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One of the most important and well-known theorems in information theory 
is the capacity theorem (Theorem 1) of a discrete. memory less and regular 
channel. Another is the matching theorem (Theorem 3) about the information 
systems with symbols possessing time-durations. Although the two are seemingly 
irrelevant to each other, a close connection between them will be shown in 
Section 2 by presenting a general theorem which includes the two theorems as 
the two special cases. In Section I an interpretation of the capacity theorem is 
given by introduing the cost consideration into the information system. 

Information theory in its communication-engineering sense, the author 
thinks, consists of the two main branches, coding theory and information trans­
mission theory. As to the former we do not know any example of applications 
to operations research problems. But as to the latter, Professor Kunisawa of Tokyo 
Institute of Technology has devoted his efforts in these several years to the 
exploration of both the theory and case studies [2]. The present note will be a 
little and further contribution along this line. 

1. THE MATCHING OUTPUT-PROBABILITIES 
TO A REGULAR CHANNEL 

The transmission of information requires the presence of a source 
of information coupled with an appropriate channel; the two together 
form what it is proposed to call an information system, or briefly a 
system. Hence an information system is described in terms of joint pro­
babilities of inputs and outputs, and a channel is defined by its transi­
tion probabilities, we shall confine ourselves to channels with finite al­
phabets and zero memory; moreover it will be assumed that the succe­
ssive. inputs to the channel are independent. 

Let the distinct inputs to the channel, that is, the symbols of the 
input alphabet, be numbered as i=l· ", n, and the outputs as j=l,··, n. 

Let Pij (i, j=l, . ", n) be the conditional probabilities of an output 
number j given that the input had number t: The probability n-vector 
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(Pa, "', Pin) will be simply denoted by Pi •. The set of n vectors (Pi· li~1 
characterizes a channel. 

If et (i=l, "', n) is the probability of an input number i, then 
the amount of information transmitted per symbol is given by 

T(elph "', Pn.)==.t eiPij log ''5./;Jp-: ,.J-l i i iJ 

where e= (el, "', en) is the probability n-vector representing the input 
probability distribution. The capacity of the channel (pt.lr_l is defined 

by Shannon (Shannon and Weaver, 1949) as 
CCPt-, "', Pn.)== max Tce!PI., "', Pn.), 

~ 

that is, the maximum rate of information transmation for all choices of 
the source probabilities. One of the most important theorems about the 
capacity of a memory-less channel with a finite alphabet is the following 
one (Muroga, 1953; Sakaguchi, 1959): 

THEOREM 1. Let Pi. = (PiI, "', Pin) (i=l, "', n) be n probability 
. n-vectors which are linearly independent. Suppose that there exists a 
probability n-vector e* such that 

L e;* Pij=e-xJ(L e-xJ)-I, j=l, "', n (1) 
i-I j 

and e.*>O (i=l, "', n), where the vector X=(X1, "', Xn) is defined by 

(2) 

in which we have set 

H;==-LPij log Pij (i=l, "', n). 
j 

Then e* maximizes the transmisson rate TCelpi., "', Pn.) and the capacity 

C(P!., "', Pn.) is equal to log ( ~e-xJ 
The proof is found in the literature (Sakaguchi, 1959). We shall 

present here an interesting interpretation of this capacity theorem. 
Consider an information system and a person who observes the 

output number j. 
He does not know the input probabilities et. Hence, of cource, he 

does not know the output probability distribution P(j), even if he has full 
knowledge of the channel characteristic, i. e., the set of the conditional 
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probabilities (Pi. ). 
Given the channel characteristic, he can compute the corresponding 

output probabilities p(j) if he assumes an input probability distribution 
~i' Suppose that if he observes the output number j there occurs a gain 
for him which is equal to the amount of information -log p (j) and a 
" cost" which is given by a real number Xj. Thus, when the output 
probabilities are P(j), of which he is ignorant, his expected net gain will 
be 

(3) 

It must be noted that we shall not set the restriction that the cost must 
be a positive quantity. We allow the cases in which some Xj are non­
positive. 

