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1. INTRODUCTION 

There has been an objection to the minimax principle regarding 
to its too pessimistic character. and several alternative decision criteria 
have been suggested. Among them, Savage's minimax regret principle 
is the most interesting one. 

The same criticism has been applied also to our previous studies 
[12}·, .. {14] and the application of the minimax regret principle has been 
suggested. It is the purpose of this note to analyse the same problem 
applying the minimax regret principle. The results will be also compar­
ed to the maxim in ordering policy which we presented previously. It 
may be reminded that Morris [11] already presented an interesting 
study of optimal ordering problem t.:.nder several decision criteria. It is 
noteworthy, however, that Morris' model can be regarded as a special 
case of our model because, if we restrict our model to the static case 
and neglect some parameters, our model coincides with his model. 

2. ECONOMIC MEANING AND METHODS OF EV ALU ATION 
OF REGRET IN MULTI·STAGE CASE 

We have no intention of discussing here the general properties of 
the minimax regret principle, because they were studied in many lite­
ratures (e. g., [4}·"[9]1. However. it must be noted here that there exists 
a conceptual correspondence between the minimax regret principle and 
the opportunity cost doctrine in the following sense. Opportunity cost 
can be defined as. the forgone profit due to the selection of particular 
course of action. More precisely, if we assume a situation where we are 
given two alternative courses of action . .4.1 and A~, and we can obtain 
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the profit PI and P2 respectively, the opportunity cost due to the selec­
tion of Al is equal to the forgone profit P2• On the other hand, the regret 
rij is defined by the form 

(2. 1) Yij=Max akj-aij 
k 

where our choice is the ith alternative and the nature realizes the state 
j and aij is the real payoff in money or utility. Comparing these two 
definitions, we can easily find the fact that the term Max akj in (2. 1) 
is the possible maximum opportunity cost when the state of the nature 
is j. Hence, the regret is a concept which may also be defined as the 
opportunity loss. The essential meaning of the minimax regret principle, 
consequently, can be restated as the minimization of the possible maxi­
mum opportunity loss. 

In . our problem of optimal ordering, the one-stage profit is a 
function, P(x, y, z), of the initial stock x, starting stock y, and demand 
z at the stage. Hence, the one stage regret function R(x, y, z) is given by 

(2. 2) R(x, y, z)=Max P(x, y', z)-P(x, y, z) 
11' 

and we can consider a function flex) such as 
(2. 3) fl(x)=Val R(x, y, z). 

(Here it must be noted, however, that the decision-maker or the 
management is the minimizing player and the nature is the maximizing 
player in this case.) 

But we are confronted with a difficulty in multi-stage case. Let 
Rn(x, y, z) denote the toj:al regret when the initial stock, starting stock, 
and demand at the first stage are x, y and z respectively, and an optimal 
policy is used for the subsequent n-1 stages. Then, we must determine 
what formula we will use to evaluate Rn(x, y, z). Although several 
methods for the evaluation of Rn(x, y, z) can be considered, we will 
discuss the following two methods. 

[METHOD IJ Rn(x, y, z)=R(x, y, z)+afn-llMax(y-z, 0») 
where fn-I(x) denotes the total regret value of the game starting 
with initial stock x and using the optimal policy under the assu­
mption of this evaluation method in n-1 stages. 

[METHOD IIJ R,/x, y, z)=Max[P(x, y', z)-afn-dMaxCy'-z, O»)J 
-[P(x, y, z)-afn-dMax(y-z, O»)J 

where fn-Iex) denotes the total regret value of the game starting 
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with initial stock x and using the optimal policy under the assu­
mption of this evaluation method in n-1 stage. 

In either method, a is a suitable discount factor. Eihter method is sub­
ject to a boundary condition R1(x, )" zi=Rlx, y, z). Which of these two 
methods is more valid is a somewhat troublesome problem, although it 
may be a matter of subjective preference of the decision maker. However, 
we can find fortunately in most cases the following properties. First of 
all, in our problem, 

(2. 4) Max P(x, y, z)=P(x, z, z) 
N 

and, accordingly, 
(2. 5) RCx, y. z)=P(x, z, Z)-P(x. y. z). 

