BEHAVIOR OF {£,}

Let v, denote the number of customers arriving at the counter
during the nth service time in which the service time has the distribution
function H(x). Then we see that if N;+1<8, <Ny,

(8) Ennr=[&n—11"+ ”ins-)u
where [a]*=Max (a, 0). Hence the sequence {£,} of random variables
forms a homogeous Markov chain. We shall say that the system is in
state E; at the nth step if £,=j, so that the state space is {E,, E;, -+ ,
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p’bk=P{En+1:k[$n=l} (n=0, 1: 2’ ...... )

has the following form.

0 T.ocoooooN.l—‘l N100000000..N2‘1 Ny eeeee
n ' ¥ '
o)) ™ . ! ! H
6] p0 P1 0..00001.00000,0.0000000.0..Ouo..o..o’.'o.ooo..
! ' : '
] p0(1) p('.lj.......‘:......:............:........."l........
: | E E :
L) ~ . + f t '
Y ‘\\\ . ' : :
N1 T pc‘,') p:”...-u.-..:...-.-...3-.-......
—_—— e e —_—— e — ——
N+1 P(:)-o-co.ooO.l:ooo-cooOQQIooooo.ooo
. : :
. o !
N (2)
NZ P;z) 12'00000
(3)
N+ 1 LX)
i po\ *
w_ [T A .
Where p} = ¢ " 7]'“;/ st(t>s ] :O) 1a 23 """ 3 321, """ 3 l+ 1
0 .

The chain is aperiodic and irreducible. Let us denote by |p?| the
nth power of the matrix {p;]. Then we have that limp¥=nx; always

exists and is independent of i; and further that either z;>0 for any j or
7;=0 for any j. The chain-is ergodic if and only if x;,>0 for any j. With
respect to the states of the chain {&,} the following results (a) to (c)
have been obtained in [5].

(a) The chain {&,} is ergodic if and only if Ap.a<1.

(b) The chain {&,} is recurrent if and only if g+ =1.

(¢) The chain {&,} is transient if and only if Ap+>1.

Let py=2y, (s=1, 2, - , {+1). We introduce the generating fun-
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ction of the sequence {z;}, P(2)= 2, nn2® for |2[|<1 and further we define
n=)

Ny Ny

QD= > 7ma.2® for |2|£1 (5=2, 3, , [4+1) and Ql(z)=217r,.z" for
n=Ng-(+1 U=

|z] <1. Let Qs*=Q;}) if mo>0. Then if p;:1<1, the following relation

0
has been shown in [5]:
(9)  lmpe=m| 1+ FQ(oe=ps) | (s=1,2, -, 14D
If we put

di(@)= f “ewdH(z)  for R(a)20,
then we have the equation 0
(10) gp}s)zfngs[l(l—z)] for |21, s=1,2, -, I+1,
Assuming that the server is free at time #{=0, ready to start the
first service, we take throughout this paper z’=0 and &=£(0).
We denote by ¢™[ V(2)] the partial sum g'n v;2¢ in the power series

expansion of a function V{(2).
The higher transition probabilities
DR =Pl =Fk|&o=i}
are given by the following
Theorem 1. For |z]<1 and |w|<1 we define the following functions :

(11) A (z, w)=w(z—-D¢[A(1—2)],
12) B(z)=2",
(13) Api(z, wy=Axz, W)+ jzi wAD(z, w)
(¢;L2(1=2)]— ¢ [AA—2D]D
(s=1,2, -, D,
(14) Bo(z, w)=Bi(2)+ jz:l wBY(z, w)
(H;,[21=2)1— s [AA—2D])
(s=1, 2, - » D,
. | Az, w)
a5) AY oy 0= | s e 1 )
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1 — N Al(z, W)
AP (z, w)=0] \:z—wgbl[](l—z)]}’

) o [ Bz w)
B®(z, W)—O'N_,-#l(:z_wgbs[z(l—z):]} )

and BY(z, w>=05"‘[z_£1([2}(7)—z)]] ’

Let g(w) be the root in z of the equation
z=wn[A(1—2)]
in the unit circle |z]<1 and assume A;.1(g(w), w)=0. Then

a16) 2@z w)= gogopiz’w"z"

