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1. INTRODUCTION AND HISTORICAL NOTE 

Transportation problems constitute one of the most important and 
practically useful branches of Operations Research (see, e.g., [lJ, [2J 
and [3J). Usually they are formulated as the problem of finding a set 
of Xi/S (i=l, 2,. ..... , m; j=l, 2,.·····, n) which minimizes 

subject to the conditions 
n 

L Xij=ai 
j ~l 

1n 

L xij=bj 
!~l 

(i==l, 2,.·····, m), 

(j==,l, 2,.·····, n), 

(i==l, 2,.·····, m; 

j==l, 2,.·····, n), 

(Ll) 

(1.2) 

when positive real numbers at's, b/s and dt/s are given, where, because 
of (1.2), at's and b/s must satisfy the following equation: 

(1.2') 

A concrete interpretation to this problem is "determining such a man­
ner of delivering a commodity from m producers to n consumers as 
minimizes the total cost for delivery, under the circumstances that the 
i-th of m producers supplies ai of that commodity, the j-th of n consum­
ers demands b j, that it costs as much as dtj to deliver the unit 
amount of the commodity from the i-th producer to the j-th consumer, 
and, finally, that the whole amount of product must be delivered with­
out residue at the producers or shortage at the consumers". 

This type of problems, called the "Hitchcock problems" [1], are 

2'7 
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treated in any textbook on Operations Research (see, e.g., [2J, [3J), 
but, hitherto, the stepping-stone method, which is the word-by-word 
translation of the (revised) simplex method, has almost exclusively been 
resorted to. As the efficacy of the stepping-stone method largely de­
pends on the choice of the first feasible solution, a number of methods 
have been proposed to give a good first feasible solution, among which 
we count" Houthakker's method" [4]. Even if a first feasible solution 
is fixed, there remains a lot of arbitrariness to approach the optimal 
solution, the amount of labour needed to attain the optimal solution 
still remaining undetermined. 

Unfortunately, if there is any kind of degeneracy in the problem, 
it may seriously affect the validity of the method. An example of this 
is the assignment problem, which it is practically impossible to solve 
by the stepping-stone method because of the existence of serious degen­
eracy. 

An assignment problem can be regarded as a special case of 
transportation problems of the Hitchcock type defined above, in which 

m=n } 
at=bj=l 'for every i and j. 

(1.3) 

Although the additional condition that xii's should be either 0 or 
1 is imposed on an assignment problem, it would automatically be satis­
fied if we solved the problem by means of the stepping-stone method, 
and furthermore, it is not so difficult a task to convert an optimal solu­
tion not satisfying this condition into the one satisfying it. In general, 
a basic solution (in the sense of the simplex method) for an assignment 
problem of order n contains exactly n non-vanishing variables, which 
number is much smaller than the number 2n-1 for the case free from 
degeneracy, indicating the seriousness of degeneracy. Under these cir­
cumstances the" Hungarian method ", devised by H. W. Kuhn, is ordi­
narily used to solve assignment problems. This highly exquisite method, 
however, involves a process which is better performed by human intui­
tion and requires frequent rewriting of the cost matrix (dtj ), the con­
vergence to the optimal solution not being very rapid. 

Inview of the advantage of the Hungarian method over the step­
ping-stone method for assignment problems, the generalization of the 
Hungarian method into the one applicable to the Hitchcock problems 
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was attempted by L. R. Ford and D. R. Fulkerson, to obtain the primal­
dual algorithm for transportation problems (as they call it), which can 
easily be modified to the case where the capacity restriction such as 
Cij~Xij~O is further imposed [5J, [6]. This algorithm was extended by 
T. Fujisawa [7J and also by Ford and Fulkerson themselves [8], [9J to the 
transportation problems having network structure. However, when ap­
plied to an assignment problem, these methods follow exactly the same 
process as does the Hungarian method, in approaching the optimal solu­
tion, which should naturally be expected from their origin. 

The present author, while studying to establish possibly the most 
general network theory that includes all the existing types of network 
theories by the aid of topology and the theory of algebras in collabora­
tion with the members of the Research Association of Applied Geome­
try, Japan, [10], [l1J, [12J, [13J, [14], [15J, [16J, happened to find a method 
which is very convenient to treat various linear-programming problems 
on a transportation network consisting of transportation routes connect­
ed with one another in a general way and each endowed both with a 
capacity restriction (that the amount of flow through the route should 
lie between a pair of prescribed values) and with a cost characteristic 
(Le. the cost for the unit amount of flow to flow through the route). 
From the point of view of linear programming only, this method may 
be regarded as the one obtained from the method of Ford, Fulkerson 
and Fujisawa by improving the process of determining the dual varia­
bles, but, it has many other merits owing to its topological background. 
(For example, it gives the way much simpler than the Hungarian 
method when applied to an assignment problem.) 

To devise a new method is one thing, but to explain it is another. 
Therefore, in the sequel, we try to explain the method avoiding, as far 
as possible, reference to the general network theory from which it orig­
inated. For the algebraic and topological foundations of the general 
network theory of which the theory of transportation network expounded 
in this paper is a special case, see the above-mentioned references [10] 
",[16J. 

2. PROBLEM 

Let us first define the type of problems to be treated in the follow-. 
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ing. 
2.1. Constituents of a transportation network. By a "transporta­

tion network" we mean a network (one-dimensional complex or linear 
graph) consisting of "branches" or transportation routes (denoted by 
a~, a1, aj, ...... , a~, or in general, by a~ or aD and" nodes" (denoted by 
a~, a~, a~, ...... , a!, or in general, by a~ or aD which are the junction 
points of branches. In the following we assume the number of branches 
as n and that of nodes as m. Each branch has its proper orientation, 
which is usually indicated by an arrow drawn by its side. The manner 
in which" branches" are connected with one another is completely ex­
pressed by the n-by-m "incidence matrix" ([a~: a~]) (whose elements 
.are called "incidence numbers") which is defined as follows: 

if a~ (branch /C) issues from a~ 

(node a), 

if a~ terminates at a~, 

otherwise, i.e. if a~ is not an 

end point of a~. 

'The incidence numbers satisfy the relation: 
m 

L [a~ : a~J =0 for every /C, (2.1.1) 
a=! 

since, to each branch, one and only one node is incident with the inci­
·dence number + 1 and one and only one with -1. 

Through branches of a transportation network, commodity is 
transported, which fact we shall state simply as " a certain amount of 
current flows through a branch". (It is only for convenience' sake to 
adopt here electric terminology such as "current". Nothing will be bor­
rowed from electric network theory in the following treatment. But 
those who are accustomed to electric networks will easily understand 
the intuitive meaning of our terminology.) Let us then denote the 
.amount of current flowing through a~ (i.e. branch /C or the /C-th branch) 
by S·. 
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In addition to its proper orientation, each branch has its own char­
acteristics, which are 

and 

( i) capacity restriction!) : a number c' (called" capacity") is 
associated with branch "SO that S' should be subject 
to the restriction 

c';~s·~O, (2.1.2) 
where C' may be infinity but must be positive (c'<O 
is impossible by (2.1.2) and if c'=O, i.e. s'=O, then we 
shall exclude the branch from consideration), 

( ii) cost characteristic: a number e, (called" cost" per unit flow) 
is associated with branch" so that it costs as much as 
e,s' for the amount S' of current to flow through branch 

", where 
=>~~Q ~I~D 

2.2. Definition of the general transportation-network problem. 
The problem we shall deal with in the sequel is of very general kind 
as follows. 

( i) Suppose given a transportation network. 
(ii ) We arbitrarily choose a pair of nodes of the network and 

call one of them the "input node", and the other the 
"output node". We shall hereafter denote them by a~ 

and a! (the first and the last node), respectively. 
(iii) Branch currents s·'s must satisfy the following conditions: 

n 
L: [a~: a~Js'=O (a=2, 3, ...... , m-I), (2.2.1) 
K=l 

and the" input (output) current flowing into the input 
node a~ (out of the output node a!)" (which we shall 
denote by s) is defined by 

1) The lower bound for S' need not necessarily be equal to ° (however, then, 
c':;;;;O may have significance), but, as will be done in § 4.7, the extension to 
that case is easily made. 

2) This restriction is not essential, for we may exclude the branches for 
which e,=oo on the one hand, and on the other, if e,<O, we may reverse 
the orientation of branch IC (then capacity restriction will become such 
as -c':;;;;s':;;;;O, which case, however, will be treated in § 4.7; cf. footnote 
1). 
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n n 
s= ~ [a~: aiJs'= - ~ [a~: a!]s'. (2.2.2) 

K=l 

(2.2.1) and (2.2.2) represent the continuity of current 
at each node, while the second equality of (2.2.2) follows 
from (2.2.1) and (2.1.1). (To see this, decompose the 
identity which follows from (2.1.1): 

~1 (~l [a~ : a~] ) s'=O 

m-l n 
into ~ ~ [a~: a~]s' and the sum of the second and the 

a=2/C"'-1 

third member of (2.2.2).) 
(iv) To a given value of s may correspond more than one set of 

values of se's which satisfy capacity restrictions, (2.2.1) 
and (2.2.2), among which there exists at least one such 
that the total cost for it 

n 

f= ~ e.s' (2.2.3) 
1(.=1 

is not greater than that for any other. Let us call such a 
set of se's a "minimum-cost" current configuration cor­
responding to the given value of s. If there exists any 
current configuration at all satisfying capacity restric­
tions, (2.2.1) and (2.2.2) for a given s, the minimum j is 
uniquely determined because always j"i;:;.O. But, note 
that it may happen that there is no such current configu­
ration for some value of s. 

(v) Finally, the general transportation-network problem is defined 
as that of determining the relation between s ("i;:;.0)3) and 
the corresponding minimum f as well as the current con­
figurations which give the minimum f for possible values 
of s. 

2.3. Electric model of a transportation network. Some people 
will find it advantageous from the intuitive viewpoint to consider trans­
portation-network problems by the help of an electric circuit model. 
So, the following analogy will be effective. (C£. also reference [17].) 

3) This is not restrictive, for, if s<O has to be considered, we may inter­
change the r61e of the input and the output node. 
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Considering an electric circuit whose branches are mutually con­
nected in entirely the same way as those of the transportation network, 
we make electric current in the model circuit correspond to current in 
the transportation network. Then (2.2.1) and (2.2.2) are no other than 
the Kirchhoff law for electric current. In order to take account of capac­
ity restriction, we assume that such a black box as has the voltage'" 
current relation of Fig. 2.3.1 is contained in each branch. According 
to this relation, s«O and s<>c< are inhibited by the unboundedly large 
resistance at s<=O and s<=c<, while current can flow without resistance 
if O;£s<;£c<. 

E.-E~ 

A 

D" B" 
~EI ,;:--. s· 

C cl( 

~~ ( E •. ~;~O) 
E. E .-0 

Fig. 2.3.1 Fig. 2.3.2 

For the purpose later becoming clear, we express the voltage 
across the black box as the difference of two non-negative quantities E. 
and E' •. Because of the condition E".E'.=O, the expression is uniquely 
determined. As the representative of the cost characteristic of a branch 
we assume an ideal cell (or battery) with electromotive force e. to be con­
nected in series to the black box (see Fig. 2.3.2), so that the total power 

n 
entering the cells is equal to f= L e"s'. 

1<=1 

Then, the general transportation-network problem is, in electrical 
terminology, to obtain the relation between the total power and the 
amount of electric current injected from outside as well as the respec· 
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tive current configurations, because the minimization of the total power 
is automatically achieved in an electric circuit (Fig. 2.3.3). 

output 

s 

Fig. 2.3.3 

The above model is, however, established merely for the purpose 
of making it easier to understand the essence of the problem and no 
knowledge about electric circuit theory is presupposed in the following 
treatment. But, the electric circuit model has more than mere analogy 
concerning the problem. Indeed, it is completely equivalent to a trans­
portation network in the sense that, under the above correspondence of 
various concepts in electric circuits and those in transportation networks, 
everything appearing in the following consideration about the transpor­
tation-network problem has always its proper correspondent in the elec· 
tric circuit problem, thus allowing us to regard the following theory as 
the theory of non-linear electric circuits of a special kind. 

