TABLE FOR THE CAPACITY OF BINARY COMMUNICATION CHANNELS
 MINORU SAKAGUCHI

University of Electro-Communications
(Received August. 30, 1961)

1. INTRODUCTION

First we describe the communication channels we shall treat in this paper. The alphabet in which we send words contains just two letters, which we denote by 0,1 . Thus a sent word of length n is a sequence of n letters, which we shall call an n-sequence, each letter being a 0 or a 1 . If we send the word $\left(x_{1}, \cdots \cdots, x_{n}\right)$, then the received word is ($Y_{1}, \cdots \cdots, Y_{n}$) where $Y_{1}, \cdots \cdots, Y_{2}$, are independent chance variables, the probability distribution of Y_{i} depending only on the value of x_{i}. If there are just two possible values for Y_{i} which we can assume are 0,1 , the channel is called a "binary channel. A binary channel is essentially characterized by a 2×2 stochastic matrix

$$
\left(\begin{array}{cc}
p_{1} & 1-p_{1} \tag{1}\\
p_{2} & 1-p_{2}
\end{array}\right), \quad 0 \leqq p_{1}, p_{2} \leqq 1
$$

where $1-p_{1}$ anb p_{2} are "error probabilities" of obtaining output letter $1-j$ when the input letter was $j, j=0,1$, respectively. A code (n, N, λ) for the channel is a system

$$
\left\{\left(u_{1}, A_{1}\right), \cdots \cdots,\left(u_{N}, A_{N}\right)\right\}
$$

where $u_{1}, \cdots \cdots, u_{N}$ are n-sequences, $A_{1}, \cdots \cdots A_{\mathrm{N}}$, are disjoint set of n-sequences, and, for $j=1, \cdots \cdots, N$,

$$
p_{r}\left\{\left(Y_{1}, \cdots \cdots, Y_{n}\right) \in A_{j} \mid u_{j}\right\} \geqq 1-\lambda .
$$

The use of such a code is well-known. If the received word is in
A_{j}, the receiver assumes that the word u_{j} was actually sent. Then, no matter which of the words $u_{1}, \cdots \cdots, u_{N}$ is sent, the probability that the receiver will be in error is not greater than λ.

The most remarkable and now fundamental theorem of the information theory is the following :

THEOREM. Let ε be an arbitrary positive number. For sufficiently large n there exists a code of length

$$
N \geqq 2^{n(C-\varepsilon)},
$$

where C is a constant determined by the channel characteritic.
The number C is called the capacity of the channel. For a binary channel (1) C is given by

$$
\begin{equation*}
C=\max _{\substack{0 \leq \xi_{1}, \xi_{2} \leq 1 \\ \xi_{1}+\xi_{2}=1}} \sum_{i=1}^{2} \xi_{i}\left(p_{i} \log \frac{p_{i}}{\xi_{1} p_{1}+\xi_{2} p_{2}}+\left(1-p_{i}\right) \log \frac{1-p_{i}}{\xi_{1}\left(1-p_{1}\right)+\xi_{2}\left(1-p_{2}\right)}\right) \tag{2}
\end{equation*}
$$

A binary channel is called "symmetric" if $p_{1}+p_{2}=1$. It is easily found that we have, if symmetric,

$$
\begin{equation*}
C=1+p_{1} \log p_{1}+\left(1-p_{1}\right) \log \left(1-p_{1}\right) \tag{3}
\end{equation*}
$$

and the maximizing ξ_{1} is equal to $\frac{1}{2}$. The numerical table of the expression (3) was first given by Dolanký-Dolanský [1]. The purpose of the present paper is to give a table of numerical values of (2) for general binary channels (1).

2. THE OPERATIONS-RESEARCH BACKGROUND

Now, besides its interest of somewhat mathematical nature the capacity (2) of binary cammunication channels has now been given a practical importance in the field of operations research. The author feels at this point some neccessity to remark here that Professor K. Kunisawa of Tokyo Institute of Technology has devoted his efforts in these several years to the exploration of applicabilities of the information theory to various operation research problems.