— Awm(gw), w)B1 (2, w) — Ai(z, w) B (g(w), w)
(Z“‘wslfm[l(l —2) DA (glw), w)

for |z|£1 and |w|<1.
Proof. By the theorem of total probability, we can write that

an v = E}Pé?”’l’n.
Thus we have
k41
a9 PETV=pPP + jz PPPEs if 0SESN—],
=1
and
Nt Nz
A9) P =ppY+ PPt 31 PEBL prt
k+1
—l—j_§ 1171‘?)17;(52331 if NySk=Ngr—1  (s=1,2, - v D.
Now for fixed ¢ and |z|<1, introduce the generating function
20) Up@= 3 pipat
then by (18) and (19) we have
@D UP(2)=21,
(22) UP(2)=UP(2),
(23) UP(2)=2"1¢,[A(1—2)]  if Ny +1ZiEN,,
and

@) UPP@ =2 A=)+ (G~ D]~ g [AA=DD)
B+ GLAA=D]—gu[IA—2D 3 iy
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+ ¢ [AQA -2 UM (D) —pP} (n=1, 2, - ).
Further if we introduce the generating function
(25) Qz, wy= 2 UPwr= 3 3 pow ",
n=0 n=0k=1

which is convergent if |z|<1 and |w <1. Furthermore we introduce the
generating function

26) Quw) =S plpwr  for lul <1,
and we define
@) Pi(z, w)= B Quwzn
and
(28) Pis w= 3 Quwzr  (s=2,3 - D,

then by (21)~(24) we obtain that
(29 QG wy={z"+w[A(1—2)](z—D)Qu(w)+wPi(z, w)
ilAA—=D] =i [AA=2D )+ +wPy(z, w)(¢:[A(1—2)]
— ¢ [AA-2 DY (z—wr [2(1—2)DD).
Now 2(z, w) is a regular function of z if |z2|=<1 and |w|<1. In this domain,
the denominator of (29) has one and only one root z=g(w) in the unit
circle |z/<1 by lemma 1. Consequently z=g{w) must be a root of the nomi-
nator of (29) too. Hence to determine Q;(w) we have to observe the follo-
wing relations between Qu(w), Pi(z, w), -+ , and P,(z, w). By (18) and
(19) we have
‘/ Qu(w) —p9 =pPwQy(w) +p wQ(w),
! Qil(u)> — 0 =pPwQ(w) +pPwe; (w) +pPuwR(w),

30> :
; Qi,N.—L(w>—P£?1)m 1" o 1in0(w>+Pm 1in1(w)
L DY _ Qe (w4 +pPwQ;in.(w),
g/ Q_iN,(w)_pi(g\)n: grszw(u)'FmeQu(w)+P(” WQup(w) 4+
‘ PPwQ w (W) +pPwQ; w1 (W),
@D Qi (W) —pi, =R Qi (w)+DP_wQu (W) +Y
inz(W,"f‘ """ +P(1) Min N:(w)+pNz—N1—l
we; yar (W4 +pPwe, N.(w)
and so on.
From the above relations we see that @.,.(w) (n=1, 2, ----- ) are
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able to write down in linear forms of Qi (w) and further the relation (30)
is similar to the corresponding one in the queuing system M/G/1 (e. g.
BEDE

20z, w)={z"+wp;[A(1—2)](z—DQuw(u)}/ {z—w¢ [A(1—2)]}

In the other words, for j=0, 1, - , N1 we have

coefficient of z7 in £2(z, w)=coefficient of 2/ in 2¢(z, w).

Now we shall proceed to obtain the expression of @;(w). In the
first we shall treat the case /=1 and denote 2,(z, w) by $£:(z, w) in this.
case.

Let us define the following functions

Az, w)=w(z—D¢:[2(1—2)],
B(z)=z"1,

. _ m 777A1§§) W) S
APz, w)=0} [Z_w¢1[2(1—z)]}
and BY(z, w>="év{z—-w§fl[%:zﬁ]

Then we obtain that
(32) Pz, w)=ARP(z, w)Qu(w)+BP(z, w).
In the case /=1, we have
@3 Az wy={z" 4w, [A(1—-2)](z—-D)Qu(w)+wP.(z, w)
(@ila(1—2)]— ¢ Al =20 D} {z—w:[1—2)]}.
We now define the following functions
Az, w)=Ai(z, w)+wAP(z, wX (P [A(1—2)]—¢[2A—2)]),
By(z, w)=B(2)+wBY(z, w)(¢:[A(Q—2)]—¢:[1-2DD),

, 2:(z, w)
APz, w)= UN,H[WQ 2)]}
, Bz, w)
and B (z, w)= "MH[E w[A(1— z)]}

Then we have

€Y) Py(z, w)=AR(z, w)Qu(w)+BF(z, w).
Along the same lines as the above procedure, we define the following
functions

