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It is well known that a sequence of randon numbers may be ge-
nerated by Lehmer’s congruential method. This method was originally
executed in the formula; '

Zn1=232, (mod 108+1),

The period of this sequence comes up to 5, 882, 352 which seems
to be sufficient for almost all of our applications. The purpose of this
paper is to provide an elementary method to account such a period of
pseudo-random numbers generated by Lehmer’s method.

1. CONGRUENTIAL METHOD

At first we define congruential method (multiplicative).

Definition : Congruential methed (multiplicative) is the method of
generating sequences of integers in the following way.

Take a ltriple of positive integers (M, k, x,), and get a sequence
of integers by relation;

Tn=kx, (mod M). -

When generating a sequence (x;) following the above relation, if
for some integer N, Xy is equal to x, then x,; is equal to x; and Ty«
is fequal to X, and so on, therefore significant section of this sequence,
that is, the section which contains whole of the mutually distinguished
integers, is (&, &, - , ).

So, when we apply this method to get random numbers uniformly
distributed on the unit interval, it is sufficient to repeat the process of
generation up to N times, if the results of test were sufficiently fit for
our purpose.

Hence we define the period of sequence (x;) as follows:

Definition: The~period of the sequence (x;) is the minimal element
of the set (n;) of positive integers, each element #n; of which satisfies
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the equation x,;=ux,
i. e.
(n)=(ny; tel, Tp=2,, for all n;, n,>0).

Here I is an indexing set composed of zero and positive integers.

Remark : In triple (M, &, x;), if £,=0 (mod M) or k=0 (mod p)
for any prime disvisor p of M, we call it a trivial triple. (Meaning of
“trivial” is clear in the sense that, if triple is trivial, generated sequence
has no adequate significant section.)

In reality, trivial triple is not worth cutting figure for our object
of consideration, from the results of randomness, too.

In the above definition of the period, we preassumed the existence
of the set (n;) of positive integers, but in the next lines, I prove the
existence theorem;

Existence Theorem : For all non-trivial triples (M, &, &), there exist
the period.

Proof : For the existence of the set of integers (#,), it is sufficient
to prove the existence of a positive integer n’ such that x, =x,.

By the relation T =kx, (mod M),
the above statement is equivalent to

qan’; (k-1 x,=0 (mod M)
As triple (M, k, z,) is not trivial, (&, M)=d=M,
therefore kv —1=0 (mod M/d).
Now, the existence of n' is clear, if we assign n'=¢ (M/d) where ¢ is
Euler’s function.

i. e. by k%0 (mod M), ke =1 (mod M/d). — Fermat’s the-
orem,!
therefore, the existence of period is proved.

2. ACCOUNT OF PERIOD

Now, let (M, k, x,) be a non-trivial triple and get the sequence
(x) By the relation Z,.,=kx, (mod M), and the period of this sequence
be N.
i e. N=min (n;; Tai=xy),
if one writes the relation in the following way,
(xo, M)=d, kK-1=0 (mod M/d)

1 See Appendix 1.
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On the Period of Pseudo-Random Numbers 115

we obtain N=min (1; £—1=0 (mod M/d)).
Definition : Period of £ mod M/d is the minimal element N which
satisfies the relation ky—1=0 (mod M/d).

Decompose M/d into prime divisors; M/d:fl D,
then one gets the following isomorphism,
2|l peo =3 Z](pee), (direct)*

here, Z is the additive group of integers.
Therefore, if we get the period N; of £ for all p;, then, desired period

N is equal to the least common multiple (A1, Ny, -+ N, .
The above isomorphism is just the fundamental theorem of abelian
group.t

This can be explained as follows:
Let Z be the additive group of integers and let f; be homomorphi-
sm of Z into Z defined as follows:
zeZ, fi(2)=pez,
then, the sequence

0—> Z/(lL pee) L5 ZITL pie) =5 (ZIL pied piee(Z /1] pey —0

is exact and split. (4 is natural homomorphism.)
Therefore, inductively, we get the relation

/T e =5 Zi(pe) (direct)

and then, N; is an order of & in Z/(ps).

So we get the relation.

N={N,, Ny, - , N,J.

Hence, the account of period is reduced to the following problem.