Several case-studies of considerable interest are reported in his book [2], but they are not completely analysed theoretically. The present author proved in a previous paper [4] a theorem stated below which will throw light on the aspects as Prof. Kunisawa viewed.

Let ($p_{i j} \mid i, j=1, \cdots \cdots, n$) be a stochastic matrix representing the
characteristic of a communication channel with the same sizes of both input and output alphabets. Consider a person who observes the output number j. He does not know the input probabilities $\left\{\xi_{i}\right\}$. Hence, of course, he does not know the output probability distribution $\{p(j)\}$, even if he has full knowledge of the channel characteristic ($\boldsymbol{p}_{i j}$). Given the channel characteristic, he can compute the corresponding output probabilities $p(j)$ if he assumes an input probability distribution $\left\{\xi_{t}\right\}$.

Suppose that if he observes the output number j there occurs a gain for him which is equal to the amount $\log p(j)$ of information available and a cost which is given by a real number X_{j}. Thus, when the output probabilities are $p(j)$, of which he is ignorant, his expected net gain will be

$$
\begin{equation*}
\sum_{j=1}^{n} p(j)\left(-\log p(j)-X_{j}\right) . \tag{4}
\end{equation*}
$$

Let the numbers $X_{j}(j=1, \cdots \cdots, n)$ representing costs be taken such that if an input number i is selected, there results at the output an expected amount of cost $H_{i} \equiv-\sum_{j=1}^{n} p_{i j} \log p_{i j}$. Or equivalently, $\left\{X_{j}\right\}$ are given by

$$
\left(\boldsymbol{p}_{i j}\right)\left[\begin{array}{c}
X_{1} \tag{5}\\
\vdots \\
\vdots \\
\dot{X}_{n}
\end{array}\right]=\left[\begin{array}{c}
H_{1} \\
\vdots \\
\vdots \\
\dot{H}_{n}
\end{array}\right] .
$$

The amount of information transmitted per symbol by the channel equals

$$
\begin{equation*}
\sum_{i, j=1}^{n} \xi_{i} p_{i j} \log \left(p_{i j} / \sum_{i=1}^{n} \xi_{i} p_{i j}\right) \tag{6}
\end{equation*}
$$

if the input probabilities are $\left\{\xi_{t}\right\}$. Let us call the maximizing probability vector ξ^{*} of the expression (6) the matching input-probabilities to the channel, and let us call the probability vector $\left\{\sum_{i=1}^{n} \xi_{i}{ }^{*} p_{i j}\right\}$ the matching output-probabilities to the channel. Similarly we shall call the maximizing probabilities $\left\{p^{*}(j)\right\}$ of the expression (4) the matching probabilities to the costs $\left\{X_{j}\right\}$. Then we have a theorem [4] as follows:

THEOREM Let $\left(p_{i j}\right)$ be non-singular, and suppose that there exists a probability vector ξ^{*} such that

$$
\sum_{i=1}^{n} \xi_{t} * p_{i j}=e^{-x_{j}}\left(\sum_{j=1}^{n} e^{-x_{j}}\right)^{-1} \quad(j=1, \cdots \cdots, n)
$$

and $\xi_{i}{ }^{*}>0(i=1, \cdots \cdots, n)$, where X_{j} 's are defined by (5). Then the matching probabilities to the costs $\left\{X_{j}\right\}$ defined by (5) equal the matching output-probabilities to the channel ($p_{i j}$). Moreover the maximum expected net gain when we consider the costs $\left\{X_{j}\right\}$ is equal to the capacity

$$
\max _{\xi} \sum_{i, j=1}^{n} \xi_{i} p_{i j} \log \left(p_{i j} / \sum_{i=1}^{n} \xi_{i} p_{i j}\right)
$$

of the channel ($p_{i j}$).