2.4. Generality of the problem. In this section it is shown that 
the general transportation-network problem contains various kinds of 
practical transportation problems as special cases. 

2.4.1. Capacitated Hitchcock problem:-The transportation problem 
of the type defined by (1.1) and (1.2) and further subjected to the re­
strictions : 

O~Xij~Cij (2.4.1) 
can be interpreted as a type of general transportation-network problem 
in which the structure of the network is as shown in Fig. 2.4.1 [5J, [6J, 
[13J. 
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/ 

~, 
";;;1ml---:::;:;;7o;:";u tpu t 

~ 
branches with cost nodes corresponding nodes corres ponding branches with cost 
o and capacity a, to producers (i) to consumers (j) 0 and capacity b, 

branches connecting nodes i 
to nodes j with cost dij and 
capaci,ty Ci) 

Fig. 2.4.1. Capacitated Hitchcock Problem 

If, from the solution of the general transportation-network problem 
for the network of Fig. 2.4.1, we select a current configuration which 
corresponds to the maximum s (input-output current), the values Xi/S 

of the current through the central group of branches of Fig. 2.4.1 will 
obviously satisfy (1.2) and (2.4.1) with the minimum total cost so long 
as (1.2) is compatible with (2.4.1). 

2.4.2. Assignment problem:-This is a special case of the previous 
§ 2.4.1 as has already been mentioned in § 1. But the solution process 
is extremely simplified for this type (cf. § 5.3). 

2.4.3. Problem of maximizing the input flow s [5J, [12J :-Disregard­
ing the cost characteristics we may solve the general problem and 
select the current configuration corresponding to the maximum s to ob­
tain the solution for this problem. However, the solution of this problem 
plays a fundamental role in the solution of the general problem as we 
shall show in the following sections. 

2.4.4. Problem of minimizing the total cost under given s on a 
transportation network :-In order to solve the problem of determining 
such a current configuration as corresponds to the minimum total cost 
for a given s, we may only select one current configuration correspond-
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ing to the given s from the solution of the general problem. The exist­
ence or non-existence of the solution is also obvious from the general 
problem. 

2.4.5. Problem of maximizing the input flow s under a fixed cost :­
The problem of maximizing s under the condition that the total cost 
should not be greater than a certain value can be solved by picking up 
from the solution of the general problem a current configuration to 
which the corresponding total cost is equal to the given value. The 
problem treated in [9J is essentially equivalent to this problem. 

2.4.6. Other problems :-Besides the above steady-state or static 
problems, there exist also dynamical or time-dependent problems, some 
of which have been proved to be solvable by the help of the solution of 
the corresponding static problems (see [8J). 

Moreover, as will later be shown in § 4.7, the generalization to 
the cases, in which e,<O and/or capacity restrictions such as b';;;,s';;;'c' 
(where b' and c' are arbitrary numbers) are imposed on branch cur­
rents, is easy to make. 

3. SOLUTION 

First we obtain, in a particular way, a relation between the amount 
of input current and the corresponding minimum cost as well as the 
corresponding current configurations, and then prove that the relation 
thus obtained is the only possible one. 

3.1. Dual formulation. Our problem (which we shall call "primal") 
is to determine 

n 
the minimum value /(s) of /= ~ e,s' for each value of s, (PI) 

K-l 

where se's and s are subject to the capacity restrictions: 
O;;;'s';;;'c' (0 <c';;;' 00) (P2) 

and satisfy the continuity conditions: 

(a=2,3, m-I), ! 

n n (P3) 

s= ~ [a~ : aDs'= - ~ [a~ : a,<;,Js<. 
K=1 K=l 

As an auxiliary means, we introduce dual variables (called" volt­
ages ") Ua (a=I,2, ...... , m) and E, (,,=1, ,Z, ...... , n) defining the" dual 
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problem" as that of 
n 

maximizing g=S~Ul--Um)- ~ c'E, (Dl) 
K=l 

under the conditions: 

E"~O, 
(D2) m 

E'.=E,- ~ [a~: cr~JUa+e.~O. 
a=l 

By virtue of (2.1.1) simultaneous addition of one and the same constant 
to all u",'s does not substantially affect the dual problem, so that we 
shall put, in the following, 

Um=O, (D3) 
replacing Uj by U and (Dl) by (Dl'): 

n 

g=SU- Lc'E,. (Dl') 
K""l 

For an arbitrary choice of primal variables S' (satisfying (P2) 
and (P3) for a given s) and of dual variables u"', E, (satisfying (D2) and 
(D3)), the following well-known minimax relation holds: 

n n n 
= ~ E',s'- ~ E.s'+su~su- ~ c'E.=g. (3.1.1) 

1C"=1 1(=1 1(=1 

Hence, in particular, 
min / ~ max g. (3.1.2) 

(P2),(P3) (In),(D3) 

Therefore, if we have /=g for a certain choice of se's and u",'s, E.'s, 
then that /(=g) will give at the same time min /=/(s) and max g. 

The necessary and sufficient condition for /=g in (3.1.1) is that 

E',=O if s'>O } 
E, =0 if s'<c:, (3.1.3) 

which is usually called the" optimality condition". The following condi­
tion is equivalent (or contrapositive) to (3.1.3) : 

s'=O if E',>O, } 
S'=c' if E, >0. 

(3.1.3') 

We shall call a set of primal variables (i.e. a current configuration) 
or a set of dual variables (i.e. a voltage configuration) "feasible" if 
they satisfy (P2) and (P3), or (D2) and CD3), but the adjective "fea­
sible" will be understood unless particular need occurs, since almost all 
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current or voltage configurations to be considered in the following are 
feasible. Furthermore, we shall call a current configuration and a voltage 
configuration" compatible" if they satisfy the optimality condition (3.1.3). 
It is obvious that, if for a given current configuration a voltage configu­
ration exists which is compatible with it, 1 corresponding to the current 
configuration is minimum. 

The "state" of a branch is defined according to a given compatible 
pair of current and voltage configurations, i.e. a branch is said to be in 

state A if s'=c', E.>O, E'.=O, 
state B if s'=c', E.=O, E'.=O, 
state C if O<s'<c', £.=0, E'.=O, (3.1.4) 
state D if s'=O, E.=O, E'.=O, 
state E if s'=O, E.=O, E'.>O, 

with respect to the given current and voltage configurations (cf. Fig. 
2.3.1 for the electric model). 

Let us first search for compatible pairs of current and voltage 
configurations with sand u as parameters. As the pair from which we 
start we may take any compatible pair. For example, we may take the 
current configuration for which all s'=O and the voltage configuration for 
which all ua=O, all E.=O and every E'.=e., since, obviously, these con­
figurations are feasible and compatible, and correspond to s=u=O (cf. 
(P2), (P3), (D2), (D3)). Thus we have obtained, for s=O, 1(0)=0 as well 
as the corresponding current configuration. 

3.2. Current-increasing step or <C> [12J. Let us suppose a com­
patible pair of current and voltage configurations is given, and try to 
increase the input current s with the voltage configuration fixed, requir­
ing only such current configurations as are compatible with the given 
voltage configuration to appear. If we denote the given currents and 
voltages by 

s, S', Ua(Ul=U, um=O), E., E'., etc., 
respectively, the conditions for another current configuration's' to be 
feasible and compatible with the given voltage configuration are written 
as follows: 

-s'~'s'-s'~C'-s', 
n , 
1: [a~: a~]('si-s')=O (a=2,3, m-l), (3.21) 
1(=1 
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with 

's'-s'='s'-C'=o if 
's'-s'='s'=O if 

E.>O, } 
E'.>O, 

In other words, for the incremental currents we have 

-s':;;;;'Lls':;;;;'c'-s" 
n 

L [a~: a~JLls'=O (a=2, 3, ...... , m-I), 
K.=1 

Lls'=O if E.>O or E'.>O, 
and 

n n 

Lls= L [a~ : aD Lls'= - L [a~ : a!JLls', 
,,=1 K.=1 

where 

(3.2.2) 

(3.2.3) 

(3.2.1') 

(3.2.2') 

(3.2.3') 

Lls'='s'-s' and Lls='s-s. (3.2.4) 
This means that neither feasibility nor optimality is affected by the 
super position of an incremental current configuration Lls' such that 

(a) Lls'=O in the branches in state A or E, i.e. these kinds of 
branches are regarded as open·circuited for incremental currents; 

(b) -s':;;;;'Lls':;;;;'c'-s' in the branches in state B, C or D, i.e. these 
kinds of branches admit incremental current between -se and 
C'-S', and, in particular, the branches in state Band Dare one­
way conductive (respectively, in negative and positive directions), 
and those in state C are conductive in both directions, 

where the names of states are concerned with the given current and 
voltage configurations (cf. (3.1.4)). 

In order to increase the input current as much as possible, we 
search for a conduction route leading from the input node to the output, 
i.e. for a sequence of conductive branches (direction taken properly into 
account). If no such conduction route is found, we cannot increase the 
input current any more than that corresponding to the given current 
configuration so long as we confine ourselves to the current configura­
tions compatible with the given voltage configuration. For, if, otherwise, 
there were another compatible current configuration's' for which 's>s, 
we should be able to find an incremental configuration Lls' for which 
Lls>O, which would mean the existence of at least one conduction route 
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for incremental current from the input to the output node (because of 
the continuity of £Is' or (3.2.1') and (3.2.3'». If a conduction route exists, 
determine the maximum amount of incremental current which can be 
assigned along that route, add (Le. superpose) that incremental current 
configuration to the given one, and write the resulting current configu­
ration again by se. From the above considerations it is obvious that the 
new set of SK'S is feasible and compatible with the given voltage con­
figuration. We repeat this process until no conduction route is found any 
more from the input node o'~ to the output 0':;' or a conduction route is 
found along which the infinite amount of incremental current is admis­
sible. The repetition will seldom fail to terminate after a finite number 
of steps. Speaking more precisely, to secure the finiteness of the num­
ber of steps required in a current-increasing step, we must proceed with 
the following additional condition: 

Once a branch has been brought into state B or D from another 
state (i.e. from C or D resp. B or C), that branch should be 
regarded as open-circuited until we come to the situation that no 
conduction route not including that branch can be found. When we 
encounter such a situation, we ignore whether or not a branch has 
been brought into state B or D before that instant, restarting anew. 
(Cf. also the proof of the finiteness of the number of necessary 
steps in § 3.5.) 

During a current-increasing step the states of branches change as 
follows. 

A----A, B----B, C or D, C----B, C or D, 
D----B, C or D, E----E. 

All the current-configurations appearing in the course of a current­
increasing step are compatible with the given voltage configuration, so 
that they are minimum-cost for the corresponding s. The increment of 
/(s) corresponding to the incremental current £Is' is determined from 
equation (3.1.1) (with the inequality replaced by an equality) as follows: 

J/=/(s+Js)-/(s)=u·Js, (3.2.5) 
because u, Cc's and Ec's are fixed during a current-increasing step. 

If we cannot find conduction route any more we proceed to a 
voltage-increasing step, and if the infinite incremental input current is 
admissible the solution process terminates. 
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3.3. Voltage-increasing step or <V>_ Let us now suppose a com­
patible pair of current and voltage configurations is given, and try to 
increase the voltage u( =UI) at the input node with the current configu­
ration fixed, requiring only such voltage configurations as are compatible 
with the given current configuration to appear. If we denote the given 
currents and voltages by 

S, s', Ua(UI =U, um==,O), E., E'., etc., 
respectively, the conditions for another voltage configuration 'ua ('UI ='u, 
'um =0), ' E., , E'. to be feasible and compatible with the given current 
configuration are written as follows: 

'E;;?;O, 'E'.;?;O, 'E",'E'.=O, 
m 

e.= L [(]~: (]~]'ua--('Ec-'E'.), (3.3.1) 
u=l 

'E.=O if S'<C"} 
'E'.=O if s'>O. (3.3.2) 

The e-matrix method to be explained just below is a device for 
determining a voltage configuration which, satisfying (3.3.1) and (3.3.2), 
gives the maximum u( =UI). 