Furthermore, in many cases, 
(2. 6) Max[PCx, y, z) -afn-dMax( y-z, O)} J 

Hence, 

(2. 7) 

11 

=P(x, z, z)-a!n-lCO) 

Max[Pex, y, Z)-afn-l {Max(y-z, O)} J 
11 

-[P(x, y, z)--a!n-dMax(y-z, O)} J 
=P(x, z, z)-pex, y, z)-a/n-l(O)+a!,,-dMax(y-z, O)} 
=RCx, y, z)+a!n-l {Max(y-z, O)} -a!n-lCO). 

As a!n-l(O) is a certain constant, if, for n=2, 3, .... ··successively, (2. 6) 
is satisfied, the optimal strategy for the decision maker is by no means 
affected by the selection of the evaluation method_ 

In the following considerations, we will adopt the method I mainly_ 
Althogh some of the conceptual difficulties may be said to be remaining, 
the following results will be sufficiently suggestive in practice especially 
with regard to the character of the minima x regret principle as a decision 
criterion. It is noteworthy that, although the minimization of mean regret 
all over the stages can be proposed as another criterion for multi-stage 
cases, the structure of the optimal policy for the method is also similar_ 

3. SOLUTION TO THE CASE WHEN BACKORDERING IS 
ACCEPTED AT THE PURCHASING PRICE 

In our previous papers [12J [13J somewhat rigid condition was 
placed that the returning (backordering) or the disposal of the merchan-
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dise is accepted at the purchasing price. In such a simple case we can 
obtain the minimax regret solution quite easily. 

as 
As in [12J [13], let us consider a one-stage profit function such 

(3. 1) P , )_ {(P+b)z-(a+b)y+ax 
,x, y, Z - ( ) -cz+ p+c-a y+ax 

where 
p : retail or sales price 
a : wholesale or purchasing price 
b : storage or holding cost per unit 
c : penalty per unit of shortage. 

(when y'?;z) 
(when y:;;'z) 

By a simple observation, it is clear that 
(3. 2) Max P(x, y, z)=P(x, z, z) 

Thus 

(3. 3) 

11 

=pz-a(z-x) 
=(p-a)z+ax. 

R " )- t((a+b)(y-z) 
~x, y, z - ( ( p+c-a) z-y) 

(when y'?;z) 
(when y~z). 

Noting that, in this case, R(x,y, z) can be regarded as convex in y for 
every x and z, and that the decision maker is the minimizing player, the 
starting stock level Yl* which is optimal in the sense of the minimax 
regret principle in the one-stage model will be found as 

(3. 4) Yl*= (a+b)Zmin+(P+c-a)zmax 
. p+b+c 

and 
(3. 5) /l(x)=(a+b)(Yl* -Zmin) 

(a+b)(p+c-a) 
= ·---p+if+c--(Zm,,-,,-Zmln) 

where Zmin and Zmax are the lower and the upper limit of the demand 
in each stage, respectively. 

It is intresting to compare this result to the maximin policy. The 
corresponding maximin policy is found in our previous papers. The 
difference between the rninimax regert starting stock and the maximin 
starting stock is 

(3. 6) 
(a+b)Zmin+CP+c-a)Zmax (p+b)Zmin+CZma, --- P+b+c--------p+b+C"---
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p-a 
=P-+b+c(Zmax- Zm13) 

and obviously the minimax regret solution is larger than the maximin 
solution because p>a in the case of sound enterprise. Furthermore, the 
difference is proportional to the difference between sales price and the 
purchasing price and to the difference between Zmax and Zmin, and more­
over the smaller the parameters band c, the larger the difference 
between the solutins. 

Another intresting fact is that Il(X) in this case is independent 
of x, i. e., a constant. Accordingly, let us set Il(X) =/1. Then, by the 
method I of the multi-stage regret evaluation, clearly, 

(3. 7) R2(x, y, z)=R(x, y, z)+a/l 
and the optimal strategy in this two-stage case is all the same as ob­
tained before, and 

(3. 8) 

By the similar argument we can obtain a recurrence relation such as 
(3. 9) In(x) =In =/1+ aln-l 

and consequently 
(3. 10) In -110-1 =a(fn-l-110-2). 