3. THE METHOD AND SOLUTION

The author has given in another paper [3] the solution of our problem (2) as follows. Let $p_{1} \neq p_{2}$, and let $\xi_{1}{ }^{*}, \xi_{2} *$ be the maximizing probabilities. We solve simultanious equations

$$
\left\{\begin{array}{l}
p_{1} X_{1}+\left(1-p_{1}\right) X_{2}=H_{1} \\
p_{2} X_{1}+\left(1-p_{2}\right) X_{2}=H_{2}
\end{array}\right.
$$

where $H_{i} \equiv-p_{i} \log _{2} p_{i}-\left(1-p_{i}\right) \log _{2}\left(1-p_{i}\right)(i=1,2)$ and

$$
\left\{\begin{array}{l}
p_{1} \xi_{1} *+p_{2} \xi_{2} *=2^{-x_{1}}\left(2^{-X_{1}}+2^{-x_{1}}\right)^{-1} \\
\xi_{1}^{*}+\xi_{2}^{*}=1
\end{array}\right.
$$

We obtain from each of these

$$
X_{1}=\frac{\left(1-p_{2}\right) H_{1}-\left(1-p_{1}\right) H_{2}}{p_{1}-p_{2}}, \quad X_{2}=\frac{-p_{2} H_{1}+p_{1} H_{2}}{p_{1}-p_{2}}
$$

and

$$
\xi_{1}^{*}=\left(\frac{2^{-x_{1}}}{2^{-x_{1}}+2^{-x_{t}}}-p_{2}\right) /\left(p_{1}-p_{2}\right), \quad \xi_{2}^{*}=\left(\frac{2^{-x_{2}}}{2^{-x_{1}}+2^{-x_{t}}}-\left(1-p_{1}\right)\right) /\left(p_{1}-p_{2}\right)
$$

respectively. We then have $C=\log _{2}$ $\left(2^{-X_{1}}+2^{-X_{i}}\right)$.

A binary channel can be represented by a point in the unit square as in Fig. 1. By symmetry in the maxim and of (2) it is easily seen that four channels $\left(p_{1}, p_{2}\right),\left(p_{2}, p_{1}\right)\left(1-p_{1}\right.$, $\left.1-p_{2}\right)$ and ($1-p_{2}, 1-p_{1}$), each located symmetrically with respect to the diagonals of the square, are equivalent, i. e., have the same values of the capacity. Thus we are only to compute the values in the shaded triangle in

Fig. 1. The equivalence of the four channels

Fig. 1. The five-decimal-place table on page 60-66 gives the values of $\xi_{1}{ }^{*}$ and C for $p_{1}=0.01,0.02(0.02) 0.48$ and $p_{2}=0.01,0.02(0.02) 1.00$. The computations were performed by the electronic computer HITAC 101.

REFERENCES

[1] Dolanskỳ, L. and Dolanskỳ, M. P. (1952). Table of $\log _{2} \frac{1}{p}, p \log _{2} \frac{1}{p}$ and $p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}$, Tech. Rep. No. 22, R. L. E., M.I.T.
[2] Kunisawa, K. (1959). "Introduction to the Information Theory for $O R$ Workers," JUSE Publishing Company, Tokyo. (in Japanese)
[3] Sakaguchi, M. (1959). Notes on statistical applications of information theory IV. Rep. Stat. Appl. Res., JUSE., Vol. 6, 54-57.
[4] Sakaguchi, M. (1961). Some remarks on the capacity of a communication channel, J. Operations Research Soc. Japan, Vol. 3, 124-132.

Capacity and the Matching Input-Probability for Binary Channels.