First define 8. and 8'. by (3.3.3): 

J -e. 

8.= l = 

8'.= { = 
e. 

state of branch 

a~ 

~()"==--1 

Jd~ 8. 

Putting 

if branch IC is in state A, B or C 
with respect to the given current 
and voltage configurations, 

if branch IC is in state D or E, 

if branch IC is in state A or B, 
if branch IC is in state C, D or E. 

A or B C 

(3.3.3) 

D or E 

r-:- 00 --I ~e.---j 

t~~ 
r.-- e. ----l 

L~ O--j~ 

L-e.-J 
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.o. (0) =00, 

.o. (1) =0., 

.0.( -1)=0'" 
define the matrix e as follows: 

(3.3.4) 

( 0 for a=b 
e=(O~) : 00,-J' (335) b-) ~in [.o.((-[a~:ag])l[a!:a~JI)J for a=t-b, .. 

(a, b=I, 2, ...... , m; 1>=1, 2, ...... , n). 

In brief, O~ is the minimum of O:s of the branches connecting node a 
to node b and of O':s of the branches connecting node b to a, and equal 
to 00 if there is no such branch. 

Here we define a multiplication of a e-matrix by another e-matrix 
and of a vector by a e-matrix: 

e*v=(O~)*(va)=(min(O~+va», l 
e*e'=(og) * (8'~) =(:n!n(og+o'~))- f (3.3.6) 

Note the similarity of this multiplication rule to the ordinary multipli­
cation rule for matrices and vectors: 

Ax=(ai)(Xj) =(:2:(a{x Xj», 
J 

AB=(a~)(bD=(:2:(a~ x bD). 
k 

It is readily seen that 

e* (e'*v) =(e* e') *v, 

(

dee. ) 
e*(e'*e")=(e*e')*e" = e*e'*e" , 

(3.3.7) 

n*Q* ...... *e=[ min ( Oc
b'+ 0C2+ ...... + OCN-1+Oo, )] 0' 0' c, ON-2 ON_1 • 

1 2 N Cl,C2, .. ····,CN-l 1 2 N-l N 

Next, put 

o 0 r ~ -00 V=(Va ) :, a-

l ~m=O, 
(a=I, 2, ...... , m-I), 

(3.3.8) 

and calculate iteratively 
1+1 1 
v=e*v (i=O, 1, 2, ...... ). (3.3.9) 

Then it follows at once from (3.3.5) that 

1+1 (I ) 1 i 
Vb =mJn O~+Va ~Og+Vb=Vb, 

so that we have the non-increasing sequence 
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o 1 2 
V~V~v~ .......... . (3.3.10) 

i 

of v's, where v~v' means Va~V' a for all a. The sequence (3.3.10) rapidly 
converges, i.e. we have for some NC;i,m-1) 

o 1 2 N N+l N+2 def. '" 
V>V>V> ...... >v= v ,= v = ...... = v, (3.3.11) 

where v>v' means that Va~v'a for all a and Va>v'a for at least one a, 
which is proved as follows. 

N N+l N N' 

It is obvious that, if v=v, then v=v for all N'~N. By definition 

(3.3.12) 

Since the number of nodes is m, for each sum of f)'s in the parentheses 
at least two of the m+1 nodes a~, a~I' a~2' ...... , aC~_2' a~m_l' a! must coin­
cide with each other. Let them be ac~ and a~ Ci<j; ac~ may be ag and 
a~J may be a!). Then we have, for every choice of a~I' ...... , a~m_l' 

f)gl + f)~: + f)~: + ...... + f)~:=: + f) C:'1 
= (f)~I+f)~:+ ...... +f)~:~I~CJLj_f)~;(~c<) + ...... +f)~:=:+f)c:') 

+ (f)~:t~Cj) +f)~:::+ ...... +f)g;=:+f)~;~I~C<)), 

and, as the consequence of the following Lemma, 

f)gl + f)~: + ...... + f)~:=: + f) C:'1 

Hence, for each b, we have 
m m-(j-i) 

Vb= min (f)~+f)~:+ ...... +f)~:=:+f)c:,)~min Vb . 
Cl,·····',Cm-l j>t 

Finally, it follows from (3.3.10) that 
m m-(j-i) m-I 

vb~min Vb = Vb 
j>i 

Therefore, for each b, 
m-I m 

or 
m.-l m 
v = v. (3.3.13) 

Lemma. The sum of the form f)~:+f)~:+ ...... +f)gZ=:+f)~Z_I' where 

Cl =CN and f)~:+l's are defined with respect to a compatible pair 
of current and voltage configurations, is always non-negative. 
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Proof: The lemma is obvious for N=2 by definition. Therefore let 
us consider the case N"5;.3. Moreover, if one of 8~:+1's is 00, the 
sum is also equal to 00, and, consequently, the lemma holds. 
Hence we may confine ourselves to the case where all 8~:+1<00. 
In such a case, 8~:+1 is equal to 8. or 8'. of some branch IC whose 
boundary nodes are a~ and aC~+1' or, to 0 if Ci=Ci+l. Hence every 
sum of the above form is equal to the sum of a sequence of 
8.'s and 8'.'s such that the corresponding sequence of branches 
constitute a loop, i.e. that every branch in the sequence has 
one of its boundary nodes in common with the branch preceding 
it and the other with the branch following it, and, in addition, 
the first branch and the last have a node (not belonging to the 
set of nodes mentioned just above) in common. Thus it suffices 
to prove that the sum of 8.'s and 8':s along a loop is always 
non-negative if 8:s and 8':s are defined with respect to a com­
patible pair of current and voltage configurations. 

Let us denote the given currents and voltages by s', U a , 

E. and E'., respectively, and consider a loop (its direction is 
taken account of). The sum in question is the sum of 8:s of the 
branches which are contained in the loop with negative sign 
(i.e. whose orientation is opposite to the direction of the loop) 
and of 8'.'s of those which are contained in the loop with pos­
itive sign (Le. whose orientation is the same as the direction 
of the loop). If one of these 8.'s and 8'.'s is 00, the sum is also 
00 (because -00<8., 8'.~00), and hence non-negative. There­
fore, we may consider only the case where all the 8.'s and 8'.'s· 
appearing in the sum are finite in value. Definition (3.3.3) tells 
us that, in such a case, 

and 

for a branch contained in the loop with negative sign 
8.=-e. and the state is A, B or C, 

for a branch contained in the loop with positive sign 
8'.=e. and the state is C, D or E. 

Let the sequence of branches contained in the loop be 
a;I' .... ", a;N (some of them may coincide) and that of nodes 
be a!, ...... , a~N_l' (a~N=a!), where 
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[a~, : a~,_J =1, [a~,: a~J ==-1 
when branch a~, is contained in'the loop 

with positive sign, 
and (3.3.14) 

[a~,: a:'_1J=-1, [a~,: a:J=l 
when branch a;, is contained in the loop 
with negative sign, 

Then the following relation holds for the given voltages because 
of the feasibility (D2). (We define =-==0 for the time being.) 

0,,= -e,,=ua,.,-Ua,+ E,,-- E' .. 
for the branches contained in the loop 
with negative sign, 

O' .. =e"=ua,.,-ua,-E,,+E',, 
for the branches contained 
with positive sign. 

in the loop 

(3.3.15) 

Moreover, since the given configurations are compatible, by vir­
tue of the optimality condition we have 

E.-E'.~O for the former branches, 
and 

for the latter branches. 

Summing up the above 0" or 0'" for i=l, 2, .... ", N we have 
N H N 

~ (O"orO',,)~ ~ Ua,.,- L Ua,=O, 
,-""'1 i:l i=d 

because UaN=U ao' This completes the proof. 
Now we define a new voltage configuration by 

00 00 

'u=v or 'ua=va ('u='ur, 'um=O) 

ID 

'E.-'E'.= L [a!: a~J'Ua-e. ('E., 'E'.~O, 'E.· 'E'.=O). 
a~l 

(3.3.16) 

(3.3.17) 

Regarding the new voltage configuration thus obtained we have the 
following two theorems. 

Theorem 1. The new voltage configuration is compatible with the 
given current configuration. 

Proof: From (3.3.9) and (3.3.11) it follows that 
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a, 
" This, combined with (3.3.4), (3.3.5) and (3.3.17), gives the ine-

qualities for each /C 

(}'.={).( -l);;;;(}~;;;;'Ua-'ub, 

'ua -'ub=e.+'E.-' E'., (3.3.19) 
-().= -{).(l)~ -(}~~'Ua-'Ub, 

where we assume that [a~: a~J=l and [a~: a~J=-1. Thus we 

have 
(}'.-e.;;;;' E.-' E'.;;;; -((}.+e.). 

(3.3.20), together with (3.3.3), states that 
'E.-'E'.;;;;O, hence 'E'.=O, 

(3.3.20) 

if branch /C was in state A, B or C in regard 
to the old voltage configuration, i.e. if S·>O, 

and. 
'E.-'E'.~O, hence 'E.=O, 

if branch /C was in state C, D or E, in regard 
to the old voltage configuration, i.e. if s'<c', 

which is no other than the desired optimality condition (3.3.2). 
Theorem 2. The new 'ua at node a~, hence the 'u in particular, 

thus obtained is not less than the Ua of any other voltage con­
figuration compatible with the given current configuration. 

Proof: By a path of length N from node a~ to node a~ we mean 
a sequence of N+1 nodes and N branches 'to 

such that a~i-l and a~, are the boundary nodes of a;,. When 

[a;,:a~'_IJ=l(-l) and [a;,:a~.J=-l(l), branch a;, is said to be 

contained in the path with positive (negative) sign. (In case 
a~=ag we have a loop as was already mentioned in the above.) 

Then, for each node a~, there exists a path of length N from 

node a~ to node a2, such that 

'Ua=(}~ +(}~:+ ...... +(}~Z=:+(}gZ=:+(}~-1 (3.3.21) 
N 0 

because 'ua=va,=(8N *v)a for a certain N, where 
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(}~:-1 =(). for a branch a;, contained in the path 
with negative sign, 

(}~:-1 =()'. for a branch a;, contained in the path 
with positive sign, 

(3.3.22) 

(i=l, 2, ... , N; co=a, cN=m). (See (3.3.12) and cf. also the proof 
to the previous Lemma.) 

If 'ua ==, the theorem is obvious. Therefore it suffices to con­
sider only the case where all the (). and ()'. appearing in the sum 
(3.3.21) are finite in value. At the nodes along this path 

'Uc<=(}~:+1 + ...... +(}~~=:+(}~-1' 
for, if 'uc,~(}~:+1+······+(}~_l' it would contradict 

min((}~+'ua) ='Ub. a; 
Then, from (3.3.22) and (3.3.:l) it follows that 

(3.3.23) 

if branch a;' is contained in the path with negative sign, 

s">O and O,,=-e.,='uc,-'UC'_' 

and 
if branch a;, is contained in the path with positive sign, 

Hence 

s"<c" and (}',,=e,,='uc,-'UC,_l. 

N 

'ua = ~eiet;;' 
i-I 

(3.3.24) 

(3.3.25) 

where €t is +1 or -1 according as branch a;, is contained in 
the path with positive or negative sign. 

On the other hand, for any voltage configuration ("Ub, liE" 
"E'.) that is compatible with the given current configuration, we 
have 

(3.3.26) 
whence follows 

N N N 

"ua;= 1: €ie .. + 1: €t("E .. -"E'.,)='ua + 1: €i("E .. -"E' .. ).(3.3.27) 

Since 
i-I t-l i-I 

"E .. -"E' .. ~~O if 

"E.,-"E',,~~O if 
(3.3.28) 
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by virtue of (3.3.24) and the optimality condition, we are led 
to the conclusion that 

"Ua:;;"'Ua . (3.3.29) 
Thus the theorem is proved. 

We have presented a method to determine a voltage configuration 
which, being compatible with the given current configuration, gives the 
highest possible 'u. 

If 'u=oo, the solution process terminates, because, as will later 
be shown, s cannot increase any more. 

If 'u< 00, we proceed to a current-increasing step. 