Az, w)=Ay(z, w>+w§ APz, W) (A1 —2)]— g2 -2,

B.(z, WD=Bl(2)+wg BR (z, w)(¢;[21—2)]—¢,[2(1—-2)D,
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AR (z, wy=03; ., [As(2z, w)]{z—wg,[2(1—2)]}],
and BY(z, wy=a¥  .[B:(z, w){z—w,[2(1—2)]}]
(s=3, 4, - , I+1).
Then we have ‘
@BH* ' Pz, w)=AP(z, w)Quw)+B¥(z, w) (s=3,4, , I+1).
By (32), (34) and (34)* we can rewrite (29) in the following form.
(35) Q(z, w)={Am(z, w)Qu(w)+ B (z, w)}/{z—wz/)m[l(l—z)]}.
Hence if A;i(glw), w)=0 then we get
(36) Qi(w)=—Bu(glw), w)[Ap1 glw(w), w).
Finally we obtain (16) if we insert (36) in (35).

5. THE LIMITING BEHAVIOR OF {¢,}

Now we consider the relation between the limiting behavior of {&,}
and the result which has been obtained in [5].
Theorem 2. For |z|=1 we define the following functions:

3D Qi(2)=G-D¢[2(1-2)],
(38) @:(2)=Q:(2)+ E QF (2 (¢;,LA1=2)]—¢:[2(A—2])

(s=2, 3, =, I+D),
39 QW (D=0% ,.[Q:«2)/{z—¢s[2(1—2)]}],
and QP (D =e{'[Q(D/{z—¢ [A(1—2)]}].

If pi.1<1, the limiting distribution
lim P{En=k}:77-'k (k:O, 1’ 2, ...... )

7—00

exists and is independent of the initial distribution and and for |z|<1 we
have

(40) 1_Pt+;. Qr(2)

1+ ;’;Q:(Pi"‘plﬂ) z_S[JHl[Z(l—z)]
Ql+1(2)

e AT

Proof. Clearly we observe in §4 that the sequence {&,} is an irre-
ducible and aperiodic Markov chain and also we have lim P{¢,=k}=n;
7100

Ms

rckz"=
k

0

always exists and is independent of the initial distribution. Furthermore,
either every =x>0 and {r.} is a probability distribution or every mz=0.
Using the Abel’s theorem we have
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o« o0 -]
> mzb=lim(1—w) X, 2 pPwrzt  for any i,
k=0 w—1 n=0k=0

and in order to calculate the right side of the equation we have to use
(16) are lemma 2.

Now we define the following functions:

Qi(2)=(z—D¢i[A(1—2)],
and QP () =a"[Qi(2)/{z— i [A(1—-2)]}].
Then we have
Q%’(2)=1u§‘1}11 AR (z, w)

and Qf =lim QP(2).

The avoid a complicate calculation we shall consider the case /=1.
The case /=2 will be treated in the same way. Then we have

2@z, w)={2"'+wBP(z, w)(P1[A(1—2)]—¢:[A(A—2)]) +(Ai(z, w)
+wAP(z, w))(P:[2A—2)]—¢:[2(1—2)DQu(w)}/{z—we.[2(1—-2)]}

hence

[2A-2)](z—D+QP(2)(¢[A(1-2)]—¢:[AA -]
z—¢[2(1—2)] ’

tim (1=w)Qa(w0)= — 248~ lim(1—)Qu(w),

where Q:(2)=@:(2)+QF (2)(¢:[2(1—2)]—¢:[2A-2)D.
Using lemma 2, we have that if p.<1

lim (1) 2(z, w)= 'z

gw)—1 (w—1) and g'<1>=111}»§.

Noting that
Qu(w)={—[g(w)]*' — (w [2(1—g(w))1—g(w))-BP (g(w), w)}/
{w(g(w)—Dp[A —g(w))]+(wd [A(1—g(w))]—glw)) AP (g(w), w)},
we have

B—T A—w)Qup(w)= T (1 1 )

1+ (p1—p2)@QF
We shall prove now a more general theorem than theorem 1.
Theorem 3. Let us define
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(4D U,(s, 2)=E{e scnvrmnyg ) (n=0) for R(s)=0
and |z|<1. Then if A (g(w), w)>x0 we have that