	0.00		0.01		0.02	
	$\xi_{1}{ }^{*}$	C	$\xi_{1} *$	C	ξ_{1} *	C
0.02	0.63114	0.01068	0.52806	0.00125		
0.04	. 63014	. 02150	55339	. 00720	0.52762	0.00253
0.06	. 62912	. 03247	56606	. 01501	. 54246	. 00791
0.08	. 62809	. 04358	57381	. 02376	55202	. 01474
0.10	62703	. 05484	57901	. 03314	55872	. 02252
0.12	. 62595	. 06625	58268	. 04298	56366	. 03100
0.14	. 62485	. 07783	58535	. 05321	. 56741	. 04002
0.16	. 62373	. 08958	58730	. 06376	. 57031	. 04951
0.18	. 62258	. 10150	58873	. 07462	. 57257	. 05940
0.20	. 62141	11359	. 58975	. 08576	. 57433	. 06965
0.22	. 62022	12588	. 59045	. 09717	57570	. 08025
0.24	. 61900	13835	. 59088	. 10885	57673	. 09116
0.26	. 61775	15102	59110	. 12078	57750	. 10239
0.28	. 61647	16390	. 59114	. 13297	57803	11392
0.30	. 61516	17699	. 59101	. 14542	57837	12574
0.32	. 61382	19030	59073	. 15813	57852	13786
0.34	. 61244	20385	59033	17111	57851	15028
0.36	. 61103	21764	58981	18436	57837	16301
0.38	. 60958	23168	. 58919	19790	57808	. 17603
0.40	60810	24599	58846	. 21172	57768	18937
0.42	. 60657	26057	58763	. 22584	57716	20303
0.44	. 60500	27544	. 58672	. 24028	57653	21702
0.46	. 60338	29061	58571	. 25503	57580	23135
0.48	. 60172	30610	. 58462	. 27013	57496	24603
0.50	. 60000	32193	. 58344	. 28558	. 57402	. 26108
0.52	. 59823	33811	. 58217	. 30139	57299	27651
0.54	. 59640	. 35466	. 58082	. 31760	. 57185	29235
0.56	. 59450	37161	57937	. 33421	57062	. 30860
0.58	. 59254	. 38898	. 57784	. 35126	. 56928	32531
0.60	. 59050	. 40679	. 57621	. 36877	56785	34248
0.62	. 58839	. 42507	. 57448	. 38676	56630	36015
0.64	. 58619	. 44387	. 57265	. 40528	56465	37835
0.66	. 58390	. 46321	. 57071	. 42435	. 56287	39712
0.68	. 58150	. 48313	. 56865	. 44402	. 56098	41650
0.70	. 57900	. 50369	. 56647	. 46434	55895	43654
0.72	. 57637	. 52494	. 56415	. 48536	55677	45728
0.74	. 57361	. 54694	. 56168	. 50714	. 55445	47880
0.76	. 57070	. 56976	. 55905	. 52976	. 55195	50117
0.78	. 56761	. 59349	. 55623	. 55330	. 54927	. 52446
0.80	56434	61823	55321	. 57787	54638	54880
0.82	56084	64411	54996	. 60359	54325	57430
0.84	55708	. 67129	54644	63063	. 53985	60113
0.86	55302	69995	. 54261	. 65917	. 53202	. 62948
0.88	54859	. 73035	. 53840	. 68948	. 53202	65960
0.90	54370	76285	53372	. 72190	. 52744	. 69186
0.92	. 53824	. 79792	. 52846	. 75693	. 52226	. 72676
0.94	. 53199	. 83632	. 52240	. 79535	. 51628	. 76505
0.96	52461	. 87932	. 51518	. 83841	. 50913	. 80806
0.98	. 51530	92964	. 50601	. 88891	. 50000	. 85856