Obviously no change will occur in 1 ( =K~ e,s') through a voltage-

increasing step, so that no change will occur in g (=SU- i: C'E.) since 
K-l 

n n 

'g=s 'u- ~ c· 'E,=/(s)=su- ~ c'E.=g, (3.3.30) 
1(=1 

both the old and the new voltage configuration being compatible with a 
fixed-i.e. the given-current configuration. 

In case 'U=OO, we may recalculate 'ua's by replacing all the ele­
ments of e which are 00 by a symbol M (assumed to be finite but large 
enough) to assert (3.3.30). Then (3.3.30) holds for any M sufficiently 
large. But such is only for theoretical interest, not necessary in prac­
tice. 

3.4. Theorems concerning the details of the solution process. In 
order to show that the repeated application of the two kinds of steps 
explained above generates a complete solution for the problem, we shall 
prove the theorems fundamental in the theory of transportation net­
works. 

Theorem 1. } (already proved in the previous section with the 
Theorem 2. explanation of their significance) 
By virtue of (3.2.5) and (3.3.30), it is sufficient to consider the 

s"'u relation instead of the s""/(s) relation. 
Theorem 3. Let (s'; U a , E., E',) and Cs'; U a , E., E'.) be two com-

1122 2222 

patible pairs of current and voltage configurations, and (A, p) 

be an arbitrary pair of non-negative real numbers such that 
A+p=l. If S'=S' then the voltage configuration defined by 

I 2 ' 
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Ua.=).Ua.+PUa., 
I 2 

E,=)'E,+ pE., (3.4.1) 
I 2 

E',=)'E',+pE', 
I 2 

is also compatible with the current configuration 5'(=5'). If 
1 2 

Ua.=Ua. (hence E,=E, and E',=E',), then the current configura-
I 2 I 2 I 2 

tion defined by 

5'=).S'+ ps' 
I 2 

(3.4.2) 

is also compatible with the voltage configuration. 
Proof: The theorem is obvious because all the equalities and ine­

qualities in the feasibility and the optimality conditions are lin­
ear in primal variables as weU as in dual variables. 

Theorem 4 states that sand u are certainly increased through a 
current- and a voltage-increasing step. 

Theorem 4. If a current-increasing step has finished with a 
finite 5, in the next voltage-increasing step u can certainly be 
increased. If a voltage-increasing step has finished with a 
finite u, in the next current··increasing step 5 can certainly be 
increased. 

Proof oj the first half: It readily follows from Theorem 2 that 
the 'u( ='Ul) determined by the 8-matrix method after a current­
sincreasing step has finished is greater than or equal to the 
previous u( =Ul). If 'u=oo, then 'u>u, and hence the first half 
of the theorem holdss since U < 00 by the assumption of the the­
orem. So let us suppose 'u=u «00). As in the proof given to 
Theorem 2 we can find a path (ai, a;" a~" ...... , a~N_l' a!N' a!) 
from the input node a~ to the output a! such that 

'U( ='Ul) =O~' +O~:+ .... ·· +0~;~:+0~_1' 

and 

O~:_, = 0'.. or 0.. according as 

[a;,: a~'_IJ=l ([a;,: a~,J=-l) 

or [a;,: a~.J =-1 ([a;,: a~.J=l), 

'Uc,=O~:+1 + ...... +O~;::+O~_I' 

(3.4.3) 
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It then follows that, along this path, 
for all i, 

where ua's denote the previous voltages, for if 
'ue,>uc< 

(3.4.4) 

at some Ct ('ue'<Ue' is excluded by Theorem 2) we should have 
'u( ='Ul) =(Ji' +(J~;+ ...... +(J~:::+(J~_1 

= (Jet + ...... + (J~:_l +' Uc< 

> (Ji1 + ...... + (J~:_l + Ue, ~ min ((Ji1 + ...... + (J~:_) + Uc< 
ch···· .. 'Ct-l 

~U(=Ul), 

which contradicts the assumption that 'u=u. 

(3.4.5) 

Hence, under the assumption that 'u=u, the branches along 
the path should have been in the same state before the step as 
they are now. Since ue,-Ue'_l=(J~:_l=(J .. or (J' .. =±e .. in such a 
case, a branch contained in the path with positive sign is, and 
was, in state C or D and a branch contained in the path with 
negative sign is, and was, in state B or C, which, however, 
means that a conduction route from the input to the output node 
existed even with regard to the previous voltages, contradicting 
the assumption of the theorem that a current-increasing step 
has finished. Thus we completed the proof of 'u>u by reductio 
ad absurdum of 'u=u. 

Proof of the second half: Let us consider the path of the form 
(3.4.3). Such a path exists because of the assumption that 'u 
(='Ul) is finite. Similar considerations to those in the above 
proof of the first half lead to the conclusion that the path now 
considered is a conduction route from a~ to a! for incremental 
current. 

That the s"'-'u relation thus obtained is unique follows from Theo­
rem 3 and Theorem 5 (the converse of Theorem 4) just to follow. 

Theorem 5. Given a compatible pair of current and voltage con­
figurations, then, with the current configuration fixed, the voltage 
configuration can be so varied that U may increase (decrease) 
only when s is the maximum (minimum) possible for the given 
voltage configuration; or, equivalently,4) with the voltage con-

4) The contrapositive proposition to the above. 
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figuration fixed, s can be increased (decreased) only when u 
is the maximum (minimum) possible for the given current 
configura tion. 

From Theorem 5 it is seen that we can completely determine 
the S'"'-'U relation by the repeated application of voltage- and cuqent­
increasing steps, there remaining to be proved only the finiteness of 
the number of necessary steps or substeps. 

Proof to Theorem 5 : If we perform a voltage-increasing step under 
the circumstances where s can be increased with the given volt­
ages, we obtain the maximum possible 'u compatible with the 
given current configuration (see Theorem 2). In the same way 
as in the proof of Theorem 4, we can find a conduction route 
from a~ (input) to a! (output) for incremental current with 
regard to the new voltage configuration. Let us then increase s 
by sufficiently small amount a along the route. Then the increase 
in the total cost is, by (3.2.5), 

f(s+(l)-f(s)='uo (3.4.6) 
on the one hand. But, on the other, s can be increased with re­
gard also to the old voltage configuration, so that we have 

f(s+(l)-f(s)=uo. (3.4.7) 
Since f(s) should be a single· valued function of s by definition, 
we have 

'u=u. (3.4.8) 
Therefore u cannot be increased under these circumstances. 

The remaining part of the theorem is obvious from the above 
proof, as it is converted into the above-proved part by replacing 
the roles of the input and the output node. 

That it is an easy task to find a conduction route from the input 
to the output node for incremental current is guaranteed by the follow­
ing theorem. 

Theorem 6. With regard to a voltage configuration determined 
by means of a voltage-increasing step, if U a is finite there 
exists at least one conduction route from node a~ to the output 
node a!; and furthermore, if U a is finite there exists a branch 
in state C or D CB or C) connecting d~ to another node ag 
(another node ab to a~) with a finite Ub, i.e. there exists a 
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conduction route (of length 1) from a~ to another node, say ag, 
from which a conduction route to the output node can again 
be found. 

Proof: The first half may be proved in a way analogous to Theo­
rem 2 or 4. The second half is obvious from the second equation 
of (3.3.18) and the definition of e (3.3.3)-(3.3.5). 

We have also the theorems concerning the uniqueness of current 
·and voltage configurations, but we shall omit them. See [13J and [14]. 

3.5. Proof of the finiteness of the number of necessary steps in 
the solution process. As has so far been explained, current-increasing 
and voltage-increasing steps are used alternately to solve a transporta­
tion-network problem. Therefore, in order to prove the finiteness of the 
total number of necessary steps included in the whole solution process, 
we first show the finiteness of the number of voltage-increasing steps. 
(which is equal to, or is different by one from, the number of current­
increasing steps because they are used one after the other) included, and 
then the finiteness of the number of sub steps included in each current­
increasing, as well as voltage-increasing, step. 

( i) The number of voltalge-increasing steps is finite:- u in­
creases monotonously as the solution process proceeds. Furthermore~ 
each value of u is either equal to the sum of ±e.'s along a path from 
the input to the output node, which does not contain a loop consisting of 
a subset of the branches belonging to it, or to infinity. (The fact often 
used in the proofs of the theorems in the previous section. The condi­
tion for the exclusion of a loop follows from Lemma in § 3.3.) Since the 
number of paths from a specified node to another in a network which 
contain no loop is obviously finite, the number of possible values of u is. 
also finite. Hence, the number of voltage-increasing steps must be finite. 

( ii) The number of current-increasing steps is finite:-This fol­
lows at once from the above (i). 

(iii) The number of substeps included in a voltage-increasing step­
is finite :-As was explained in § 3.3, in order to determine a voltage 
configuration it suffices to define the matrix e and then to multiply 8-
by a vector at most m-I times, which calculation obviously consists of 
a finite number of iterative steps. 

(iv) The number of substeps included in a current-increasing step. 
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is finite [12J :-A current-increasing step consists essentially in finding a 
maximum amount of incremental input-output current through a spec­
ified set of branches, of which each is endowed with capacity restrictions 
in the respective directions (cf. (3.2.1') and (3.2.2')). Let us consider 
an n-dimensional space whose points represent incremental current con-
figurations with coordinates Js<=(Js', ...... , Jsn). Those points which 
represent feasible configurations are restricted within a linear subspace 
by (3.2.2') and the second equation of (3.2.1'), and furthermore, with­
in a convex region (bounded or unbounded) by the first equation of 
(3.2.1'). Here it should be noted that the convex region thus defined 
has only a finite number of boundary hyperplanes as well as a finite 
number of boundary spaces (or faces) of lower dimensions. On the 
whole convex region, a linear function Js of Js<'s is defined by (3.2.3'). 
Searching for a conduction route from the input node at to the output 
a! corresponds to searching for a direction (from the point representing 
the starting current configuration, i.e. Js<=O) in which Js increases, and 
assigning the maximum amount of incremental current along the route 
corresponds to going straight in that direction until we reach a point 
of a certain face of the convex region. We then search for another 
conduction route not containing a branch brought into state B or D, 
which corresponds to searching for a direction, confined within the face 
thus reached, in which Js increases. In this way, the dimension of the 
face within which a Js-increasing direction is searched for monoto­
nously decreases, until we finally come to a situation that no Js­
increasing direction can be found so long as we confine ourselves within 
the face thus reached. (We shall tentatively call such a face as this a 
"maximal face". The case where the maximal face is a vertex of the 
convex region is also included.) Then:. we again begin to search for a 
conduction route disregarding whether a branch has ever been brought 
into state B or D, which corresponds to searching for a Js-increasing 
direction freely in the whole convex region. The procedure to follow is 
the same as explained just above. 

Since the dimension of the convex region is finite, after a finite 
number of steps we either reach a maximal face or find a Js-increasing 
direction in which the convex region is not bounded. In the latter case, 
Js can also be increased infinitely, and the solution process terminates. 
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Moreover, since the number of faces is finite and the same face never 
appears more than once as the maximal face (because £Is steadily in­
creases as the process proceeds), the infinite sequence of maximal faces 
cannot arise. Therefore, after a finite number of steps, we either reach 
a point (Le. we obtain a current configuration) from which no Js­
increasing direction can be found (i.e. no conduction route can be 
found), or find a £Is-increasing direction in which the convex region is not 
bounded. 

Thus we have proved that the total number of steps necessary 
for solving a general transportation-network problem is always finite. 

It should be noted here that the finiteness of the number of neces­
sary steps depends essentially on the finite topological structure of the 
transportation network as well as that of the convex region representing 
incremental current configurations (the latter again depending on the 
former in substance), and not on the integrity or rationality of the num­
bers we employ in calculation (cf. [7], [8J, [9]). 