Hence the series {fn} converges as O<a<1. Let I denote the limit, then 
It 1 (a+b)(p+c-a) 

(3. 11) l=l-a =r=-a . ·-~-P+b+c---(Zmax-Zmln). 
On the other hand, if we adopt the method II of the multi-stage 

regret evaluation, we can find, for every n, that 
(3. 12) Rn(x, y, z) =R(x, y, z) 

and the optimal starting stock for each stage is equal to the level given 
by (3. 4) regardless of the number of stages allowed to be considered, 
and In(x) =/1 for every n. 

4. ONE-STAGE SOLUTION TO THE CASE OF DISCOUNTED 
BACKORDERING PRICE 

Removing the rigid condition imposed on the above-mentioned 
model, let us assume, as in the case A in [14], a discounted price in case 
of returning (backordering) or disposal a' such as a'~a. For convenience 
of analysis, let us consider, in this section, a truncated one-stage model. 
One-stage profit function in such case is, for yG;,x, 
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(4. 1) P(x, . z)= {CP+b)Z-Ca+b)y+ax 
y -cz+CP+c-a)y+ax 

and, for y~x, 

(4 2) P(x z = {CP+b)Z-Ca'+b)y+a'x 
. ,y,) -cz+(p+c-a')y+a'x 

Cwhen y~z) 
(when y~z) 

(when y~z) 
(when y~z). 

By a simple observation we can see that max P(x, y, z) =Pi x, Z, z). 
Here we can decompose the regret function as follows, 

(. 3) RCx, y, z)=P(x, z, z)-P(x, y, z) 
= [pz-KCz, x)J-[PCy, z)-K(y, x)] 

where K(z, x) and Key, x) are the costs incurred by the transformations 
from x to z and y, respectively, and PCy, z) denotes the profit obtained 
by the combination of y and z excluding the cost K(y, z) from the con­
sideration. Now, from (4. 3), 

(4. 4)' R(x, y, z)=[pz-P(y, z)]-K(z, x)+K(y, x). 
Let us define here. 

(4. 5) R'(x, y, z)=[pz-P(y, z)] -K(z, x). 

The explicit expression of (4. 5) is 
, {b(y-Z)-KCZ, x) 

(4. 6) R'(X, y, z)= (P+c)(z-y)-K(z, x) 
(when y~z) 
(when y~z). 

By the similar argument to the section 3 in [14], i. e., by the exami­
nation of the slope of the security level, the optimal starting stock can 
be found directly from (4. 6) instead of the original regret function R 
(x, y, z). Moreover, it will be also clear that the optimal stock level will 
be a certain number in the interval [ZmlQ,Zmax]. 

Now, consider the- case when X~ZmjQ' In this case it should be 
noted that K(z, x) is the purchasing cost for the quantity z-x, i. e., 
K(z, x)=a(z, x). The optimal starting stock for this case is clearly 

(4. 7) 
* C a+b)Zmin+( p+c-a )zmax y ----~- -- - - - -----

1 - p+b+c 

For xGzruax, K(z, x) is the revenue due to the returning or disposal, 
i. e., K(z, x)=a'(z-x), a negative cost. The optimal stock level is 

(4. 8) Yl*=(al_+_~~~ln;$t-t:~-a~2~m"". 

For Zmln~X~Zmax, K( Zmax, x) is the purchasing cost and K(Zlllin, x) is 
the revenue due to the returning. 
Hence, 
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9) M R'( ) {by-(a'+b)Zm,n+a'.x (when y~z) 
(4. ~x.x, y, Z = (p+c-a)zmAX-(p+c)y+a.x (when y:[.z) 

and 

(4. 10) 
• (a' +b)Zmln+CP+C-a)zJW\x+(a-a').x Yl =-------~----

p+b+c 
which is a function of .x. The relationship of the optimal starting stock 
level to the initial stock .x is shown in Fig. 1. 

We can also consider the "optimal initial stock" in the sense that 
YI*=X, which is obtained from (4. 10) as 

(4. 11) .x1*=~~-+:~)~lIllll±y+~=a)ZmRx 
p+b+c+a'-a 

In order to determine flex), it suffices for us to consider the fact that 
K(YI*, .x) is the purchasing cost when X:[.Xl* and the returning revenue 
when X~.xl*. The explicit form of fl(X) is obtained as follows. 