Now we shall present an easy theorem which is as follows. 
THEOREM 2. If X j (j=l, "', n) are given real numbers, the ma­

ximum of (3) for all choices of probabilities 

" P(j);;;O, (j=l, ...... , n); '2:,PU)=l, 
1 

is attained by 
P* (j)=e-II("L. e-II)-I, j=l, "', n (4) 

J 

and the maximum value is log ("L. e-II ). 
J 

PROOF. By the strict concavity of -"L.P(j) log P(j) there evi­
dently exists a unique maximal point. If the Lagrange equations (in the 
calculus of variations) yield a solution which is a probability n-vector, 
it provides the maximum. Partially differentiating 

"L. p(j) (-log p(j)-Xj ) -)."L. P(j) 
J j 

with respect to p (j) and equating to zero, we get the stated result . .. 
Let us call the ~. and the '2:, et.· Pt.. stated in Theorem I as the 

'=1 
matching input-probabilities and the matching output-probabilities to 
the channel (Pd respectively. Similarly we shall call the P* (j) stated in 
Theorem 2 as the matching probabilities to the costs (XJ ). 

And let us finally set a definition as follows: a channel (Pd?=1 will 

be said to be regular if n probability n-vectors Pt.. (i=l, "', n) are 
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linearly independent and if there exists a probability n-vecotor .;* which 
has positive components and satisfies equations (1) and (2). 

Then from theorems 1 and 2, the following corollary follows at 
once. 

COROLLARY. The matching output-probabilities to a regular chan­
nel IPi')?~1 equal the matching probabilities to the costslXf ) satisfying the 

equation 

IXI'l IHI] 
(Pij) L;n = LIin (2') 

where Hi=' - J:. Pij log Pij U=I, "', n). Moreover, the channel capacity 
j 

equals the maximum expected net gain in the case of having these costs. 
The interpretation of the condition (2') is that the "matching costs" 

must be set at the level where the expected cost when given the input 
number i is just balanced by the conditional entropy (uncertainty) Hi. 

The unique solution-vector of (2') is not necessarily positive. 
Clearly if some Hi=O then some Xj~O. And even when all Hi are positive, 
we may have negative Xj, as is shown in the following example: 

[

1/2 0 1/2] 
(Pij) = 1/2 1/2 0 

1/3 1/3 1/3 
HI=Hz=log 2, H3=log 3, 
X2=X3=3Iog 3-2 log 2>0, XI =4 log 2-3 log 3<0. 

The connections between non-positive "matching cost" and the 
matching output-probabilities and input-probabilities or regularity of the 
channel are open problems .for further research. 

2. A GENERAL CAPACITY THEOREM 

Consider an information system with output probabilities P ( j) 
(j = 1, "', n), and suppose that the output symbol j requires a time-dura­
tion (or a cost) t j . The average amount of information per unit time­
duration is 

- L Pi log pj/J:. Pitf. (5 ) 
j j 

One of the most important and well-known theorems in applications 
of information theory is the following. 

THEOREM 3. Let tj (j=l, "', n) be givin positive numbers. The 
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average information (5) is a maximum when the P/s are taken as 
p/=e-Ctl, j=l, "', n (6) 

were C is the unique positive root of the equation 
n 
L e-Ctl=l. 
1~1 

(7) 

The maximum value of the average information equals C. 
Although the two important theorems 1 and 3 are seemingly unre­

lated there exists a connection between them. We shall show this point 
by proving a general theorem of which theorems 1 and 3 are two 
special cases. 

Now let us consider an information channel lPi.) ~-1 which converts 

the input symbol i to the output symbol j with probability Pi} and with 
a cost (or time-duration) ti} (i, j=l, "', n). 

For an information system with this information channel the 
averge amount of transmitted information per unit cost is 

~ ~iPi} log(Pi}/~ ~iPi}) 
i,} i 

(8) 

where t; is the probability n-vector describing the input probabilities of 
the system. 

We note here that we can rewrite (8) as 

~ ~i I(Pi.; ~ t;iPi') 
i i 

(8') 

where we have set 

(i=1. "', n) 

and 
ICPi-; ~ t;i Pi.) == ~ Pi} log (Pi}/~ t;; Pi}) 

i j i 

is the Kullback-Leib!er information amount (Kullback, 1959). 
LEMMA. If there exists a convex linear combination ~ t;iPi. of 

i 

the probability vectors Pi. (i=l, .... n) with positive coefficients t;i*' s 
I (Pi.; ~ t;i* Pi.)/si=indep. cf i, ( 9 ) 

i 

then the probability n-vector t;* maximizes the average transmitted in­
formation (8'). 
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PROOF. Partially differentiating the Lagrangian function 

log L ~d(Pi'; L ~iPi'~ -log L ~iSi+A L ~i 
i i 

with respect to ~i (i=l, "', n) and equating to zero, we get 
Hi+ LPij logL~iPij+l=(A-sdL~iSi)T(~) 

j i i 

(i=l, "', n), 
where 

T(~)=L ~d(Pi'; L eiPi-). 
i 

By multiplying both sides of the equality by ~i and summing up, we 
obtain 

A=l/T(e). 
Hence we have 

l(Pi. ; L ~iPi.)/Si= TCfl/L ~isi=indep. of i 
which is the desired result. 