4. ADDITIONAL NOTES 

4.1. Shortest-route problem. This extremely simple problem has 
often been treated by various authors [18], [19], [20J in various ways, t 
but it seems that our voltage-increasing step affords, when applied to 
this problem, a simplest method. For example, consider a system of m 
places mutually connected by n routes, for each of which something like 
distance is defined. Put 

O.=the distance of the route, represented by 
branch a~, in the same direction as the 

orientation of the branch, 
O'.=the distance of the route, represented by 

branch a~, in the direction opposite to the 

orientation of the branch, 

(4.1.1) 

(where 0'. may not necessarily be equal to 0.), and define e=(og) by 
(3.3.4) and (3.3.5). If we want to obtain the shortest routes from the 
place represented by node a!, then put 

t Cf. also the review by M. Pollack and W. Wiebenson recently published 
in the Journal of the O. R. Society of America (Vo!. 8, No. 2, 1960, pp. 
224-230) :-added in proof. 
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Q Q Q Q 

v=(va): Va=OO (a,=I, 2, .. ····m-I), vm=O, (4.1.2) 
and calculate iteratively 

1+1 1 

V =e*v (i=, 0, 1, 2, ...... ) (4.1.3) 

(see (3.3.6)). For an N<m we have 
N+l N 

V = v. (4.1.4) 
Then put 

N N 
u=v or Ua=Va (a=I, 2, ...... , m), (4.1.5) 

and add a special mark to the branches (direction taken into account) 
for which 

Ub-Ua=(j~=(j< or (j'.. (4.1.6) 

The ua's denote the shortest distances from a! to the respective places 
a~'s, and the shortest routes consist of the branches with the special 
mark, and of them only. 

Example.5) Find the shortest routes from a city called Los An­
geles to the cities in Fig. 4.1.1, where the available routes and their 
distances (assumed to be independent of the direction) are shown by 
straight lines with numerals attached. 

(1) Los Angeles 
121 Port land 
13l Salt Lake City 

(4) Dallas 
(5) Chicago 

(6) Kansas City 

Fig. 4.1.1 

(7) Memphis 

(8) Washington 

(9) Boston 

19) 

5) Slightly modified from the example of G. B. Dantzig [18J. The distances 
here employed are fictitious. 
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~ 1 2 3 4 5 6 7 8 9 

0 58 43 85 

2 i@ 0 45 130 (The blanks 
3 @ 45 0 75 S5 66 mean 00.) 

4 @ 75 0 29 28 (4.1.7) 
8= (ut) = 5 130 @ 0 29 32. 40 58 

6 @) 29 29 0 27 62 

7 @ 32 27 .0 53 

8 40 62 @ 0 20 

9 i@ @ 0 

0 0 \ 

V=(Va)= [0 00 00 00 00 00 00 00 ooJ, I 
1 1 

S v=(va)=[O 58 43 85 128 109 113 166 186J (4.1.8) , 

J 

2 1 

V=V=U. 

In the above calculation we resorted to the simplified algorithm explain­
ed in the following section § 4.2, and the circles indicate the elements 
for which ub-ua=8~. (Note that we interchanged the roles of q~ and q! 
in this calculation.) 

Putting ua's at the respective places, and marking by bold lines 
with arrows the routes corresponding to the encircled elements, we have 
Fig. 4.1.2. Obviously (cf. Theorem 6 in § 3.4), we can find a shortest 

(2) 

Fig. 4.1.2 
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route from Los Angeles to another city, say to Boston, by simply tracing 
backwards the bold-lined routes from Boston. Even if more than one 
bold-lined routes arrive at a city (e.g. at Boston), no serious problem 
occurs since we can always get to Los Angeles whichever route we 
may choose. 

4.2. Two devices to simplify the calculation of voltages. The 
iteration formula 

1+1 1 

V =e*v 
1+1 , 

Vb =min (og+Va) 
a 

(4.2.1) 

may be modified to promote the speed of convergence as follows. 
First renumber the nodes, i.e. permute the columns, and corre­

spondingly the rows, of e in such a way that the resulting form of e 
has as many non-vanishing elements near its diagonal as possible with 
q!. fixed, and then calculate Vb'S from b=m to b=1 by (4.2.2) : 

(4.2.2) 

00 

u must be defined as ua( =Va) for the input node (which may not be a~ 
after renumbering). 

Moreover, it will be proved without difficulty that, as far as only 
conduction routes from a~ to a!. are concerned, we may use the volt­
ages determined by 

1+1 

vb=min(Og+va) 
a,..l 

1+1 { i 1+1 } 
Vb =min min(O~+va), min (og+va) , 

l<a:O;b b<a:iim 
) (4.2.3) or 

instead of (4.2.1) or (4.2.2). Although the voltage configurations thus 
obtained are not necessarily compatible with the current configuration 
concerned, they can nevertheless be used as dual variables in the solu­
tion process. 

4.3. A device for finding conduction routes. Searching for a con­
duction route for incremental current from a10 (input) to a!. (output) 
after a voltage-increasing step, we shall seldom fail to reach a!. if we 
start from a~ and trace arbitrarily along branches in state B, C or D, 
respectively, in the direction opposite to the orientation of the branch, 
in either direction, or in the same direction as the orientation of the 
branch, by virtue of Theorem 6 (§ :3.4). However, if there appears a 
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conduction loop, we may turn around the loop more than once. In such 
a case we must employ the rule that, if we arrive again at one of the 
nodes already reached, we choose another branch than that chosen before 
at the first node where it is possible. To avoid such a circuitous rule, 
the following device will be useful. 

Let us modify the 8-matrix as 
(J~-+(J~ if (J~>O or a=b, l 
(J~~Bg +0 if (J~~O and a~ b, f (4.3.1) 

where 0 is a sufficiently small constant. Then, performing the same 
process as defined in § 3.3 for a voltage-increasing step, we obtain a 
voltage configuration for this modified e. The voltage configuration be­
comes compatible if 0---->0, and the conduction routes defined in regard to 
it are free from loops. It is necessary to put 0---->0 in determining u. 

4.4. A glance from the standpoint of the general network theo­
ry. Here we should like to refer to the fact that the above treatment 
is a special case of a more general network theory which we tentatively 
call the" theory of general information networks" [14J, [15]. This gen­
eral theory is established on the basis of topological and algebraic 
considerations of such a network problem as might be supposed to be 
the most general including all the existing types of network problems. 
Although the detailed explanation of the general theory lies beyond the 
scope of this paper, a few remarks will adequately be added from the 
algebraic and topological viewpoints (see [13J, [14J, [15J, [16J, etc.). 

Let us give a few illustrations. 
In the matrix 8 defined in § 3.3 both the topological structure 

and the algebraic character of the network are reflected, i.e. (Jg< 00 

means the existence of a branch connecting nodes O'~ and O'g as well as 
the cost characteristic of that branch. This is apparently analogous to 
the well-known fact in electric network theory that an (a, b)-element of 
the node admittance matrix of an electric network indicates the exist­
ence or non-existence of branches between nodes O'~ and O'~ and, if any 
exists, (the sum of) their admittances [lOJ, [21], and also to the char­
acter of a Boolean matrix in switching circuit theory [22J, [23J, [24]. 

The calculations concerning 8-matrices can be viewed from the 
standpoint of the general theory as follows. 

Let us define two operations 1- and T over the set consisting of 
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real numbers and 00 by 

where 

def. 

x.ly=X+Y, 
def. 

xTy=min(x, y), 

x.loo=ool.x=oo, } 
xToo=ooTx=x, 

as will naturally be suggested. Then we have 

(4.4.1 ) 

x.ly=y.lx, xTy=yTx (commutativity); 1 
x.l(y.lz)=(x.ly).lz, XT(yTz)=(XTy)Tz (associativity); I (4.4.2) 
x.l (yT z) =(x.ly) T (x.lz) (distributivity). 

The matrix multiplication is expressed in terms of .1 and T as 

e* fP= ({)g) * (ifJ~) = T ({)g.lifJ~), (4.4.3) 
c 

which exactly coincides in fDrm with the ordinary matrix multiplication, 
and we have many formulae analogous to those in the ordinary matrix 
algebra [15]. 

A manner of calculation, and a law of convergence, similar to 
those for e-matrices are observed also for Boolean matrices in switch­
ing circuit theory, where .1 and T correspond to meet and join over a 
Boolean lattice. [24J 

It is hoped that the above illustrations will serve to reveal the 
common general principle which lurks behind various kinds of network 
problems, suggesting the possibility of establishing a general network 
theory. 

4.5. Tableaux for computation. In case the structure of a given 
transportation network is such that there are at most two branches con­
nected between a pair of nodes, and that if two branches are connect­
ed between a pair of nodes they have opposite orientations, it is con­
venient to perform the computation in the form of tableaux as follows. 

Given a compatible pair of current and voltage configurations, we 
have ({)., ()f,) and (c'-se, se) for each branch, from which we can obtain 
at once the matrix e, where cc_se and s' are the capacities, in the 
direction same as and opposite to the orientation of the branch, for 
incremental current. In order to express the states of branches on the 
matrix, it is advisable to write the (a, b)-element of e as 
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(4.5.1) 

where 

(4.5.2)6) 

-a~ and al being two branches connecting the pair of nodes a~ and ago 
(If (}Cj2=oo, we write simply as (}~) instead of (}<Jloo.) The computation 
to obtain the voltage configurations may be performed with respect to 
the elements over I. 

Furthermore we introduce another matrix C by defining 

C=(c~): c~=(c'-S')ISl or s'/(CLSl ) (4.5.3) 

according as 

{}~={}.I{}'l or {}'.I{};.· (4.5.4) 

(If the value to be put under I is 0, we omit ID.) The elements of Care 
encircled whose correspondents in e satisfy the relation 

(4.5.5) 

A current-increasing step can be performed by searching for 
a route in reference to the non-vanishing elements of C over I, which 
are encircled, determining min ~ along the route and modifying C ap­
propriately. After a current-increasing step, the modification of e is 
made according to the resulting form of the matrix C. For details, see 
the example in § 5.1. 

~\ 1 2 ............... m 

1 0 O~/x ............... 0'r/x 

8= 
2 °ilx 0 ............... O~/x (4.5.6) 0 

I O~/x 

'., 0 

m o fn/x O;,/x ............... 0 

6) The equality holds only when O~)=OC;:=O. Cf. also (3.3.5). 
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~a I 

b~1 
1 

1 0 

2 

m 

2 

o ....... 
'. 

c~/x 
'0 '. 

m 

. ..... ::.0 

( 4.5.7) 

4.6. Hitchcock problem and assignment problem. As was men­
tioned in § 2.4.1, a transportation problem of the Hitchcock type (hence 
an assignment problem as a special case) can be regarded as the prob­
lem of determining a current configuration corresponding~ to the maxi-

6= 

may ignored 
by virtue of the 
second half of § 

00. 

0 

<}) 

if %,,>0 

if %'j=O 

if IXij<ai 
j 

if IZij=at 
j 

0 if I%i,<b j 
i 

00 if I%ij=b, , 

not influence Ua '5 

since um=O and these 
entries are 0 or 00 

(4.6.1)-
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mum s in our general problem. However, the network structure for a 
Hitchcock problem is so simple (as shown is Fig. 2.4.1) that we may 
use tableaux of simpler form than those defined in § 4.5. 

The e and C for an (uncapacitated) Hitchcock problem would be, 
according to § 4.5, as shown in (4.6.1)·and (4.6.2) (cf. (Ll) and 0.2) for 

producers 
(i=1 .. ··m) 

ai-Ix'j 
J 

0 --------- 0 0 

0 
I 
I 

0 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 
C=--~~---------+----------~~ 

.xlr~------·Xml 

I I 
I I 

I I 

0 I I b,-Ix'j 
I I X'j I 

, 
I I I I 
I I 
I I 

0 

t 
(4.6.2) 

consumers output 

insignificant 

~ b; b; ----­a;~ 
du/,Xll 

at I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

am d..,/xmt 

----- b;. 
________ d,"/Xtn 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

------- d .. Jx",. 

con"sumers (j= 1. . .... r.) 

ai=ai-~Xij 
j 

(surplus at producer i) 

bj=bj-~Xij 
i 

(shortage at consumer j) 

(
If Xij=O, we write SimPly) 
as d ij instead of dij/O. 

(4.6.3) 
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notations). 
Such a form of tableau as shown in (4.6.1) and (4.6.2) is very 

redundant, so that we shall make use of the form (4.6.3) 
We shall also resort to the simplified rule t) determine dual 

variables as follows (cf. (4.2.3)). 