	0.04		0.06		0.08	
	$\xi_{1}{ }^{*}$	C	ξ_{1} *	C	$\xi_{1}{ }^{*}$	C
0.02						
0.04						
0.06	0.51593	0.00153				
0.08	. 52670	. 00522	0.51106	0.00111		
0.10	53455	. 01033	. 51931	. 00396	0.50837	0.00088
0.12	54055	01646	. 52572	. 00809	. 51496	. 00323
0.14	. 54526	. 02339	. 53085	. 01320	. 52029	. 00672
0.16	54903	. 03098	. 53502	. 01913	. 52467	. 01114
0.18	55209	. 03914	. 53846	. 02575	. 52833	. 01636
0.20	55458	. 04779	. 54132	. 03297	. 53140	. 02207
0.22	55662	. 05690	. 54371	. 04073	. 53399	. 02880
0.24	55828	. 06643	. 54569	. 04899	. 53618	. 03588
0.26	55962	. 07634	54735	. 05771	. 53802	04349
0.28	56069	. 08664	. 54871	. 06686	. 53957	. 05158
0.30	56152	. 09729	. 54983	. 07643	. 54087	. 06012
0.32	56215	. 10830	. 55072	. 08640	. 54193	. 06912
0.34	. 56258	. 11966	. 55140	. 09677	. 54278	07854
0.36	. 56285	. 13136	. 55191	. 10751	. 54345	08838
0.38	. 56296	. 14342	. 55225	. 11865	. 54395	. 09863
0.40	. 56293	. 15582	. 55244	. 13016	. 54428	10929
0.42	. 56276	. 16858	. 55248	. 14206	. 54447	12037
0.44	. 56247	. 18170	. 55239	. 15434	. 54451	13185
0.46	. 56205	. 19519	. 55217	. 16703	. 54442	. 14376
0.48	. 56152	. 20906	. 55182	. 18012	. 54420	. 15609
0.50	56087	. 22333	. 55135	. 19362	. 54385	16885
0.52	. 56011	. 23800	. 55076	. 20755	. 54338	18206
0.54	55924	. 25310	55006	. 22193	. 54279	19573
0.56	55826	. 26864	54924	. 23677	. 54208	20988
0.58	55717	. 28465	. 54830	. 25209	. 54125	22453
0.60	55597	. 30114	. 54724	. 26791	. 54030	23970
0.62	55465	. 31816	. 54606	. 28427	. 53921	25541
0.64	55320	. 33572	54476	. 30119	. 53808	27170
0.66	55164	. 35386	54332	. 31872	53666	28860
0.68	54994	. 37264	. 54175	. 33688	53518	30615
0.70	54810	. 39208	. 54003	. 35572	. 53354	32439
0.72	54611	. 41225	. 5381.6	. 37531	- 53175	34339
0.74	54397	. 43321	. 53612	. 39570	. 52979	36320
0.76	54164	. 45504	. 53390	. 41696	. 52764	38390
0.78	53912	. 47781	. 53148	. 43919	. 52529	40557
0.80	53638	. 50164	. 52884	. 46248	. 52271	. 42832
0.82	53340	. 52665	. 52594	. 48697	. 51988	45228
0.84	53013	. 55300	. 52276	. 51282	. 51675	47761
0.86	52654	. 58090	. 51924	. 54023	. 51328	50450
0.88	52255	. 61060	. 51533	. 56946	. 50940	. 53324
0.90	. 51809	. 64246	. 51091	. 60087	. 50502	. 56417
0.92	. 51300	. 67699	. 50588	. 63497	. 50000	. 59782
0.94	. 50710	. 71496	. 50000	. 67256		
0.96 0.98	. 50000	. 75771				
0.98						