(a+b)(p+c-al 
/1(X)=--- -P+b-tc---CZmRx-Zmln) for X:[.Zmln 

flCx) ~:~~: {(a+b)ZmRx-'-(a'+b)zmln-(a-a').x} 

(4. 12) 
for Zmln:[.X:[.Xl· 

fl(.x)=/;;!c {(p+c-a)Zm",,-(p+c-a')zmln+(a-a').x} 

11(.11)= Ca'+b)~p+c-a~2(z -z I) 
p+b+c mAX mn 

, 
/ 

/ 
/ 

/ 
/ 

, , , , 

,/ ------­

x 

f~X>/ 
I 

, , 
I 
I 
I 
I 
I 

: 
2. 1• x. z ... 

Fig. 1. Relation of the optimal start­
ing stock to the initial stock 

Fig. 2. Structure of f,(x) 

x 
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Fig. 2 shows the form of this solution function. However, it must be 
remarked that, among the four expressions which value of the first and 
the last is larger depends upon the parameters. 

5. A SIMPLE OBSERVATION ON THE PROPERTIES 
OF THE SOLUTION 

Several interesting properties can be found with regard to the so­
lution. Firstly, the optimal starting stock is independent of x when x~ 
Zmin and x;?;zmax. Computationally, it is because the term of x vanishes 
during the computation of Yl*' However, the following significance must 
be remarked. The independence of Yl* from x when X~Zmin and when 
x;?;zm"Y is due to the proportionality of the purchasing cost. For instance, 
consider two stock levels x' and x" such as x' < x" < Zmin. Then, in each 
case of x=X' and x=,x", K(zmin; x) of K( Zmin, x") is precisely offset, and 
the diference of x' and x" by no means affects the value of the solution. 
this property will be found also in the multi-stage cases. But, if the pur­
chasing cost or the returning revenue is proportional, it is not the case. 

Another interesting property of Yl * is that it is a nondecreasing 
function of x, and especialy in the interval [Zmin, zmaxJ it is slowly and 
linearly increasing with x. On the other hand, the maxmin policy which 
was previously obtained is completely independent of x. Here, we think 
that we can see the less pessimistic character of the minimax regret 
principle compared with the minimax principle. 

It will be needless to be mentioned that the static solution in the 
section 3 is only a special case of the solution in the section 4. 

Consider, now, the dynamic cases on the basis of the solution in 
the previous section. As was mentioned above, fn(x) for each n will be 
independent of x for X~Zmin and x;?;zmax if the purchasing cost and the 
returning revenue are both proportional. Here we are confronted with 
a difficulty, however, that the pure strategy solution may not be optimal 
from the mathematical viewpoint for n=2, 3, ····because of the form of 
flex). (Necessary condition for the optimality of the pure strategy solution 
was given in [14J). But fortunately there exist cases where the pure st­
rategy solutions are optimal under a certain condition. and furthermore, 
if the difference between a and a' is relatively small, the pure strategy 
solutin obtained by 
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(5. 1) fn(x)=Min Max[R(x, y, z)+afn-l {Max(y-z, OJ} ] 
11 v 

will be sufficiently good approximation to the mixed strategy solution. 
More details of them will be discussed in succeeding sections. From the 
viewpoint of management practice, the randomization of policies is un­
desirable. 

6. INFINITE-STAGE SOLUTION WHEN zmax;;;;;2zmin 

Multi-stage cases can be analysed by the method of successive 
approximations. But, for the present, let us consider the infinite-stage 
solution directly. 

Let us assume that the soluton f"x) of 
(6. 1) f(x) = Val[R(x, y, z)+af{Max(y-z, a)} ] 

is of a similar form to Fig. 2, i. e, a contant for X;;;;;Zruin, linearly de­
creasing in x for Zmin<X<X*, linearly increasing in x for x*<x<zmax, 
and a constant for x>zmax, where y and Z are the control variables of 
the minimizing player and the maximizing player, respectively. Then, we 
have an optimal pure strategy solution if zmax<2zmin, because, for, ZlUiu;;;;; 
y;;;;;zmax, f{Max(y-z, a)} =f(O), 
fOrX;;;;;Zmin, 