~j={ 0 if ~j>O, 
00 if bj=O; 

2k+1 2k 

at =min(dij+J3j); 
j 

2k+2 2k 2k+1 
(4.6.4) 

J3J =the smaller of J3j and min (ai-dij); 
1(",.,>0) 

00 00 

ai=ai, J3j=J3" u= min ai; 
l(a,>O) 

le k k le 

where we denote the dual variables by ai, J3j, ai, J3j instead of Vi, V" Ui, 
u" respectively. 

The di/s for which dij=ai- J3j, as well as the b/s not equal to 0 
and aI's for which ai=U and ai>O, are encircled. Evidently the di/s for 
which Xij>O are always encircled. In a current-increasing step, we search 
for a route starting in the horizontal direction from an encircled ai and 
reaching an encircled bj, where it is permitted to turn from the horizon­
tal direction to the vertical only at an encircled dij (or dij!Xij) and from 
the vertical to the horizontal only at: an dij!XiJ (Xij>O). 

It seems needless to say that the above method is valid for an 
assignment problem as well and that a number of simplifications in com­
putation are automatically done by virtue of the special properties 
possessed by the problem itself. These situations will be illustrated by 
a few examples in § 5. 

4.7. On the" out-of-kilter method" of Fulkerson. D. R. Fulkerson 
of the RAND Corporation recently proposed a method, to which he gives 
the name" out-of-kilter method" [25]. The method is very general in 
that it may be applied to a large variety of transportation-type prob­
lems and that we can make use of infeasible and incompatible configu­
rations as well as feasible and compatible ones. As Dr. Fulkerson 
emphasized in his letter to the present author, the greatest merit of 
the out-of-kilter method is its flexibility. Let us review it in the follow­
ing from our own standpoint, where it will be seen that our method 
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explained in the preceding sections is quite fundamental so that it can 
flexibly be extended also to the basis of the out-of-kilter methodY 

Let us consider the problem of determining a set of se's which 
n 

minimizes f = ~ e,s' (4.7.1) 
K21 

under the conditions 
(4.7.2) 

and 

for all a, (4.7.3) 
1C=1 

where b' and c' as well as e, may be positive, negative or zero, and 
suppose given a current configuration (i.e. a set of se's) and a voltage 
configuration (i.e. a set of dual variables ua.'s at the respective nodes) 
which are not necessarily feasible nor compatible. Similar consideration 
to § 3.1 makes us search for a pair of current and voltage configura­
tions which satisfy 

and 

the feasibility conditions: 
b';:£ s';:£ c', 

± [O"! : O"~Js'=O for all a; 
1(.=1 

E"~O, E',~O, E,·E',=O, 
m 

~ [O"!: O"~JUa.-E,+E',=e., 
0. 2 1 

the optimality conditions: 
E'.=O if 
E.=O if 

(The duality relation (3.1.1) becomes, in this case, 
n n m n -nm 

(4.7.4) 

(4.7.5) 

f= ~ e.s'= ~ (e,+E,- ~ [O"!: O"~Jua.)s'- ~ E,s'+ ~ ~ [O"!: O"~JUas' 
K=1 K=l a=l 1C=1 K=la=l 

n n n n 

= ~ E',s'- L E,s'~ L b'E',- L c·E.=g, 
1(=1 1(.=1 K.=1 

7) Fulkerson's original algorithm expounded in [25J is seemingly different 
from ours, but one can easily understand the significance of Fulkerson's 
algorithm in [25J if one read through the following explanation of ours. 
It will not be difficult to see that the problem considered in the following 
is very general. 
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where the inequality is reduced to an" equality if and only if the opti­
mality conditions (4.7.5) are satisfied.) 

In general the given pair of configurations will not satisfy all con­
ditions, although we still assume (4.7.3) or the second equation of (4.7.4) 
holds for all a. In such a case we introduce a network so modified that 
the given configurations may be feasible and compatible with respect to 
it, i.e. if s"s, ua's are the given variables, we define 

l;'=b', c'=s' if s'>c', 
t<=b', c"=cll if b'~s'~c', (4.7.6) 
Z&=slt, c"=c" if s'<b', 

and 
e.=e. if either 

m 

~ [a~ : a~JUa=e., 
a=l 
m 

~ [a!: a~Jua>e. and sl:=c"t 
a=l 

or 
(4.7.7) 

m 

~ [a!: a~Jua<e. and s·=l· ; 
a-I 

e.= i; [a~ : a~Jua otherwise. 
a~1 

Then, with regard to l·, c', e. thus defined, the given currents s·'s are 
feasible and it is possible to determine E;s and E';s satisfying (4.7.5) 
and the last two equations of (4.7.4), i.e. the given configurations are 
feasible and compatible for the modified network. Let us further say, 
according to Fulkerson, that a branch is "in kilt er " when 

c'=c', l'=b" and e.=e., 
and is "out of kilter" otherwise.B) (See Fig. 4.7.1.) 

It seems convenient to divide the out-of-kilter region into two as 
shown in Fig. 4.7.1. 

8) Fulkerson further introduces the concept of "kilter numbers", but it does 
not seem to be so essential as the concepts of "in-kilter" and" out-of­
kilter ". 
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E.E;=i'(a!: a.;')u.-
a=l 

, ___ ~77/ . -killer region 

region 

Fig. 4.7.1 

If all the branches of the network are in kilter for the given cur­
rent and voltage configurations, the given current configuration is a 
solution. Let us suppose some of the branches are out of kilter, and 
take up anyone of the branches which are out of kilter. Let us assume 
it to be a~. If it lies in the first (second) out-of-kilter region, we re­
move it from the network and consider the general transportation net­
work problem for the resulting network regarding the nodes for which 
[a~ : a~J =1( -1) and = -1(1) as the input and the output node, respective­
ly. The only difference between the circumstances in § 2-§ 3 and those we 
now stand under is that, in the present case, Z"s are not necessarily 0 
and e;s not non-negative. Note, however, that the conditions b'=O and 
e,~O were used only for the purpose of securing the existence of a 
compatible pair of feasible configurations (s'=O, ua=O) throughout § 2-
§ 3. The method explained there will easily be modified to the present 
case. The restriction for the voltage at the output node to be 0 is not 
essential either. It may be fixed to some constant (in the present case, 
to the given voltage) instead of O. Let the input and the output node be 
denoted by a~ and ag in case the removed branch a~ is in the first out­
of-kilter region, or by ag and a~ in case it is in the second out-of-kilter 
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region, i.e. 
(4.7.8) 

Then we get the relation between Ua-Ub (or Ub-Ua) and the amount 
of the incremental input-output current (which latter is to be superposed 
on the current SI and hence we shall denote by LlSl.) It has already 
been seen that this relation is expressed as a monotonously non-decreasing 
step function either with LlSl->±OO for a certain finite Ua-Ub (or Ub-Ua) 

or with Ua-Ub (or Ub-Ua)->OO for a certain finite LlSl. Expressing this 
relation on the S,,-,(EI-E'I) plane (sllch as Fig. 4.7.1) we shall encoun­
ter the following cases: 

( i) The branch a~ was in the first out-of-kilter region :-We have 
a step-function-like curve, which, starting from a point on the right side 
of the in-kilter region, is directed left- and upwards (Fig. 4.7.2 (a)). In 
this case, the curve either goes infinitely upwards on the right side of 
the in-kilter region or intersects the in-kilt er region. 

(ii) The branch a~ was in the second out-of-kilter region :-We have 
a step-function-like curve which, starting from a point on the left side 
of the in-kilter region, is directed right- and downwards (Fig. 4.7.2 Cb)). 
In this case, the curve either goes infinitely downwards on the left side 
of the in-kilter region or intersects the in-kilt er region. 

E,-E;=(u.-Ub) -e, (a) 

I I 
I ' I I 

I I 
I I 
I I L_-, I 

-----+-----1 Ll 
, I SI 

L_ ---1-.., ! lLl(ua-ub) I L ___ L~::j 
L ----1 I 

-1x 
- .Js' 

E,-E;= (U.-Ub) -e, (b) 

+ Lls' 

I~l-~- --, 
A( ) I L __ -lt

L .. Ub-U. I I --

t I __ -+'-._ ..... _~---s' 
I 

I L ___ -, 

I 
I 

t 
I 

Fig. 4.7.2 

In either case, if the curve does not intersect the in-kilter region, 
we can conclude that the original problem has no feasible solution. For, 
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it indicates that there exists no feasible current configuration even 
under" looser conditions" (1f;;i,b', c'~c<) regardless of voltages. (If one, 
or more, of Cc's (b"s) is 00(-00), we have to replace it by a finite but 
sufficiently large value M( -M), chozen at random for each of such 
branches, and to follow the same procedure. If M is sufficiently large, 
this replacement will not affect the existence of feasible current configu­
ration.) 

If the curve does intersect the in-kilt er region, we may regard the 
pair of current and voltage configurations which corresponds to that 
intersection point as the "improved" configurations which are to be 
considered as given in the next step. Through this process, the removed 
branch has been brought in kilter, so that we put 'l/=b', c'=c', e,=e, 
for the removed branch. It is obvious that the branches which were in 
kilter before this step still remain in kilter. Thus the number of out-of­
kilter branches has been diminished at least by one. (It may happen that 
some branches, which have not been removed, become also in kilter. In 
such a case, we may, or may not, put Z-=b', c'=c', e,=e, for those 
branches. If a certain branch has been brought in kilter during this 
process, we may stop the process, put 'iJ'=b', c'=c', e,=e, for that 
branch, and then continue.) 

Repeating this process we shall be able to bring all the branches 
in kilter so far as the original problem admits a feasible current con­
figuration. (If, for the feasible current configuration and the voltage con­
figuration compatible with it obtained in this way, a branch whose c'(b') 
is substituted by M (-M) is in state A (E), the solution does not exist 
in the sens{; that f can become arbitrarily small, i.e. that it can tend to 
-00.) 

5. EXAMPLES 

We shall show, in this section, three examples of general trans­
portation-network problems to illustrate the theory so far explained. The 
first of three examples will serve also as a model with which to under­
stand the general theory (§ 5.1). The second is an example of applica­
tion to a transportation problem of greatest practical use (§ 5.2), and 
the last shows how much our method simplifies the solution process of 
assignment problems clarifying the merit of our method and its difference 
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from the methods in current use (§ 5.3). (Cf. also the example of the 
shortest route problem in § 4.1) 

5.1. Example of general transportation-network problem. In or­
der to illustrate, step by step, the general theory expounded in the pre­
ceding sections, let us solve the general problem of transportation net­
work such as follows. (C£. § 4.5 for the forms of tableaux.) 

Let the network structure of the problem be as shown in Fig. 5.1.1. 

Fig. 5.1.1 

Each route or branch (Le. each of a~, a!, . ", ai) has the finer structure 

as shown in Fig. 5.1.2 ; Le. it consists of two branches connected in 
parallel which are provided with both capacity and cost characteristics 
shown in the table of Fig. 5.1.2. 

K 1 2 3 4 5 6 7 

e., 1 2 1 1 2 4 2 

c· 1 2 1 1 1 1 2 

e., 1 2 1 2 1 2 4 

c· 1 1 1 1 1 1 1 

Fig. 5.1.2 

Let us observe the two-terminal characteristic of the network, Le. 
the relation between sand u, regarding (J~ and (J~ as the input and the 
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output node, respectively. 
Before going into the solution process, let us note that the struc­

ture of the network (Fig. 5.1.1) as well as the characteristics of branch­
es (Fig. 5.1.2) can be fixed by writing the following two matrices. 