The following theorem is an immediate consequence of this lemma. 
THEOREM 4. Let Pi. (i=l, "', n) be n probability n-vectors which 

are linearly independent. Suppose that there exist a unique positive 
number C and a probability n-vector~' with ~i' >0 (i=l, "', n) such that 

L ei' Pij=e-x" j=l, "', n (10) 
« 

and 

[~I]=(Pij)_I[l(I+SI C]. 
Xn Hn+snC 

(11) 

Then the probability n-vector e maximizes the average trasmitted in­
formation (8'), and the maximum value is C. 

PROOF~ From the lemma and (10) and (11) we have 

St-1 [(P,·; Let' Pt.)=S,-1 ~ Pij log(e-x'/L et' Pij) 
i j i 

completing the proof. 

+St-1(L pijXj-Hi)=C 
j 

As a special case of this theorem consider the case where all the 
tij are equal to t, say. The solution-vector X of (11) can be represented 
by 

(/=1, "', n), 

where X is determined by the equation (2). Thus by (10) it follows that 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



130 Minoru Sakaguchi 

and 

reducing to Theorem 1. 
As another special case of our Theorem 4 we consider the case 

when Pij=Oij (Kronecker's 0). The expression (8) reduces to 

- ~ ~i log ~t!~ ~i ti 
i i 

n). From (1Q) and 

(11) we get 

~/=e-XJ (j=1, ... , n) 

[XIJ [tl CJ [tlJ ic
n 

= (Pij)-I tn: C =C t~ 
and 

respectively. We have thus arrived at the equations (6) and (7) in The­
orem 3. 

At the end of this section we shall remark that a sufficient con­
dition for the existence of a unique positive C satisfying (10) and (11) 
is given by min ~ aij Sj>O, where (aij) = (Pij)-I. In fact, we have by (10) 

i j 
_:E.aiJHJ 

and (11) ~ Ai eBic=l where Ai=e J and Bi= - ~ aij Sj. It is easily 
i i 

found that the function I(x)=~ AieBi'" is convex for x>O, and 1(0»1 

and f'(x) <0. Hence we get the stated sufficiency. 

ADDENDUM. Professor Peter Elias of Massachusetts Institute 
of Technology read carefully the manuscript and made the following 
comments on some technical points concerning our Theorem 4. 

"It is impossible for me to see any channel of interest in a com­
munications problem for which this is a useful mathematical model, 
except. for the two known special cases to which you refer. 

"If it} is not a constant, but varies with i and with j, and if the 
channel is really noisy, then it seems that any interpretation of tij as a 
time duration, as you suggest, would lead the receiver into hopeless 
confusion. That is, how the transmitter know how long to wait before 
sending the next symbol? If the transmitter always waits long enough for 
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the longest ii} for a given i, then the actual iiJ is a function of i alone, 
and not of j. Then what is going over the channel when symbols of 
shorter duration are received? 

"That is, it may be impossible in a truly noisy channel, using 
symbols of different durations, for the receiver to keep track of where 
the transmitter is, and to know whether he is currently in the middle 
of a symbol or is just starting a new one. 

"On the other hand if ti } represents another kind of cost, then 
the only kind which I have been able to think of, such as transmitter 
power required, also depends only on i and not on j. 

I was glad to receive these comments, and to include them here, 
even though I have my interpretation of the model somewhat 
differently: 

An office, especially business management, is composed of some 
departments or sections, where various documents flow from one to the 
other. The flow pattern of documents inside the office is most easily 
described by saying that a document, after passing through a given 
department, flows to some specified section, its particular course 
being governed by a fixed probability distribution associated with the 
particular department that it is leaving. 

Let iij be the cost required during the transformation from depart­
ment i to department j. If the office handles N documents per unit 
time, the amount of information managed in this office per unit time 
and unit cost will be represented by the expression (8) multiplied by N 

At any rate it seems to the author that we may be able to in­
terprete our Theorem 4 in some appropriate way from operations re­
search viewpoints and some case studies in this field of management 
science are highly wanted. 
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