42 welGs, 2 wy=wz 3, Uu(s, Dun

=[Aw(g(w), w[(z—wii[A(1—2)DBini(s, 2z, w)
Fwii[s+2(1—2)1Bia(z, w)]— B (g(w), w)
Lz—w¢in[2A =)D {wzd [s+21—-2)1(¢(s)—D
+Am(s, 2z, wFwdinl[s+21—2)1Ai(2, w)]]
{(z— Wi [A(1—2) D A (glw), w)—zi*

for R(s)=0,]z|<1 and |w|<1, where

o(s)= f " evedF(2),

An(s, 2z, W)=w¢1[8+2(1—2)](z—1)+gwfl%)(z, w)(¢ils+2(1—2)]
— s+ iA-2D),
and B,.(s, 2, w)=B§,1,)(z)+j§wB}{)(z, w)(P;ls+i(1—2)]

—¢ls+21—-2)D).
Proof. We can write
Tn+1'=Tn'+Xn+1 +€n5n (n=1, 2, ~~~~~~ )

1 if &,=0
0 if &,>0
and {xz} (n=1, 2, ) and {8,} (=0,1, 2, ) are independent seque-
nces of mutually independent random variables and {8,} are random va-
riables with distribution function P{d,<x}=F(x) given by (1). Using (8)
for n=0 we get

Un(s, 2)=E{e- st gén}

= E{e-#ntonte) gtan}

00 o0 0o k
=P{§n:0)50=,‘} k‘go/; [; e—a(a:ﬂ)zke—m(lkL!)dHl(x)xemda

s [~ k
+PE=16=i) 3 j; et gkeis (lkx')

where ¢,= {

dH\(z)

+Plg=Nieo=i) 3, f ersegmrireis 00 g )

(Ax)H¥

+Plen= NiH1lg=i) f ongiargse U0 g
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=[5+ AA—D PP () +PP +DPz+ -+ RN
QLA DTl D)

+¢'L[S+Z(1 DDy 41V + D21}
+¢z+1[8+2(1 DDy a2 }

= ; {¢"1[3+1(1’“Z)Jl’io”)(sb(s)z—l)}
+¢ils+AA=2)]=dinls+2A—DIPP +pPz+ - +5iR.27)

4:r¢z[3+2(1—ZD]—¢L+1ES+1(1—2)](pij‘z)v,_mzl"“‘“ """
+5i% ") + s +A1—2)]UM ()}
where Uf(z) is defined by (20). If we define
U(s, z, w)=§::,'0 U,(s, 2w for |w|<1,
we have that
2U(s, z, w)=¢[s+2(1—2)](H(8)z2—1)Qs(w)
+(@ils+A(1—2)]—gunls+AA—2DDPi(z, w)
+(¢l[s+2(1 2)1—dmls+2A -2 Pz, w)
+¢inls+2(1—2)]102(z, w)
where Qio(w) Pz, w), - , Pi(z, w) and £2(z, w) are defined by (26),
27), (28) and (25) respectively. Using (35), we get
z2U(s, z, w)={¢1(s+2(1—2)](¢(s)z—D+ AP (2, w)(i[s+i(1—2)]
—gmls+H2A -2+ +AR(z, wX{h[s+2(1—2)]
— i [s+2(1—2)1}Qu(w) + {BF (2)(¢ils+a(1—2)D.
— s+ AA =)+ +BP(z, w)(¢i[s+2(1—2)]
“‘¢L+1[3+2(1_Z)])}+¢‘L+1[3+2(1"Z>]Q<2y w).
Now if we define
A (s, z, w)=w¢1[s+1(1—z)](z—l)+EwA%‘(z, w)(P[s+a(1—2)]
—¢z+1[8+2(1—ZD]),
and Bii(s, z, w)= B“’(z)—i—ZwBU)(z w)(¢;[s+4(1—2)]
—¢z+1[8+2(1 20D,
then we get
wzU(s, z, w)={w¢,[s+2A—2)1(¢p(s)z—1)—we[s+2(1—2)](z—1)
+ A (s, 2z, w)}Qu(w)+ {Bin(s, z, w)—By(2)}
+wdin[s+21—2)]12(z, w)
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={wzg[s+A(Q—2(J(¢() =D+ Aru(s, 2z, w)}Qun(w)
+By(s, 2, w)+wdi[s+2(1—2)]2(z, w)—z*!