	0.10		0.12		0.14	
	$\xi_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C
0.02						
0.04						
0.06						
0.08						
0.10						
0.12	0.50665	0. 00074				
0.14	51208	. 00275	0.50546	0.00064		
0.16	51658	. 00579	. 51002	. 00240	0.50458	0.00057
0.18	. 52036	. 00872	. 51387	. 00513	. 50847	. 0021.5
0.20	52355	. 01441	. 51714	. 00868	. 51179	. 00462
0.22	52627	. 01978	. 51995	. 01296	. 51465	. 00788
0.24	52859	. 02577	. 52235	. 01791	. 51711	. 01185
0.26	53056	. 03232	. 52441	. 02347	. 51923	. 01646
0.28	53224	. 03941	. 52617	. 02960	. 52105	. 02168
0.30	53365	. 04699	. 52767	. 03627	. 52262	. 02746
0.32	. 53484	. 05505	. 52894	. 04344	. 52395	. 03378
0.34	. 53581	06358	53000	. 05110	. 52506	. 04061
0.36	. 53659	. 07255	. 53086	. 05924	. 52599	. 04794
0.38	53719	08196	. 53154	. 06784	52673	. 05576
0.40	. 53763	09181	. 53206	. 07690	. 52731	. 06406
0.42	. 53792	10209	. 53243	. 08641	. 52773	. 07282
0.44	53806	11280	. 53265	. 09637	. 52801	. 08206
0.46	. 53807	12395	53272	. 10679	52815	09176
0.48	. 53794	13554	. 53267	. 11767	. 52814	. 10194
0.50	. 53769	14759	53248	. 12901	. 52801	11260
0.52	. 53731	16010	53217	. 14084	. 52775	12375
0.54	. 53680	17308	. 53173	. 15314	. 52736	13540
0.56	. 53617	18655	. 53116	. 16596	. 52684	. 14756
0.58	53542	20054	. 53046	. 17929	. 52619	. 16026
0.60	. 53454	. 21506	. 52964	. 19317	. 52542	. 17350
0.62	. 53353	. 23013	. 52869	. 20761	. 52451	. 18733
0.64	. 53233	24579	. 52761	22266	. 52347	. 20176
0.66	53111	. 26208	. 52638	. 23833	. 52228	. 21683
0.68	. 52969	. 27902	. 52501	. 25467	. 52095	. 23257
0.70	. 52812	. 29667	. 52349	. 27173	. 51946	. 24904
0.72	52639	. 31508	. 52180	. 28956	. 51781	. 26629
0.74	52449	. 33432	. 51994	. 30821	. 51597	. 28436
0.76	52239	. 35444	. 51788	. 32777	. 51395	. 30335
0.78	52009	. 37555	. 51561	. 34832	. 51170	. 32334
0.80	51756	. 39775	. 51311	. 36997	. 50922	34443
0.82	51476	. 42117	. 51034	. 39283	. 50648	. 36674
0.84	51167	. 44597	. 50727	. 41709	. 50342	39045
0.86	50823	. 47234	. 50385	. 44294	. 50000	. 41576
0.88	50437	. 50057	. 50000	. 47064		
0.90	50000	. 53100				
0.92						
0.94						
0.96						
0.98						

p_{1}	0.16		0.18		0.20	
	$\xi_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C
0.02						
0.04						
0.06						
0.08						
0.10						
0.12						
0.14						
0.16						
0.18	0.50390	0.00051				
0.20	. 50725	. 00196	0.50336	0.00047		
0.22	. 51014	. 00423	. 50627	. 00181	0. 50292	0.00043
0.24	. 51264	. 00726	. 50879	. 00393	. 50545	. 00168
0.26	. 51480	. 01096	. 51098	00676	50545	. 00367
0.28	. 51667	. 01530	. 51288	. 01025	50958	. 00635
0.30	. 51828	02024	51452	. 01437	51125	. 00967
0.32	. 51965	02573	51593	. 01907	51268	. 01360
0.34	. 52082	03197	51713	. 02433	51390	. 01811
0.36	. 52258	. 03832	51814	. 03012	51494	. 02317
0.38	. 52179	. 04538	. 51896	. 03644	51579	. 02876
0.40	52321	, 05293	. 51962	04327	51648	. 03489
0.42	. 52367	. 06097	. 52013	. 05061	51702	. 04153
0.44	. 52399	. 06950	52049	. 05844	51740	. 04868
0.46	. 52417	. 07851	. 52070	06677	51764	. 05634
0.48	. 52422	. 08800	. 52078	. 07559	51775	. 06451
0.50	52412	. 09799	. 52072	. 08492	51771	. 07319
0.52	. 52390	. 10848	. 52053	. 09476	51755	. 08240
0.54	. 52355	. 11948	. 52021	. 10512	51726	. 09213
0.56	. 52307	. 13100	. 51976	. 11602	51684	. 10240
0.58	. 52246	. 14307	. 51918	. 12746	51628	. 11323
0.60	. 52172	. 15569	. 51847	. 13947	51559	. 12463
0.62	. 52085	. 16890	51763	15207	51477	. 13663
0.64	. 51984	. 18273	. 51664	. 16530	51381	. 14926
0.66	. 51869	. 19720	. 51551	. 17917	. 51270	. 16254
0.68	. 51739	. 21235	. 51424	19374	. 51144	. 17652
0.70	. 51592	. 22823	. 51280	20903	51001	. 19124
0.72	, 51430	. 24490	51119	. 22512	. 50842	. 20674
0.74	. 51249	. 26240	50940	. 24205	. 50664	. 22310
0.76	. 51048	. 28082	. 50740	. 25990	.50466 50245	. 24038
0.78	. 50826	. 30024	. 50519	. 27875	. 50245	. 25867
0.80	. 50579	. 32077	. 50273	. 29872	. 50000	. 27807
0.82	. 50305	. 34253	. 50000	. 31992		
0.84 0.86	. 50000	. 36569				
0.86 0.88						
0.90						
0. 92						
0.94						
0. 96						
0.98						