Problem : Calculate minimal {positive) integer N, which satitfies
the relation: k¥—1=0 (mod p*) for p prime.
When the primary decomposition of M/d (in Z) contains primary divi-
sor 2%, A>3, we first calculate the period of 2 mod p* in the case p=2,
for the structure of Z/(2%) is a bit singular,

(i)  p=*2
Let m be the period of £ mod p i. e. m=min (1'; k=1 (mod p)) and
let desired period of & mod p* be N, then, by the relation,
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kE¥=1 (mod p?), naturally, k=1 (mod p),

m is the period of & mod p, therefore m/N, i. e. m is a divisor of
N.

On the other hand, k*®»=1 (mod p*) and N is the period of 2 mod
P, so N is a divisor of (pH)=p1(p—1).

As the result, we can write down in the following form,

N=men'opi-=; w'|p—1, az=1.

Lemma: let  pt||km—1, then pr*r}|kmr"—1, for each positive in-
teger »(2),

proof :

PHIkm—1 — =v; km=1+pro, (v, p)=1,

then A™P=(1 »{—phy>P:1+ph+lv+ <127>v'.’p2h+ ......

=14+p*1(v+pu).
by (v, p)=1, pkmr—1,
inductively, we get the above proposition.
By this Lemma, we get, pr+ie||fmpia—]
On the other hand, k¥=km 2 pira=(1+4pr**2(y+pu’ )", (v, p)=1,
=14pre(p'v+pu), and n'{p—1.
(', =1, (n'v, p)=1,
phﬂ—a‘ lkN"‘ 1.

Now if n’=1, then N'=mp* = is strictly smaller than N, and that contra-
dicts the hypothesis that N is minimal.

Therefore, n'=1.

On the other hand pi+-e||k¥—1, i e. pi|prtie

hence hza. )
Here, if h is strictly larger than @, then p*|{km—1, and therefore,
pra-m | pmpr—1 by the relation mp*t<mpie. '
This contradicts the hypothesis that N is the peried of 2 mod p*
(minimal !)

h=«a

Hence, we get the following proposition which combines N and the pair
(m, h) .

proposition : The period N of 2 mod p?* is written in the following
way,

2 See Appendix 2.
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On the Period of Pseudo-Random Numbers 117

N=mp1—h’
here, m is the period of 2 mod p and & is the integer such that p* di-
vides strictly k»—1, i. e. p*||km—1.

Note: The case A>2 does not occur.

With this proposition, it is comparatively easy to calculate the
period N, for the problem is reduced to the case in prime divisors.

That is, if we find primitive root for each prime divisor p, we can
obtain the period of %k with respect to p? in extremely easy way and
alternatively, if we take primitive root of each primary divisor, for £,
it is possible to get relatively long significant section and if M/d is pri-
mary, we will get the longest significant section.

(ii) Account of the period of & mod 2?

In the case 1=1 or 2, Z/(2%) is cyclic, hence the above proposition
is available, but, shown in the following, this case is trivial and impra-
ctical.

A=1,  Z/(2) is composed of two residue class (even, odd)

and o(2)=1
hence, ke (odd) — N=1
ke (even) -— this triple is trivial.
A=2 ©(22)=2, primitive root is 1
hence, k=—1+4u —» N=2
k=(—1)*+4u — N=1
k; even — triple is trivial.
Therefore, we calculate the period of & mod 2% for 1>3.

As period N is a divisor of ¢ (2%), N will be written in the form
20, a<i-—1..

Hence if we find maximal integer e that satisfies the relation
k==%142%, (2, v)=1, which will be found with ease, after the verifica-
tion whether & is congruent with +1 or with —1 modulo 4.

then  E¥=k¥"=(Zx1+200)*"=11x2(p+2M)

Hence 2eta||pN —1
By the hypothesis that k¥—1=0 (mod 2%),

22]26+aHkN_.1
e+az=d i.e. azl—e.
As N is the period, it is minimal.
a=1-e¢
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N___.21-s
If we scrutinize a little the structure of Z/(2%) for A>3, the reason why
we can obtain the period by the process mentioned above will be clari-
fied.

For 2123, Z/(2%) is identified with the direct product of cyclic group
of order 2 and cyclic group or order 22 and <—1, 5> will be taken
for its basis.