=[Ain(gw), w)[(z2—wdm[A(1—2DDBu(s, 2, w)
+wein[s+21—2)]Bu(z, w)]—Br(glw), w)
LGz—wgi[A(1—2)D{wzdi[s+A(1—2)]1(H(s)—1)
+Au(s, z, w}+wdils+A(1—2)]Am(z, w)]]/
E—w@a[2(1—2)D Avni(g(w), w)—2zt"

provided Au(glw), w)=0.
Remark 1. If we put s=0 in the above theorem, we get theorem 1.

6. THE DISTRIBUTION OF THE BUSY PERIOD

Let us denote by G.x(x) the probability that the busy period is at
most of length x, consists of at least »# services and at the end of the »nth
service, k£ customers are present in the queue. Denote by G,(x) the pro-
bability that a busy period consists of # services and its length is at
most x. Then we have that

43 G.(x)=GCGn(2).
Write

(44) F(s)= f " e dGu(z)  if R(s)Z0
and

(45) I(s)= f T ermdGu(z) it R(S)=0,

0

then by (43)

(46) I'y(s)=TIno(s).

Theorem 4. For R(s)=0, |z|]£1 and |w|<1, we define the following
functions:

an Ci(s, z, wy=—w¢[s+2(1—2)],
48 D(s, z, w)=—2C(s, z, w),

49 Cls & w=Cis, 2 WTWECHCs, 2 WG Ls+A1-2)]

—¢lst2(1-DD. (=2, 3, I+D),
(50)  Dis, 2, w)=Di(s, z, w)+w T DY(s, 2, w)(gls+(1—2)]
—¢ls+2(1-2)])  (G=2, 3, I+1),

G CYPG, z, wy=o¥,, [Cils, 2, w)/{z—wg[s+2(1—2)]}]
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(=2, 3, D,
CP (s, z, wy=a;"[Ci(s, 2, w)/{z—w[s+2(1—2)]}],
(52)  DP(s, z, wy=ayt . [Di(s, 2, w){z—wd[s+1(1—2)1}]
(=2, 3, D,
and D@ (s, z, wy=a"[D\(s, 2z, w)/{z—w¢ [s+2(1—2)]}].
Let y(s, w) be the root in z of the equation
2=whrals+a(1—2)]
in the unit circle |z}<1, and assume Cu.(s, 7(s, w), w)#0 for |w|<1.
" Then we have that for R(s)=0 and [w|<1
Di(s, 7(s, w) w)

(53) 2 Ow=— s s, W, w)

Hence we have for R(s)=0

< __ DuGs, y(9), D
GO f©=2 o= Cinls, (),
Proof. By the theorem of total probability, we can write that
x Nk
(55) Guto)= [Tenl¥lamey  kz0)
0 .
and
x N (1y>k-j+1
— — —2
G Gu@)= [ G a—yen P dB()
zr Nz (ly) E—j+1
—_ —A i
+ S j=;1+1 a-1,7(T—)e ?I(k ]+1), dH:(y)
+ ......
‘. E+1 (zy)k —f+1
_— -2 -
+J 1=E1+1Gn—l,j(x ye il +1),dH,(y)

if #=2 and Ny ZREN,—1.
Taking Laplace-Stieltjes transforms of (55) and (56), we get

o k
G Pu;(S)—_-f e““"”%%)~d1{1(y) for =0
0 .
and if #22 and N, <k<N;—1

M w Qy k9+1
(58) Fas(5)= 2 Tai(5) f e-wwmdm »

Nz . (2y)k F+1
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QAy)t-s
g—A+s) _
2 T [T B ).

Let us introduce the generating function,
(59 Va(s, 2)= kZ_OF wx(S)2E,

which is convergent if R(s)=0 and |z|=1.
Then we have from (57) and (59) that
(60> Vi(s, D=¢[s+2(1—2)],
and
(61) Va(s, 2)=¢[s+21—2) T 'n-1,1(8) + 2L p-1,2()+ -
+2¥ ot 8 (D} + e+ AA =D Lot i () 4o
+ 291w (8]

+ s+ AQ—2 1 {2V Loy msa (S +- }
(n=2, 3, - ).
Also we can rewrite (61) in the following form,
(62) 2V.(s, 2)=(P:i[s+2A—2)]—Pruls+2A =)D (@ p-12() -
+ 2V 3 () + (Pels+2A =2 )= g[S+ 2(1—2DD)
(¥ o (S) Ao Al MR AC)))

+(¢l[s+2<1_z)]'—¢L+1[s+1(1_z)])(ZN‘_'+1F7¢—1,N¢-.+1(S>
Fore 28 w8+ L5+ A1 —=2)](Vaeu(s, 2)
—'n1,0(5)) (n=2, 3, ).