$\bigcirc p_{1}$	0.22		0.24		0.26	
p_{2}	$\xi_{1} *$	C	ξ_{1} *	C	$\xi_{1} *$	C
0.02						
0.04						
0.06						
0.08						
0.10						
0.12						
0. 14						
0.16						
0.18						
0.20						
0.22						
0.24 0.26	0.50254 .50476	0.00041 .00158	0.50222	0.00038		
0.28	. 50670	. 00347	. 50417	. 00150	0.50195	0.00037
0.30	50838	. 00602	. 50586	. 00330	. 50364	. 00143
0.32	50983	. 00919	. 50732	. 00574	. 50512	. 00316
0.34	51107	. 01296	. 50858	. 00879	. 50639	. 00551
0.36	. 51213	. 01731	. 50965	. 01243	. 50747	. 00846
0.38	. 51300	. 02220	. 51054	. 01664	. 50837	. 01199
0.40	51372	. 02764	. 51127	02140	50912	. 01608
0.42	51427	. 03360	. 51185	. 02669	50970	. 02073
0.44	51468	04008	. 51227	. 03252	51014	. 02591
0.46	. 51494	. 04709	. 51255	. 03888	. 51044	. 03163
0.48	. 51507	. 05461	. 51269	. 04577	. 51059	. 03789
0.50	. 51506	. 06266	. 51270	. 05319	. 51062	. 04469
0.52	. 51492	. 07123	. 51258	. 06114	. 51051	. 05203
0.54	. 51464	. 08034	. 51232	. 06963	. 51026	. 05991
0.56	. 51424	. 08999	. 51194	. 07868	. 50989	. 06836
0.58	. 51371	. 10021	. 51142	. 08830	. 50938	. 07738
0.60	. 51304	. 11101	. 51076	. 09850	. 50874	. 08899
0.62	. 51223	. 12242	. 50997	. 10932	. 50796	. 09722
0.64	. 51128	. 13446	. 50904	. 12076	. 50703	. 10808
0.66	. 51019	. 14715	. 50796	. 13288	. 50596	. 11961
0.68	. 50894	. 16055	. 50672	. 14569	. 50473	. 13185
0. 70	. 50753	. 17469	. 50532	. 15925	. 50334	. 14483
0.72	. 50595	. 18962	. 50374	. 17361	. 50176	. 15861
0.74	. 50418	. 20540	. 50197	. 18882	. 50000	. 17325
0.76 0.78	. 50220	. 22211	. 50000	. 20946		
0.78	. 50000	. 23983				
0.80						
0.82 0.84						
0.84 0.86						
0.86 0.88						
0.90						
0.92						
0.94						
0.96 0.98						
0.98						