Therefore, one half of the reduced residue classes in quotient ring
Z/(2Y) and another half are represented in the form (—1)2¢5% for u=0,
1,2 - 0 (2H)/2—-1, and (—1)-5% for #’'=0,1, ----- ©(29)/2—1 respectively,
and the former set of classes represents the class of odd numbers in
the form 4n+1, and the latter the class of odd-numbers in the form 4n
—1 for some integer #, and which is clear by the equality 5=1+22

The choice of representation k=1+2% or k=—1-+2% follows from
these structure of Z/(2%) ; that is, if k& is written in the form -142%,
(e, max), then & is contained in the former set of classes and represented
to be (—1)2.5* for some u, and if written in the form —1+2%, (e, max),
then k is contained in the latter set of classes and represented to be
(—1)+5* and conversely.

‘From these fact, by classification of 2 modulo 4, maximal integer
e will be found easier.

Simple “inductive” method described above will provide us the
desired results by simple calculation and, conversely, it is quite easy to
choose a triple for desired scale of the significant section.

3. EXAMPLES

By the method described above, I will calculate the periods, and
test the result for various examples in “Symposium” (1954) and give a
bit of criticism.

(1) Example which was run on ENIAC by Lehmer.
He used the relation ,.+;=232, (mod 10°+1) and generated the sequence
of 8-decimal numbers, of which period was known to be 5882352.
(Account)

Let N be the period, that is, the minimal element which satisfies
the relation 23¥—1=0 (mod 108+1) and consider the decomposition of
10841
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On the Period of Pseudo-Random Numbers 119

108+1=17 x 5882353,

then the period of 23 mod 17 will be found immediately equal to ¢ (17)
=16, for 23 is a primitive root of 17. Without table of prime numbers,
it is not sure, but probable that 5882353 is prime and 23 is a primitive
root of 5882353.

Under the assumption that 5882353 is prime, the period of 23 mod 5882353
is ¢(5882353)=>5882352.

(2) Example on SEAC by Cameron in 1950

(Account) Xo=1, Lp =152, (mod 2%2)
5=1 (mod 4)
therefore 517=1+17.22+(1g>.24+ ......
=14+22(14-2M)
and (1+2M, 2)=1,
: e=2

Here A=42, we obtain N=242"2=40
(3) Example on SWAC by Teichoew
To=1, Zn+ =532, (mod 2%)
Generalizing this relation, I give here the period of sequences generated
by relation
Zo=1, Zpi =512, (mod 2%)

(Account)
52+ =(1423(1-+2M")*+(1+22)
=1+4+22(1+2M"")
therefore e=2.
Hence, in general, N=2+2

for = 2=31, N=23%

In other examples, for instance, those on ORDVAC, EDVAC, results are
good.

Remark: In the above example, k& is taken to be 52*! which I
consider is due to fact that order of 5 is maximal in Z/(2?) and equal
to 2*2,

(Example on decimal machines)
(4) Example on OARAC
Zo=1, Tpe1=7%, (mod 10!0)
(Account)
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Let N’ be the period of 7 mod 2!® and N’ be the period of 7 mod
5% then desired period N is equal to {N’, N”].
(N'): 7=— (mod 4) 7=-—1+23
N’=210—3=27
(N”): First, we calculate the period m of mod 5
7=2(mod 5) and 2 is a primitive root of 5.

m=p(5)=4
Next, we calculate 4 such that 5%||7¢—1
7+—1=2%3.52 k=2
therfore N"=58.4 N={27, 5%.4}=5x107

(5) Example fit for UNIVAC
ZTo=1, Zpu=7**"'x, (mod 10!) k: integer.

In Taussky and Todd’s paper, it is written that the period of se-
quence by this relation is 5x108
(Account)
Let N’ be the period of 7***! mod 2! and N” be the period of 7***' mod
51

(N"): 7=-1 (mod4)

Th = _1+(4k+1)23_(4k2+1>.26+ ......

=—1+28(1+2M)
: N’/ =211-3=28
(N"): First we calculate the period m of 7¢**!1 mod 5
7=2 mod 5
and (2%*H)m —=2m =0 (mod 5)
m=¢p(5)=4.