Further we introduce the generating functions
(63) Ru(s, w)=ifn_k(s)w" for lwj<l  (k=0, 1, 2,----),
n=1

and we define for |z|<1 and |w|<]1,

Ny
(64) Tl(sy 2, w): kZ=ORk(s’ w>zk7
and
Ny
(65) T(s, z, w)=k=;+1Rk(s, w)ztr  (1=2, 3, , 1.

Furthermore if we introduce the generating function
(66) T(s, z, w)= 23 V.(s, 2w for R(s)=0, |z/£1 and |w|<1,
n=1
then by (60)~(62) we obtain that
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67) T(s, 2z, w)={we:[s+1(1—2)](z— Ry(s, w))
+wTi(s, z, w)(ils+2A~2)]~uls+21—-2)D
AR +wTi(s, z, w)(gls+1(1—2)]
'—¢z+1[3+2(1—Z)D}/{z_wgbzu[s-i-).(l""z)]}-
The left side of (67) is a regular function of z if [z{=1, R(s)=0 and |w|
<1. In this domain, the denominator of the right side has exactly one
root z=y(s, w). This must also be the root of the numerator. Hence to
determine R, (s, w) we have to observe the following relations between
Ro(s, w), Ti(s, z, w), -+ , and Ty(s, z, w). By (57) and (58) we have

‘ i;wRo(s, w)—I'o(8)=I"10(s)R((s, w),
;} Ri(s, w)—Tu(8)=T10($)Ro(s, w)+Tu(HRI(s, w),

(68) i} Ro(s, w)—I'12(s)=T"10($)Rs(s, w)+I'11($)R:(s, w)
| + e (S)R(s, w),
, [ ; Ryi(s, w) =Tt i (8) =T"1o(8)Ry.(S, w)+ 3 ($)Ry—1(s, w)
l oo+ L (RS, w),
;WRN.(S; w) = w ()= () Ry (s, W)+ (S)Ry,(s, w)

|
(69) 1’ e + I w (SR(s, w),

L Ruroa(s, )= T es(8)=T(8) Ryas, )+ L1y () Raa 5, 0)
L : +oe + w1 (OR(s, w),
where I"'l*o(s)———wa‘“”’”de(y)-
From the Oabove relations we see that Re(s, w) (k=1, 2, -~ ) are

able to write down in linear forms of R, (s, w) and further the relation
(68) is the similar one which corresponds to the well-known queue M/G/1,
i. e. the corresponding one Tj(s, 2z, w) to (67) in the queue M/G/1 is
Ty (s, z, w)=wei[s+A(1—2)](z—Ry(s, w))/{z—wd[s+2(1—2)]},
and for j=0, 1,---- , N we have
coefficient of 2/ in T(s, z, w)=coefficient of 2/ in T¥ (s, 2z, w).
Let the corresponding one to (67) in the case /=1 be T} (s, z, w).
Let us define the following functions:
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Ci(s, z, w=—wd[s+2(1—-2)],
D(s, 2z, w)=wz¢,[s+A2(1—2)]=—2C(s, 2, w),
CP(s, 2, w)=a"[Ci(s, 2, w)/{z—wi[s+2(1—2)]}],
and DR (s, z, w)=e[D\(s, z, w)/{z—we¢ [s+2(1—2)]1}].
Then we obtain that
Ti(s, z, w)=C{(s, 2z, wIR(s, w)+DP(s, z, w).
In the case /=1 we have
Ty (s, z, w)={wd[s+21—2)](z—Ry(s, w))+wT\(s, z, w)(¢[s+2(1—2)]
—ols+ A -2 D} z—we.[s+2(1—2)]}.
Then we define the following functions
Co(s, z, w)=C(s, z, w)+wCP(s, z, w)(h:[s+A1—2)]—¢[s+2(1—2)]),
Dy(s, z, w)=D\(s, z, w)+wDP(s, z, w)(P:i[s+2(1—2)]1—Ps[s+2(1—2)]),
CP (s, z,w)=03 ., [C(s, 2, w)/{z—we:[s+2(1—2)]}],
and
DR (s, z,w)=0%,,[D:(s, z, w)/{z—wg:[s+2(1—2)]}].
Then we have
T:(s, z, w)=C@(s, 2z, wR(s, w)+DP(s, z, w).
Along the above line let us define the following functions :