(6. 2) Max[R(x, y, Z~ +af{Max(y-z, a)} ] 
• 

{
(a+b)(y-ZmiD)+af(O) (when y?;.z) 

= (P+C-a)(zma, -y)+af(O) (when y;;;;;z) 
and the optimal stock level will be 

(6. 3) • (a+b)Zmin+CP+C-a)zmax 
y = p+b+c 

By the similar argument, for x?;'zmax, 

(6. 4) 
• (a'+b)Zmin+(P+c-a')zml\x 

y =- p+b+c 

For Zmin;;;;;X;;;;;Zmax, if y>x, 
(,6. 5) Max[R(x, y, z)+af{Max(y-z, a)} ] 

z 

_ f b(y-Zmin)-a'(zmln-xHa(y-x)+af"O) (wheny?;.z) 
-1 (p+c-a)(Zmax-y)+af(O) (wheny;;;;;z) 

.and we have 

C6. 6) 
• (a'+b)Zmin+(P+C-a)Zmax+(a-a')x 

y =-j>+b+c 
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The same solution can be obtained also under assumption y~x. Now, by 

(6. 7) x*=(a'+b)Zmln::tCp+c-a)Zm~~ 
p+b+c+a'-a 

the optimal initial stock in the sense that y* =X is given. 
We can determine I(x) as follows. For X~Zmln, 

(6. 7) I(x) =(p+c-a)(Z,nl\x-Y*) +a/(O) 
where y* is given by (6. 3). By the assumption, (6. 7) must be a equal 
to 1(0), and consequently 

1 (p+c-a)(a+b) 
(6. 8) l(x)=/(O)=C_a ·--~P+b+c-(ZmI\x-Zmln). 

For Zmln~X~Z*, 

(6. 9) I(x) = (p+c-a)(Zm~x-Y*) +al(O) 
where y* .is given by (6. 6) and consequently I(x) is linearly decreasing. 
For x" ~x~zml\'" 

(6. 10) I(x) = (a' +b)(y* -Zmln)+al(O) 

where y* is given by (6. 6) and lex) is linearly increasing. Similarly 
for x~zml\x, 

(6. 11) I(x)=(a' +b)(y*-zmln)+al(O) 
where y* is given by (6. 4) and accordingly lex) is independent of x. 
It must be noted that these results have an interesting property of cor­
respondence to the static solutio.n which was mentioned in the section 
4. The property is due· to. the condition Zml\" ~2Zmln. 

7. NOTE ON INFINITE-STAGE SOLUTION WHEN zml\,,>2zmin 

_ When zmI\x>2zmin, we have no.t the o.Ptimal pure strategy solution. 
However, as was mentioned before, the pure strategy solution will be a 
sufficiently good approximation fo.r the optimal solution if the difference 
between a and a' is small, because I .. (x) for each n is nearly indepen­
dent of x if the difference is small. 

When we intend to obtain the pure strategy solution, it suffices to. 
consider the equation 

(7. 1) l(x)=Min Max[R(x, y, z)+a/{Max(y-z, O)}]. 
11 • 

Again let us place the similar assumption about the form of I(x) as in 
the analysis of the equatio.n (6. 1). Then, fo.r X~Zmlll' 
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• Ca+b)zmin+( p+c-a)Zmax+a{fCO, - f( y' -Zmin)} y =-~ ... --~ ... - .. ~-~ ~~-. ~-~-

p+b+c 
fCx) = f(O) = CP+c--a)(zmax -y*) +af( 0) 

-and, for x;:;; Zml\x, 

, Ca' +b)Zmin+C p+c-a')zmax+a{fC 0) -fCy' -Zmin)} 
(7. 4) y =~--- ------.-~ p+b+c--- ----

(7. 5) f(x)=eP+c-a')(zml\x-y')+af(O) 
either solution of which is subject to the constraint 

(7. 6) -atCRCX, y, z)+af{MaxCy-z)} J>O (for y;:;;z) 

165 

which is satisfied in most cases. Furthermore, by the similar analysis 
for Zmin:;:;;;X:;:;;;Zml\x, 