	0.28		0.30		0.32	
	$\xi_{1}{ }^{*}$	C	ξ_{1} *	C	$\xi_{1}{ }^{*}$	C
0.30	0.50170	0.00035				
0.32	. 50318	. 00137	0.50148	0.00034		
0.34	. 50446	. 00304	. 50276	. 00133	0.50128	0.00033
0.36	. 50554	. 00532	50386	00294	. 50238	. 00129
0.38	. 50646	. 00818	. 50478	00515	. 50331	. 00286
0.40	50721	. 01162	50554	00795	. 50407	. 00502
0.42	50781	. 01562	50614	. 01131	. 50468	. 00776
0.44	50826	. 02017	50660	. 01524	. 50514	01106
0.46	. 50856	. 02526	50691	. 01971	. 50547	01492
0.48	. 50873	. 03090	50709	. 02474	. 50565	01934
0.50	. 50877	. 03709	50713	. 03031	. 50570	02431
0.52	. 50867	. 04382	50704	03644	. 50562	02984
0.54	. 50844	. 05110	50682	. 04313	. 50540	. 03594
0.56	. 50807	. 05895	. 50647	. 05038	. 50505	. 04261
0.58	. 50757	. 06738	50598	. 05822	. 50457	. 04986
0.60	. 50694	. 07640	50535	. 06666	. 50395	05772
0.62	50617	. 08604	50458	. 07572	. 50319	. 06619
0.64	. 50525	. 09632	. 50367	. 08542	. 50228	07531
0.66	. 50419	. 10727	50261	. 09579	. 50122	08511
0.68	50296	. 11893	50139	10688	50000	09562
0.70	. 50157	. 13134	. 50000	. 11871		
0. 72	. 50000	. 14455				

- p_{1}	0.34		0.36		0.38	
p_{2}	ξ_{1} *	C	$\xi_{1} *$	C	$\xi_{1}{ }^{*}$	C
0.36	0.50110	0. 00032				
0.38	. 50203	. 00125	0. 50093	0. 00031		
0.40	. 50280	. 00279	50170	. 00123	0. 50077	0.00030
0.42	. 50341	. 00491	50232	. 00273	. 50139	. 00120
0.44	50388	. 00760	50279	00482	. 50186	00269
0.46	. 50421	. 01085	50312	. 00747	. 50220	00474
0.48	. 50440	. 01467	50331	. 01069	. 50240	00737
0.50	. 50445	. 01905	. 50337	. 01447	. 50246	. 01057
0.52	. 50437	. 02398	50330	. 01882	. 50239	01433
0.54	. 50416	. 02949	. 50309	. 02374	. 50218	. 01867
0.56	. 50382	. 03557	. 50275	. 02924	. 50184	. 02359
0.58	. 50334	. 04224	. 50227	. 03533	. 50137	. 02910
0.60	. 50272	. 04952	. 50166	. 04203	. 50076	. 03522
0.62	. 50196	. 05742	. 50090	. 04935	. 50000	04196
0.64	. 50106	. 06596	. 50000	. 05732		
0.66	. 50000	. 07518				

p_{2}	0.40		0.42		0. 44	
	$5_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C	$\xi_{1}{ }^{*}$	C
0.42	0. 50062	0.00030				
0.44	. 50110	. 00118	0.50048	0.00029		
0.46	. 50143	. 00265	50081	. 00117	0.50034	0.00028
0.48	. 50163	. 00469	50101	. 00262	. 50054	. 00116
0.50	50169	. 00730	50108	. 00465	. 50064	. 00261
0. 52	. 50162	. 01048	50101	. 00725	. 50054	. 00463
0.54	. 50142	. 01424	50081	. 01043	. 50034	. 00723
0.56	. 50109	. 01858	50047	. 01419	. 50000	. 01041
0.58	. 50061	. 02351	50000	. 01855		
0.60	. 50000	. 02905				
p_{1}						
p_{2}	ξ_{1} *	C	$\xi_{1} *$	C		
0.48	0. 50020	0.00029				
0.50	. 50027	. 00116	0.50007	0.00029		
0.52	. 50020	. 00260	0.50000	0.00115		
0.54	. 50000	. 00462				