Cls, 2 w)=CiCs, 2 W+w T CR(s, 2, w)(ys+A1-2)]
—¢ils+21-2)D,
Di(s, z, w)=D(s, z, w)—i—wé:,;D;{)(s, 2, w)(P;[s+2(1-2)]

—¢ils+a(1-2)D),
C%‘)(sy z, w)=0%:-1+1[Ci<sy z, w)/{z—ng[Ji[s-i-Z(l—z)]}],
and DP(s, z, w)=o¥_ [Di(s, z, w)/{z—wg[s+2(1—2)]}]

(=3, 4, , 41D
Then we get
(70) T(s, z, w)=CP(s, z, w)R(s, w)+DP(s, z, w)
(=1, 2, , 41,
Consequently if we insert (70) in (67) we obtain
) T(s, z, w)={Cin(s, 2, wIR(S, w)+Dui(s, 2, w)}/

{Z—w¢1+1[8+1(1—2)]}.
Then if Cu(s, y(s, w), w)=0 for |w|<1 we have
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_ Dy(s, 7(s, w), w)

7 Rols, 0=="Cruits, 15, w), w)
From (46) we obtain (53). If further Cu(s, r(s, w), w)=0 for |w|=
then the left side of (53) is a regular function of w for R{s)=0 and
lw|=<1 and then by lemma 1 we can show (72) to be true for |w{=l.

Putting w=1 in (53) and defining l"’(s)=z_:1['n(s), we get (54).

Throughout the following statements we shall keep the imposed
assumptions in theorem 4.
Let G(x) denote the distribution function of the length of the busy
period.
Corollary 1. If p;.1=<1 we have
73 lim G(x)=1.

o0

Proof. Clearly we have
G(x)= Z G (),
then lim G(x)—hm I'(s). Using (54) and lemma 2, we get (73).

Z—0

Corollary 2. The expected length of the busy period, p*, is given by
(73 pr= xdG(x) 'ulﬂ {1+2(pi o) Q% }
0

= H01 it pa<l.

o

Proof. If 0.1 <1, G(x) is a proper distribution function and by
definition

To avoid a complicate calculation we shall consider the case /=1. Then

PR T - N R T (1) )
pr== e (SE = I ICRGs, 79, D+DYCs, (), DI

e J2 H2
=] 7_7( *IZA 1+ (o— *) — 12

{P2 1 p2— o1— pZ)Ql 1 P2 { (Pl P2)Q1 } o
In this evaluation we have to use lemma 2 and

lim [CPCs, 7(s), D+DPCs, y(s), DI=QF.

To prove the above equation we proceed as follows
lim [CP (s, y(s), D+DY(s, r(s), D]
§—0
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=1:1_r}(;1 [CPRCs, v(s, w), w)+DP(s, r(s, w), w)]
w—1

=lim AP (z, w)
21

—Qr.

We shall deduce the distribution of the number of services in a
busy period as follows.

Let us denote by f{™® the probability that starting from state E,
the system returns to the state E, for the first time at the nth step. In
other words f{® is the probability that a busy period consists of # services.

Corollary 3. We have for |w|<1 that

o w _ D0, glw), w)
(7 ZT=T 600, 2w, wy
Proof. We have that

Fom= f " 4G (x)=Ta(0).
0

Putting s=0 in (53), we get (75).
Corollary 4. The expected number of services during a busy period,
p**, is given by
1 g 1 .
* K _ — 0 *xl =
(76) u —— {1-1— gl (pi—pir1) Qi ] - if pui<l.

Proof. Define

o

f0= Zfé")-

n=]

If fo=1, then {f{®} is a probability distribution and we have

#* *znzzlnfén)_

Now fo=Ilim <Z fé’“w") and using (75) and lemma 2, we get

w—1 n=1
Sfo=1 if pra<l.
Hence we have

wo1 AW\ =1

/J* * zlim,‘i<z f‘()n)wn>_
To avoid a complicate calculation we shall treate the case /=1, then

.. d
prr=lim g, R0, w)
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:,J_+<J1L _ P ) hm [CYP(0, g(w), w)+DPO, glw), w)]
1—p- 1—p: 1— —p2/) w
1 sy 1

In this calculation we have to use that
lim [CP(0, glw), w)+DP0, glw), w]l=Q;.
w—1