Next, we calculate k, similarly.
(74k+1)4 —_ 1 _— (494k+1 — 1) (4g4k+1 + 1)
As 49%+1 1 is congruent with 3 mod 5
5%[](50—1)te+t 1

(50—1)4k+1+1=(4k+1)-52-2—<4k5r1).54.22+(4k§r1>.5s.23_<4k1rl>.53.24
+(HF 1) 50205

In the above relation, if 4k+1=0 (mod 5), that is, k=1 (mod 5), then,
52||(50 —1)#4*+1 41,
h=2.
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On the Period of Pseudo-Randorm Numbers 121

Hence N"=511"2.4
N{28 5%4)=5x108
On the other hand, if 4k+1=0 (mod 5), the period will vary extremely.
It is shown in the following, (in this case, triples are trivial).
(50—1)*+141=(4k+1)+52:2—4k+(4k+1)-5¢:2?
+8/3<k(4k+1)(4k—1)+55+2
—8/3:k(4k+1)(4k—1)(4k—2)58
+16/3+k(4k+1)(4k—3)(4k—2)-5°
(mod 5'1),
therefore, in the case 7—2<1=11, i. e. £<9.
We reduce the above relation with use of relation 4%2+1=0 (mod 5) in
the following way.
Let %k, denote k&,
4ky+1=0 (mod 5), > = (ky, u)); ke=1+%k-5%, (k;, 5)=1,
Now,
a, b u,>2 or u,=1, By=x1 (mod 5)
5/|14k+1, .. N"=5"1.4=05%.4 s N=108
) 4k+1=4(1+k5%) +1=5(1+4k5%"1)
if #,>2, then, 1+44k;-5*'%0 (mod 5)
if u;=1, k=1 (mod 5), then 4k, +1x0 (mod 5)
a, 2 #1=1, k=1 (mod 5)
> a(ky, 42); Bi=14kye5%, (ky, 5)=1,
let’s continue the process similar to (1, 1),
21D U222, or us=1, k=1 (mod 5)
52||4k+1, S N7=57.4 S N=57.28,
we obtain analogously,
(n, 2) un=1, k,=1 (mod 5)
2 3 (Rnvt, Uner) 5 Bn=14Rpyy«D¥
(n+1, 1), #ne122, Or tUni=1, k=1 (mod 5)
N”=58".4 S N=58nx28,
Hence, collect and arrange the results obtained above, we obtain the
following relation, or in another word, dependency of periods on triples.
1° kx1 (mod 5) > N=5x108
2° k=1 (mod 5)
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k=1/4.(5"—1)+ k5% u>2 N=28.5¢-n
or k=1/4(5»—1)+k"5", k”=x1(mod 5)} (A<n<9)

Thus, in accordance with these practical situation, it may be rather
fit for reality that we choose a triple satisfying for the relation k=x1(mod
5) in the above example; in the worst case, i. e. in the case k=(5*—1)/4
obtained significant section in sequence of “pseudo-random” numbers
consists of only 256 numbers.

Criticism : In this example, k is taken to be 7¢**! and that is con-
sidered because 7=2+5 is nothing but a primitive root of 5%-2 (n>1)
and provides comparatively long significant section, but here, note that
3 is also a primitive root of 5 and relatively prime to 22 for 221, in the
case when we assign 3**! to k£ and use a triple (10m, - 3¢+, 1), k=1
(mod 5) for generation, it is certain that we get as long sequence as
that in the above example and generated sequnce will be useful, if its
random qualities were tested to be satisfactory:

For, let £,x0 (mod 2), and x,%0 (mod 5) and generate the se-
quence by the relation

Lna=3%12, (mod 10™) and k=1 (mod 5)
The period, in the case m>3, will be 27 2.5m"1=5x10™2

APPENDIX

(1) For the proof of this theorem, it is sufficient to prove the following
theorem.
Theorem: Let p and g be relatively prime positive integers, i. e.

(p, ¢»=1, and let N, and N, be the period of 2 mod p and mod ¢
respectively, then the period N of k& mod pq is equal to the least com-
mon multiple of N, and N,.

Proof: If k™»—1=0 (mod p), i. e. =v; km=1+v-p then, by assum-
ption on the period, N, divides m, as N, is the minimal positive integer
of these.

Moreover, if k,—1=0 (mod ¢), i. e. av’; km=1+v'-¢, then it is
also true that N, divides m.

Hence, for pglk™—1, it is necessary that p|k™—1, and ¢|#™—1 and,
therefore, m must be a common multiple of N, and Nj.

Hence by minimality assumption on N, N is equal to the least
common multiple.
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(2) plqg means p divides ¢ in Z, i. e. g=axp for some integer a,
p*llg means p*lg and p**g.
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