(7 7) y'= Ca' +~~min+(e±c-aJ'~Jlax+ (a-a'_)_x_±,~{j(O)-.(~lI*-Zminlt 
. , p+b+c 

However it must be noted that the problem has not yet completely solved 
because the values of f~O) and fey' --Zmln) for each case of y' not yet 
known. In order to obtain the complete solution, it is helpful, first of all, 
to assume that Zmin>Y*-Zmin for each case, because f(y'-zmin)=fCO) if 
the assumption is valid. and the solution is immediately found. (But we 
must not forget to check whether the solution satisified the assumption.) 
If the assumption Zmin>y' -Zmin is not satisfied, we use the method of 
unknown coefficient. For example, if Zmin < y' - Zmin < x* for some x, it 
suffices to set 

(7. 8) 
() 

--fex)=-A ox 
for Zmln<X<X* where x* is the initial stock level which is "optimal" in 
the sense as was mentioned before. Noticing that, for Zmln<X<X*. 

(7. 9) fex)=(p+c-a)(zml\x-y*)+af(O) 
where y' is given by (7. 7) and, accordingly, is a funcion of x and A, 
we can derive an equation for the unknown coefficient A because the 
coefficient of x in (7. 9) must be equal to-A. The case y' -Zmin>X' is 
rare even if x is considerably large, but the similar method of analysis 
can be applied also to such case. (Note that fCy* -Zmin) is assumed to 
be linearly increasing when Y*-Zmin exceeds x*.) In either case, we 
must try to find the consistent solution by the above mentioned com­
putational techniques. 
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Now, let us turn to the consideration on the properties of the 
mixed strategy solution, though the randomization of the policies may be 
practically unpreferable. The analysis becomes quite complicated, but we 
can find some cues for numerical analysis. When we consider the mixed 
strategy solution, we can not impose the assumption of the form of I( X), 

similar to the previous considerations. At least it is obvious, however, 
that I(x) is independent of x when X~ZlUin and when x~zma,. The re­
maining problem for us is to determine the form of I(x) for Zmin<X< 

ZmR" Empirically it has become clear that the least favourable distribution 
on Z is a certain two-point distribution on Zmin and ZmRX, and the optimal 
strategy for the decision maker (the management) is, in most cases, to 
randomize two stock levels out of y=ZruiIh y=x, and Y=Zml\" or to ran­
domize one of these three levels with another proper level which also 
lies in the interval [Zmin, zml\,l Hence, it is fruitful for us, in order to 
estimate the form of lex), to study a situation where the oI'ltimal strategy 
for the decision maker is a certain randomization of two stock levels y' 

and y" such as Zmhl;;;;y';:;;;y";:;;;zml\x and the nature randomize Zmin and 
Zml\" If y' < x < y", the following game should be considered. 

(7. 10) (Ml+Ca-a')x M2 ) 
M3 M4-(a-a')x 

where the 1st and the 2nd rows correspond to the nature's pure stra­
tegies Zml\x and Zmin respectively, and the 1st and the 2nd columns corres­
pond to the decision maker's pure strategies y' and y" respectively. M,'s 
are the suitable constants. As it is our purpose, for the present, to clarify 
the effect of x, the terms other than the term of x may be regarded as 
constants in the multi-stage regret payoff function. However, the following 
relations may be assumed. 

Hence. the 

(7. 11) 

Ml+Ca-a')x>Mz, M3 
M4 -Ca-a')x>M3, M2. 

value of the above game is 
{M1+(a-a')x} {M4-M2+(a-a')x} +MdM -M3+<a-a' )x} 
--~~ ---~~----------M -~ M

3
-+-M.-=--M

2 
--- - ----- ------ - ~ 

and M 1+M4-M3-M2 >0 the value is covex in x (more precisely, a pa­
rabola which is convex downward). 

By the similar considerations, it can be easily found that, for x' < 
y' and for x>y", the value is linearly decreasing in x. These results will 
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be fairly suggestive if we are to analyse a numerical problem. However, 
the randomization of the policies. is. as has been already mentioned, un­
preferable from the practical viewpoint and the pure strategy solution 
is fairly good approximation. Thus. we should like to omit the further 
discussions. 

8. SUMMARY 

In spite of some conceptual difficulties, operationally meaningful re­
sults were obtained. It should be noted that the dynamization of the 
model hat only a slight effect, if any, on the optimal strategy in fairly 
general cases. 