Which is proved in the same way as that of corollary 2.
7. SPECIAL CASE

We consider the case /=1 and we shall assume that H;(x) (i=1, 2)
are exponential distributions. Then we have

e ()
‘ 1+p:i20\1+pq
_ w(z=1)
Al(z; w>_1+p1*‘012’
and B(z)=2z1
Therefore
Az, wi{z—w¢ [A(1—2)]}
—1+z {”& 1}
— (1402 14
+ 2{‘8}, _|_.2C0_.,1:0‘;)1 ﬁ__;),pl}
3 — 2
+z3{2C (1+p1)2( p1) +4C) (14_-,1311)7 ——‘?'{—ZC (1+€1) }
w w w w
+z { ngj_p_l)_z (1+Pl>2( P1)+ Cs (1+pl)“ -G (1+p1)§ PL)
w2 w? w
COM] ......
W3

Generally if we put 14p;=a and —p,=b, then the coefficient of z2* is
given by

b aan 1 azrbn r 2n
C —+5+1Cn1 Ry +oe +arrCor—, e T +2:Co Z))Z';
abn— as3bn2 airipn-l-r an-l1
—< Cn- — +n1Cp-2— ey S shiRE +anC —1-rw+ """ +2nCOW>

and the cofficient of z***! is given by
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abn a3bn—1 airtipn-r acnrtl
n+1Cn e} + a+2Cn-1 e +-e +nt147Cror ey +oee +2n+1Co T
bhn aan 1 azrbn-r azr
—< Co— +n+1c -2 n+T +eee +n+:Cnr Wf + +2nC0m
Hence

APz, w)=1-—z

a
—}—z(l—z);}—

2
rad-a{2 .62

ab

+23<1 Z) {QCI +3C()”*J

4
+2z¢(1—2) {2C2 +3C1 +4Coi}

wh

e sEREEEE +a4rCri-r

wr wn+'r

abr! a27+1bn—1—r
{Con

a2n—1

s | ] v

pn b atn
[ncn MT RS + n+rcn"7' 7'0 +o +Co F}

n ntr o2n
(N=2n+1)
( bn arbrr an
{ nCn m ""‘ '''''' + n+TC’IL'T %m» + ...... + 27LC0 ;,0727:”}
(N=2n)
N 27+1bn—r
+2z {"+1C "]+l ...... +7L+1—rcn-r a?n’;l;,'.ﬁ

aZn+1

X Wl} (N=2n+1).

From the above A.(z, w) is obtained easily. Now we get

Bi(2)/{z—w¢[2A(1—2)T}
=—5u§[a+z< +b> < +2C0 ‘:j)
+z3<2cla b +Co s +zcoazb> ~~~~~~ }

Generally the coefficient of z2* is given by
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b» abr1 azrpr-r ar
a< Co Fni1Cay - it T +n4rCoer e T +24Co wﬂ)
abr-1 ashn2 alrripn-l+r
+ b<nCn—1 - +a+1Cn-2 W R aRRLEEE +n+rCri—r T

aZn—
+ """ +2n 1C0 w2n I>

and the coefficient of z2#*! is given by

b a3bn— a2'r+lbn—r
<n+lc — 1 tas2Crot - e RRRRRAE +at147Cnr e
qin+! b a2bn—-
Foeeen +2n41Co 2n+1>+b< Cn- 0, “Fu1Co1——
arpn-r ar
+ """ + n+rcn-r 71/0"7 + """ + ZnCO ﬁ) .

From the above BY(z, w) is calculated. Putting w=1 in A,(z, w) and
AP(z, w), we get @:(2) and QP (z). QF=QP (1) is given as follows

Q* _ {ncnbn+ """ +n+rcn—ra2rbn_r+ """ + 2,,C0(12" (NZ 27’1)
t n+l nabn+ """ +n+1+rCn-razr+lbn_T+ """ "_2n+1(/‘0a2n+1 (N:2n+1)
Putting a*=1+su;+p, and b=—p,, we have
Ci(s, 2z, w)= *+bz
and Ci(s, 2, w){z—w¢ [s+2(1—2)]}
*
—H—z‘L

* 2
+z2<b +2Coa >

axs
+ 23<2C1 W +3Co W)

_+_ ...... .
Generally the coefficient of 2?* is given by
bn *2bn 1 a*Zrbn-r a*en
C +n+lcn ) wn+1 + """ +"+TC"_T’—w;"T + """ +2nc0m
and the coeﬂiment of z**! is given by
a*br a*3bn— a*2r+1bn-r a*entl
w+1Cn Wl +ar2Cr1— P e +n+1+'rcn—rW+ """ +one1Co—t e

Hence CP(s, z, w) and DYP(s, z, w) are obtained easily.
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