( i) e-matrix in regard to the null-current configuration:-

2 

0 2 00 00 

0 00 
(5.1.1) 

9=«(Jf)= 3 2 0 4 

00 2 0 

5 00 00· 2 4 0 

O~=CXJ indicates that there is no branch connecting nodes u~ to u~ 
directly, while a finite 0: denotes the cost per unit flow in the 

branch connecting u~ to ug. 
(ii) C-matrix in regard to the null-current configuration:-

~ 2 3 4 

0 o 0 

2 
(5.1.2) 

o o 

C=(cf)= 3 o 

4 0 o 2 

0 o 0 

c'!; (>0) denotes the capacity of the branch connecting ug to u~. 
<Vi> The first voltage-increasing step :-1£ all ua=O (a=1,2,3,4,5), 

all the branches are evidently in state E, so that no conduction route 
can be found from u~ (input) to u~ (output). Therefore the first step to 

follow is a voltage-increasing step. Now all the branches being in state 
E, the e-matrix to be used in the present step is exactly the same as 
(5.1.1>- Then we calculate 'ua's according to the second formula of (4.2.3). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A New Method of Solving Transportation-Network Problems 71 

"'-a 1 2 3 4 5 
0 0 
v=(V,.)= [00 00 00 00 OJ, 
1 1 
V=(V,.)= [4 3 3 2 OJ, (5.1.3) 
2 1 
V=V='U=('U,.) ; 

u='ul=4. 
1 

< Cl > The first current-increasing step:-The branches brought 
into state B, C or D through <VI>, i.e. those for which E,,=E',,=O or 
E,,,=E',,, =0, can be determined by testing whether or not 'Ub-'U,.=(J~ 

for the corresponding elements of e. The elements of C corresponding 
to such elemets of e are marked by a circle in (5.1.4). A conduction 

c= 
2 

3 

4 

s 

2 

o 

o 

o o 

3 4 se!( 
I 

o o : 
I 

(5.1.4) 
-1- -----w---_ 0 j 

I I 

CD ! 1 i o 
o l_-®) 

o 

route from a~ to a~ is searched for by starting from the 1st row of C, 

looking for an encircled element to find c~=CD in the 2nd column, 

then changing over to the 2nd row to find e~=CD in the 4th column, 

and finally arriving at the 5th column of the 4th row (~=®), thus 

obtaining the route 
a~-->(a}, )->ag->(a~, )->a~->(a:, )->ag. 

The maximum possible amount of current to assign along this route IS 

min(ei, e~, cD=min(1, 1, 2)=1. If this amount of current is assigned 

along this route, the capacities for incremental currents are modified in 
such a way that c~, e~, e~ (elements along the conduction route) may be 

diminished by 1 (amount of assigned current) and e~, c~, et (transposi­

tional elements of c~, e~, ~) may become CD/I, CD/I, CD/I, respectively, 

where CD denotes the capacity of the reverse direction corresponding to 
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the current now existing in a branch along the conduction route, 0 
showing that the branch remains still in state B, C or D, and /1 is the 
capacity of the partner branch having the opposite direction. Thus we 
have 

~ 2 3 4 5 

0 0 2 0 0 

CD/I 0 0 0 
(5.1.5) 

c= 3 0 CD 

4 0 CD/I 0 CD 

5 0 0 CD/I 0 

where the circles are removed from null elements. 
Since, obviously, no further conduction route can be found in C 

of (5.1.5), the first current-increasing step is completed with .1s=1 and 
1 

ilJ=u.1s=4. 
1 1 1 

The values under / will not be used in the subsequent calculation 
until the values over / become O. When the value over / becomes 0, the 
symbol 0/ is removed and the value under / will revive. 

<V2 > The second voltage-increasing step :-Referring to C in 
(5.1.5), we can determine the new e-matrix to be used in <V2 >, i.e. we 
modify the e in (5.1.1) in such a way that (j~'s corresponding to those 

c~'s which have been made null in <Cl> are rewritten as 00 and (j~'s 

corresponding to the elements of C having the form x/x (x *0), as 
-(old O~)/(old O~). Thus we have 

~ 2 3 4 

0 00 2 00 00 

2 -1/1 0 00 00 

(516) 
8= 3 2 2 0 4 

4 00 -1/1 0 

00 00 2 -2/4 0 
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Only the values over / are used in the following calculations, those under / 
being for memory. When the value over / is made 00 some time, then the 
value under / will revive. 

The new voltages are calculated as follows. 

""a 1 2 3 4 5 
0 

v= [00 00 00 00 OJ, 
1 

v= [5 4 3 2 OJ, (5.1.7) 
2 1 

v=v='u; 

u='ul=5. 
2 

<c2 > The second current-increasing step: - Encircling the ele­
ments of C in (5.1.5) corresponding to those og's for which 'Ub-'Ua=Og, 

we have 

i'z 1 2 :3 4 5~ 
I 

CD--- ---0-- ---O-------(~-l I 

1 0 o I 
I 
I 
I 

2 CD/I 0 CD 
t 

0 o I 
I (5.1.8) I 

c= 3 '---<D-, 1 ! 
t I 

0 1/1 0 '--CD) 

5 0 0 CD/I 0 

and, searching for a conduction route by tracing the elements which are 
encircled, obtain the one indicated by the dotted line. The maximum 
amount of incremental current assignable along this route is determined 
to be min(2,1,1)=1. Then C is modified into 

~ 4 5 
0------

--O------O--:,:)~D 1 0 0 
"..'" ," 

2 CD/I ,/0/ CD 0 0 //:: .. --- .... (5.1.9) 
c= 3 afjl 1 I) 0 

4 0 1/1 CD/I 0 0 

5 0 0 CID/I 0 
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where there is no more conduction route, for the only node attainable 
from a1 is ag (since there is only one encircled element c~ in the 1st 

row) but the only node attainable from ag is a1. Hence <C2> is com­

pleted with Lls=l and Ll/=uLls=5. 
2 2 22 

<V3> The third voltage-increasing step :-As before, the new f) 
is determined from C in (5.1.9) and f) in (5.1.6) as follows. 

~ 2 

0 00 

2 -1/1 0 

8= 3 -2/2 2 

4 00 -111 

5 00 

The new voltages are 

"'-a 1 
0 

v= [00 

1 

v= [6 

v= [6 
8 2 
v=v='u; 

u='ul=6. 
3 

00 

2 

00 

5 

5 

3 4 5 

2 00 

00 00 

0 00 4 

-1/2 0 00 

2 -2/4 0 

3 4 5 

00 00 OJ, 

4 00 OJ, 

4 3 OJ, 

(5.1.10) 

(5.1.11) 

<Cs> The third current-increasing step :-The new C with cir-
cles is 

R 2 4 se!( I 
I 

CDi- - --- 0----"'(1) I 0 0 0 , I 
" , , 

CD/l 
, , 

0 CD ',E 0 
, , , (5.112) " , , 

c= CD/I 0 0 "'W/ 

0 1/1 CD/I 0 0 

5 0 0 2/1 0 
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The conduction route indicated by the dotted line is at once found to-
gether with the maximum amount 1 of current to be assigned. C is then 
modified into 

'>z 2 3 4 5 

0 0 0 0 0 

2 <D/l 0 CD 0 0 
(5.1.13) 

c= 3 @/1 0 0 0 

4 0 1/1 CDlI 0 0 

5 0 0 (1)/1 2/1 0 

where we readily see that there is no conduction route. Thus <C3> is 
completed with As=l and A/=uAs=6. 

3 3 S 3 

<V4 > The fourth voltage-increasing step :-We have 

~ 2 3 4 5 

0 co co 00 00 

2 -111 0 00 co 

3 -2/2 
(5.1.14) 

8= 2 0 00 co 

4 00 -1/1 --1/2 0 co 

5 00 00 --4/2 -2/4 0 

and 

"'a 1 2 " 4 5 " 
0 
v= [00 00 0<) 00 OJ. 
1 0 (5.U5) 
v=v='u; 

U='Ul=OO. 
4 

Hence the solution process has come to an end. 
It should be noted that the above procedure can be much more 

simplified in practical calculation; e .. g. we need not write e and C many 
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a time but may rewrite only the elements to be changed, nor need we 
carry out the encircling process before searching for a conduction route 
but may test, for each element in the row of C where searching goes 
on, whether it ought to have been encircled or not. 

The above results can be summarized in the diagram and figures of 
Figs. 5.1.3-5.1.4, where node voltages ua's are put in 0 and branch currents 
s·'s are written by the side of the corresponding branches. (Note that 
current flows in that branch (l1J, or uJ,,) which has the same direction 

as the arrow representing the current.) The incremental current assigned 
in each current-increasing step is shown by a dotted line. 

The above results are available for the solution of various kinds 
of transportation problems on the network of Fig. 5.1.1 (and Fig. 5.1.2). 
For example, 

4 

( i) To maximize the current from 11~ to 11°6:-The solution is 

s_ 

o 3 6 12 

~----~--~----~.----~ 
Aj= uAs Jf= uAs Aj= uJs 
1 11 2: 22 3 33 

Fig. 5.1.3 

.(",Viiii~ .. _ .. ad inf. 

(ca> 
A • • 

u U 
2 

•.. 'U 

18 21· ···f=i:e,s'(total cost) 
,,=, 
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(a) After( C1)( total cost=4) 

Fig. 5.1.4 
given by Fig. 5.1.4(c). 

(b) After(C,)(total cost=9) 

(ii) To obtain the current configuration which gives the maximum 
possible current from a~ to ag and, moreover, minimize the total 

cost required under that condition :-Again Fig. 5.1.4 (c) gives 
the solution. 

(iii) To make 2.5 units of current flow from a~ to ag with as little 

expense as possible :-After <C2> we have 2 units of current 
and after <C3> 3 units. Therefore we may add to the current 
configuration obtained after <C2> 0.5 unit of current along the 
conduction route found in <C3>; consequently, we have the 
configuration of Fig. 5.1.5, for which the total cost is equal 
to 9+6xO.5=12. 

2.5-
_2.5 

(total cost=12) 

Fig. 5.1.5 
(iv) To make as much current as possible flow from a~ to ag under 

the restriction f(s);::;;6:-The total cost after <Cl> is 4 and 
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that after <C2> is 9. Therefore, we may add to the current 
configuration obtained after <Cl> 

6-4 2 
9-4 x1s=Sx1=O.4 

of incremental current along the conduction route in < C2 >, 
thus having the configuration of Fig. 5.1.6. 

-1.4 

(total cost=6) 

Fig. 5.1.6 
5.2. Transportation problem of the Hitchcock type. The problems 

of the Hitchcock type which are usually solved by the stepping-stone 
method (revised simplex method) can easily be solved according to our 
general principle with the simplification proposed in § 4.6. (As for nota­
tions see § 1 and § 4.6.) 

Let us consider the Hitchcock problem with four producers and 
six consumers. From-producer-to-consumer transportation costs as well 
.as the amounts of production and consumption are as shown in (5.2.1). 

"--- bj 
~~ 

8 

6 

12 

10 I 

8 

11 (5.2.1) 

10 

As is well known, the optimum solution for the original problem 
-coincides with that for the modified problem having the matrix (dij ) 

obtained from the given by subtracting from every element of a row 
the minimum of the elements of that row and then from every ele­
ment of a column the minimum of the elements of that column. Thus, 
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subtracting 3, 5, 2 and 5 from the 1st, 2nd, 3rd and 4th row of (5.2.1) 
and then subtracting 1 and 2 from the 3rd and 5th column, we haw' 

~3 3 6 2 

3 o 3 o 

o 6 o o 6 (5.2.2) 

2 o 6 o 2 4 o 

8 4 o 3 

The total cost for the modified problem is smaller than that for the 
original by 

~aix (subtrahend from the i-th row) 
! 