In the section 3, we have analysed the case when the returning of 
the merchandise is permitted at the purchasing (or wholesale) price. The 
optimal stock level which is optimal in the sense of the minimax regret 
principle is, in such a case, equal to the number which divides the interval 
between the lower and the upper limit of the anticipated demand at the 
stage by the ratio (p+c-a): (a+b). The larger the penalty c the larger 
the stock and the less the holding cost the larger the stock. The solution 
is by no means affected by the dynamization. Compared to the corres­
ponding maximin solution for static case, the minimax regret stock level 
is somewhat larger. 

Generalizing the condition, we analysed the case where the return­
ing of the merchandise is permitted at a discounted price a'. In the trun­
cated one-stage model, the optimal stock level is found to be equal to 
the number which divides the interval between the lower and the upper 
limit of the anticipated demand by the ratio (p+c-a): (a+b) if the 
initial stock is smaller than the lower limit and by the ratio (p+c-a') : 
(a' + b) if the initial stock is larger than the upper limit of the demand. 
If the initial stock is the number between the two limits of anticipated 
demand. the optimal starting stock level is a linear increasing function 
of the initial stock, connecting the two optimal levels mentioned above. 
Here, again we can see the somewhat more optimistic nature than the 
maximin policy. (Section 4) 

Even when the model is dynamized the results mentioned above 
is valid if the anticipated upper limit of the demand is not more than 
the double of the lower limit. (Section 6) 
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When the upper limit is larger than the double of the lower limit, 
the randomized policy is required from the mathematical point of view 
or from the viewpoint of game theory, in the ordinary sense. However, 
if the price level difference (a-a') is sufficiently small, the pure strategy 
solution is fairly good approximation. This will be very helpful fact for 
the practice. If we confine our consideration to the pure strategy solution, 
the stock level mentioned above or the somewhat larger level is optimal. 
(Section 7) 

BIBLIOGRAPHY 

1. Bohnenblust, H.F., S. Karlin, and L. S. Shapley, "Games with Contin­
uous Convex Payoff", Contributions to the Theory of Games CVol. 
I), Princeton Univ. Press, 1950. 

2. De~n, ]., Managerial Economics, Prentice-Hall, Inc., 1951. 
3. Dvoretzky, A., J. Kiefer, and J. Wolfowitz, "The Inventory problem 

(!)(l!)", Econometrica, 1952. 
4. Savage, L, J., The Foundations of Statistics, John-Wiley & Sons, Inc., 

1954. 
5. Chernoff, H., "Rational Selection of Decisions Functions", Econometri­

ca,. 1954. 
6. Milnor, ]., "Games Against Nature", Decision Processes (Ed. by Th­

rall et. al.),' John-Wiley & Sons, Inc., 1954. 
7. Radner, R, and J. Marschak, "Note on Some Proposed Decision Cri­

teria", Decision Processed, John-Wiley & Sons, Inc. 1954. 
8. Blackwell, D., and M. A. Girshick, "Theory of Games and Statistical 

Decisions", John-Wiley & Sons, Inc., 1954. 
9. Ruce, R D., and H. Raiffa, "Games and Decisions", John-Wiley & Sons, 

Inc., 1957. 
10. Bellman, R, "Dynamic Programming", Princeton Univ. Press. 1957. 
11. Morris, W. T., "Inventorying for Unknown Demand", The Journal of 

Industorial Engineering, Vol. X, No. 4, 1959. 
12. Kasugai, H., and T. Kasegai, "On a Certain Dynamic Maxmin Order­

ing Policy and Some Generalization", Keiei-Kagaku, Vo!. 3. No. 4, 
1960, (in Japanese). 

13. Kasugai, H., and T. Kasegai, "Some Considerations on Uncertainty 
Models with an Application to Inventory Problem,' Decision Criteria 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Note on Minimax Regret Ordering Policy 169 

for Optimal Ordering Problem", Contributed Paper to the 32nd Ses· 
sian af the International Statistical Institute,. 1960. 

14. Kasugai, H., and T. Kasegai, "Characteristics of Dynamic Maxmin 
Ordering policy", Journal of the Operations Research Society of Japan, 
val. 3, No. 1, 1960 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.