+ ~bj x (subtrahend from the j-th column). 
j 

=(3 x3+4x5+2 x2+8 x5)+(6x 1+1 x 2)=81. (5.2.3) 
<V l > Obviously, all ai=[3j=O, and those di/s which are equal 

to 0 as well as all ai's and b/s are encircled. 
<Cl> 

®'-- -- 2 T ®J 3 ®! 31 

o/@ ---®-.! I 6 ® 1 @ CD--. -----------_-___________ ,. __ ' 

I 
2 I 

I 

I 
6 

/'- -----------------------~---------~ i 
@ ® 6 ® 2: 4 @-) 

I 
C£~- --4------1----"4------®.-) 

u=O .1s=l1 
1 ' 1 

Thus we have .1s=l1 and .1/=u.1s=O, completing <C l >-
1 1 1 1 

The tableau is then modified as shown in (5.2.5). 
<V2 & C2> 

(5.2.4) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



80 Masao Iri 

~o o o o o 

(5.2.5) 

o 2 @-----3-r----O---·--3----@ 
I' , 

~ I i 
o CQZD CD I 6 i ® @D 6, 

I I , 
I, ' 
I' , 

o 0 6 I @' 2 4 ~ 
~ '~----------------- ... , ®®- --"4-----(b-.. : 4 @) 4 

u=3, Js=2 
2 2 

The dual variables are calculated as follows (cf. (4.6.4». 
0 

(,8j) = [00 00 0 00 00 OOJ 1 a 5 7 

2 (af) (at) (at) (at) 
(,8i)=[ 6 3 0 4 6 OJ 11 11 11 

11 
5 ,., ,., ,., 

(a i) 4 3 2 2 (,8j)=[4 2 0 4 4 OJ 11 

6 6 4 3 (a;) 
(,8j) = [ 3 2 0 3 3 OJ 

8 6 0 0 0 (,8j) = (,8j) = (,8i) 

u=3 4 4 3 (5.2.6) L.J L.J L.J 
2 

Encircling the dtj/Xi/S for which ai=,8j+dij and the at (>0) for which 
ai=U, we obtain the conduction route from a4 to ba along which 2 units 
of incremental current are assigned, as shown by dotted lines in (5.2.5). 
Thus we have Js=2 and Jj=uJs=6, completing <C2 >. 

2 2 2 2 

<Va & Cs> 

~ 0 0 a, @)-, 0 0 0 

0 2 @D 3 
I 

<lID I 0 
I 

I 
@ID 

, 
@D 0 CD 6 

, ® 6 I , (5.2.7) I 
I 

0 0 6 @ID ! 2 4 
I 

,-- __ . ___ -----------... I 

@ 4 (!ID @--) CQZD 3 4 

u=4, Js=4 
3 3 
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0 ~ 

(,8j) = [00 00 0 00 00 OOJ 1 3 5 

(at) (ai) (ai) 
2 

11 11 
11 

(,8j)=[6 3 0 4 6 1J 3 
r--l r--l (ai) 

4 3 3 
(,8j)=[4 3 0 4 4 1 J 11 

6 4 (ai) 
6 4 

(,8j) = (,8j) = (,8j) 0 0 

u=4 4 4 (5.2.8) L.J L.J 
3 

Thus we have Lls=4 and Ll/=uLls=16, completing <C3>. The tableau is 
3 8 3 3 

then modified into 

~o o o o o o 

o 0/1 3 o o 2/2 

o 0/3 6 o 0/1 6 (5.2.9) 

o o 6 0/2 4 2 

o 4 1/2 4/4 0/2 3 4 

In (5.2.9), however, all iit's as well as all ht's are 0, which indicates the 
termination of the whole solution process. The optimum values of Xi/S 

can be obtained immediately from (5.2.9) by gathering the values 
under /; i.e. we have 

3 6 

o o o o 2 

o o o o (5.2.10) 

o o 2 o o o 

4 o 2 4 o o 

The total cost required for the optimum solution is calculated by (3.2.5) 
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with the modification of (5.2.3) taken into account: 
f=81+.Jf+.Jf+.Jf=81 +0+6+ 16=103. (5.2.11) 

1 2 3 

5.3. Application to assignment problems. As was already men­
tioned in the introductory part of this paper, an assignment problem can 
be regarded as a transportation problem of the Hitchcock type with an 
additional condition that Xi/S should be either 0 or 1. However, if we 
apply the method proposed in this paper (see especially § 4.6 and § 5.2) 
to an assignment problem without paying attention to the additional 
condition, we shall see the condition automatically satisfied in the solu­
tion thus obtained. As an example let us solve the 10 x 10 assignment 
problem treated in [2]. The comparison with the solution by the Hungar­
ian method (which is believed to be the best among all the currently 
available methods [2]) will reveal the advantages of our method. 

Notable is the fact that our general method is extremely simplified 
when applied to an assignment problem since in the course of calculation 

( i ) every ai as well as every bj always takes one of the values 
o and 1; 

(ii) an Xij is either 0 or 1, and there lies at most one Xij= 1 in 
each column as well as in each row; 

(iii) if a conduction route is found from an encircled ai (=1) to 
an encircled bj (=1), the amount of incremental current to be 
assigned along the route is always 1, and the modification of 
the values of at's, b/s and Xi/S along the route is mere inter-

, b.! "J 
ai " 

1 1 1 1 1 1 1 1 1 

1 
I 

4.1 4.1 7.9 8.3 2.6 8.7 7.1 9.9 2.2 9.4 

1 I 4.6 6.1 4.5 0.9 4.8 6.4 8.8 6.2 0 0.2 

1 9.7 3.6 5.3 0.9 7.6 2.8 3.5 7.9 4.0 7.0 
1 2.0 6.5 2.3 5.7 7.4 1.6 2.4 9.7 5.0 1.9 (5.3.1 ) 
1 2.1 1.4 5.0 5.2 1.7 4.7 2.8 6.7 6.3 0.5 
1 1.7 7.8 3.0 0 1.5 1.0 8.0 6.8 3.0 9.1 

1 9.1 5.3 0.3 6.4 6.6 3.9 9.8 1.6 2.4 8.1 

1 4.9 1.7 7.7 5.7 7.9 4.0 9.5 0.8 4.8 2.0 

1 2.9 8.8 1.8 5.9 6.6 6.2 8.8 0.7 0.3 2.6 
1 8.4 7.4 0.6 2.6 6.0 7.7 3.7 9.9 0.2 7.9 
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change of 0 and 1; 
etc. However, since these simplifications are made automatically according 
to our method, no special attention need be paid thereto. 

Let (5.3.1) be the problem to be solved. Modifying it as 

dij -> dij-min (dt,j)-rnin idi}, -min(di,j,)} , (5.3.2) 
it il il 

we have 

,bj I 
ai " I 

1 1 1 1 1 1 1 1 1 1 
-_._----

1 I 1.3 1.6 6.5 7.2 0 6.6 3.6 8.1 1.1 8.1 

1 I 2.9 4.7 4.2 0.9 3.3 5.! 6.4 5.5 0 0 

I 
I 

1 7.1 1.3 4.1 0 5.2 0.9 0.2 6.3 3.1 5.9 

1 0.3 5.1 2.0 5.7 5.9 0.6 0 9.0 5.0 1.7 i. (5.3.3) 
1 0.4 0 4.7 5.2 0.2 3.7 0.4 6.0 6.3 0.3 

1 0 6.4 2.7 0 0 I) 5.6 6.1 3.0 8.9 

7.4 3.9 0 6.4 5.1 2.9 7.4 0.9 2.4 7.9 

1 3.1 0.2 7.3 5.6 6.3 2.9 7.0 0 4.7 1.7 

1 1.2 7.4 1.5 5.9 5.1 5.2 6.4 0 0.3 2.4 

1 6.5 5.8 0.1 2.4 4.3 6.!5 1.1 9.0 0 7.5 

The total cost is diminished by 

(1.7 + 1.4+0.3+0+ 1.5+ 1.0+2.4+0.7 +0+0.2) 
+(1.1 +0+0.9+0+0+0+0+0.1 +0+0.2) = 11.5 (5.3.4) 

by this modification. 
<Vl & Cl> Obviously 

(5.3.5) 

-and all at's and all b/s, as well as di/s which are equal to 0, are encircled. 
(Hence circles will be omitted in (5.3.6)). The assignment in <Cl> is 
shown in (5.3.6) 

<V2 & C2 > The tableau is modified as shown in (5.3.7), and the 
dual variables are calculated as in (5.3.8). Without performing the en­
circling process in advance, we search for a conduction route from ag, 
to b6 examining, at each place where necessary, whether a dij ought to 
have been encircled or not. (It is known that every dij/1 is encircled!) 
Thus we obtain the conduction route indicated by dotted lines in (5.3.7). 
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~ j · ~ j.~ -,; .::- .:: i ~;j::-~ 
~---I-1.3 , 4~, 0 5.2 0.9 0.21 6.3 t' 3.1! ;: 

J.....--,i- S.1 2.~~-~.~--W 9.0, 5.0 t 1.7 

~
4.7' 5.2 0.2 3.7 0.4 6.0 t 6.3; 0.3 

o 6.4 2.7 0 0 0 5.6 6.1, 3.0 t 8.9 

_.-1.--7.-4 - .. ~.~ _ ~ ~.~9_ 7.4 0.9 t 2.4 I 7.9 

0.2 7.3 5.6 6.3 2.9 ~~.7 1.7 

1.2 7.4 1.5 5.9 5.1 5.2 6.4 0 0.3 2.4 

-~-~-~-~-

5.8 0.1 2.4 4.3 6.5 1.1 9.0 0 7.5 

(5.3.6) 

u=O, Lls=9, Llj=uLls=O 
1 1 1 11 

bj 0 a, 0 0 0 0 0 0 0 0 

0 1.3 1.6 6.5 7.2 011 6.6 3.6 8.1 1.1 8.1 , 

0 2.9 4.7 4.2 0.9 3.3 5.4 t 6.4 5.5 0 0/1 

0 7.1 1.3 4.1 0/1 5.2 
0.9 i 0.2 6.3 3.1 5.9 

0 0.3 2.0 5.7 5.9 0.6 0/1 9.0 5.0 1.7 
I 

4.7 

"~ 
0.4 6.0 6.3 0.3 (5.3.7) 

2.7 o 0 0 5.6 6.1 3.0 8.9 

0/1 6.4 5.1 2.9 7.4 0.9 2.4 7.9 

,. -~~' .- ,~~~, .-~ 4.7 1.7 

1.2 7.4 1.5 5.9 5.1 5.2 6.4 0 0.3 2.4 

0 6.5 S.8 0.1 2.4 4.3 6.5 1.1 9.0 011 7.5 

u=O.6, Lls=l, Llj=uLls=O.6 
2 2 2 22 
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0 1 3 5 7 9 
([3J) = [00 00 00 00 00 0 00 00 00 ooJ (at) (at) (at) (at) (at) 

2 11 11 11 11 
([3J)=[O 3.7 2.9 0.9 6.6 0 0.6 2.9 6.5 5.4J " " " " 6.6 1.3 1.3 1.3 7 

4 (aD 
([3J) = [0 0.4 2.9 0.8 1.3 o 0.3 2.9 1.7 1.8J 5.4 1.8 1.7 1.4 11 

6 0.9 0.8 0.5 0.5 (at) 
([3J) = [ 0 0.4 2.9 0.5 1.3 0 0.3 0.6 1.4 1.7J 0.6 0.3 0.3 0.3 

8 3.7 0.4 0.4 0.4 ([3J) = [ 0 0.4 1.5 0.5 1.3 0 0.3 0.6 1.4 1.4J 
10 8 0 0 0 0 

([3J) = ([3j) = ([3j) 2.9 2.9 2.9 1.5 

u=0.6 
2.9 2.9 0.6 0.6 

2 5.2 1.2 1.2 0.6 
6.5 1.7 1.4 1.4 
L.J L.J L.J L.J 

(5.3.8) 
Since Lls+Lls=lO, we have the following optimum assignment from (5.3.7). 

1 2 
----------

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 0 
! 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 0 
(5.3.9) 

0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 

The total cost corresponding to (5.3.9) is determined from (5.3.4), (5.3.6) 
and (5.3.7): 

/=11.5+0+0.6=12.1. (5.3.10) 
According to the Hungarian method, we modify the matrix of 

(5.3.1) into (5.3.3), then, searching for a smallest set of lines (rows and 
columns) which cover all the O's and determining the value of the least 
elements not lying on those lines, subtract it from all the elements not 
lying on the lines and add it to the elements situated at the intersections 
of the lines, and again search for a smallest set of lines covering all the 
O's in the matrix thus resulting, and so on, repeating until the minimum 
number of covering lines becomes equal to the order of the matrix (= 
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10 in the present example). In [2J, three repetitions of the above process 
is needed to arrive at the optimum assignment beginning with (5.3.3). 
In contrast with this, our method requires essentially one step (5.3.7). 
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