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1. INTRODUCTION 

It is the purpose of this article to attempt a further extension of 
our previous studies [l1J [12]. The problem which is the concern of our 
study is the following type. There is a certain one-stage profit function 
P(x, y, z), where x, y, and z denote the initial stock, starting stock, and 
demand of the merchandise, respectively. The exact probability distri­
bution on z is unknown, but z can be assumed to exist in the closed 
interval [Zmin, Zmax]. The demand interval assumed is identical at any 
stage in future. Under the assumption of maximin profit principle, our 
problem is reduced to one of the multi-stage games, and the solution 
to our problem is to solve the functional equation of the form 

(Ll) f(x)=Val[P(x, y, z)-,-aflMax(v-z, O))J 
where f(x) is the total present value of securable profit starting with 
initial stock x and using a maximin ordering policy in an unlimited 
number of stages, and a is a discount factor such that O~a~1. (By a 
maximin ordering policy we mean an ordering policy which is optimal 
in the sense of the maximin profit principle, i. e., an ordering policy 
which maximizes the se curable profit assuming that the least favourable 
situation will occur under the prescribed assumptions.) 

The method of successive approximations is fully utilized to ob­
tain the solution of this equation. Hence, we analyse the following se-
quence of 

(1.2) 
(1.3) 

equations. 
fJ(x)=VaIP(x, y, z) 

fn(x)=Val[P(x, y, z)-!--afn-dMax(y-z,O))J 
for n=2, 3,. ..... , where fn(x) is the total present value of securable 
profit starting with initial stock x and using a maximin ordering policy 

11 
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12 Hiroshi Kasugai and Tadami Kasegai 

when only n stages of operations are allowed. 
The main part of this paper will be concerned with the cases 

with linear profit functions, and the follwing notations will be used; 
p : retail price of the merchandise per unit 
a : wholesale price of the merchandise per uinit (ordering cost) 
a': returning (or disposal) price of the merchandise per unit 

(revenue due to returning or disposal) 
b: storage cost per unit of remainder 
c: penalty cost per unit of shortage. 

In general, it is considered that p>a>O and a', b, c;;:::O. Throughout this 
paper (except section 7), it is assumed that there is no constant cost 
due to ordering, returning (or disposal), remainder or shortage. These 
assumptions, we think, cause neither loss of generality nor loss of prac­
ticability. Moreover, in the mathematical analysis it is the great benefit 
of the assumption of non-existence of constant costs that P (x, y, z) 
becomes a continuous function. 

In our previous studies [l1J [12J, we treated a special case where 
a=a' and the interval of z is [0, zmax]. The solution to the case was 
obtained as follows. 

(1.4) 

(1.5) 

(1.6) 

fl(x)=ax 
(a+b)c 
P+b+c

Zm
8.X 

*_ CZmax 

Yl - p+b+c 

_ 11.-1 (a+b)c 1-an - 1 

fn(x)-aX-a p+b+c Zm~x I-a 

* CZmax 
(1.7) Y,. = p+b+c-aa 

ia(l-a)+blc . --------z 
p+b+c-aa max 

for n=2, 3,······, where y*,. is the optimal starting stock for the first 
stage when only n stages of operations are allowed. It is interesting 
to note that Yn* is identical at any n except n=1. The convergence of 
f,,(x), as n-->=, is apparent and the limit 

(1.8) I· .. ( )_ .1 ia(l-a)+blc lm In X -ax-- --. Zmax 
n~oo I-a p+b+c-aa 

satisfies the equation (1.1). 
Here we intend to analyse more general cases. Several decision 

criteria for general cases described in [l1J [12J (especially in Part 11 
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Characteristics of Dynamic Maximin Ordering Policy 13 

of [12J) are fully utilized in the present analysis as shortways to the 
solutions. 

2. GENERAL PROPERTIES OF OPTIMAL ORDERING POLICY 

In this section, we show that our problem is a special class of 
"multi-stage games of timing with concave payoff functions ", and the 
management has an optimal strategy which is pure (nonrandomized 
ordering policy) although the optimal strategy is not unique. * 

Let 

(2.1) r )_ {KCX, y, z) (when y~z) 
~X, y, Z - MCx, y, z) (when y::;z). 

Then, if the following requirements [R. 1. 1J,,·{R. 1. 6J are satisfied, 
there is an optimal non-randomized ordering policy when only one stage 
is allowed, and the optimal starting stock is the solution of the equat­
ion Of the form 

(2.2) 
[R. 1. 1J 

[R. 1. 2J 

[R. 1. 3J 

[R. 1. 4J 

[R. 1. 5J 

[R. 1. 6J 

K(x, y, zmin)=M(x, y, zmax). 

Continuity. 
a 

-azK(x, y, z»o. 

a 
az M(x, y, z)<O .. 

a 
-ay K(x, y, z)<O. 

a 
-ayM(x, y, z»O. 

Non-Convexity. * * 

* The least favourable probability distribution of demand will be a certain 
two-point distribution on Zmin and Zmax. Such probability distribution and 
the optimal (maximin) ordering policy constitute an equilibrium pair of 
strategies in our problem when it is viewed as zero-sum two-person game. 
However, as it is our main purpose to find the optimal strategy for the 
management (the maximin ordering policy) and, furthermore, as the ma­
rket is the "Nature" in our problem, we will omit the detailed description 
of such distribution of demand and the equilibrium. 

* * Note that, if we drop the requirement [R. 1. 6J, there is a possibility of 
existence of better mixed strategies than the pure strategy y given by 
(2. 2). The reason for the necessity of [R. N. 6J is similar. 
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Here, [R. 1. 1J requires that P(x, y, z) is continuous in y and z, and 
[R. 1. 6J requires that any part of P(x, y, z) is not convex in y. 

Furthermore, if the following requirements [R. N. 1Jrv[R. N. 6J 
are satisfied, there is an optimal non-randomized ordering policy for the 
first stage when only n stages of operations are considered, and the 
optimal starting stock for the first stage is the wlution of the equation 

(2.3) K(x, y, Zmin)+a!n-l(V-Zmin)=M(x, y, Zmnx)+ a!"-l(O). 
[R. N. 1J Continuity. 

o 
[R. N. 2J -o:zlK(x, y, z)+a!n-l(Y-Z)) >0. 

[R. N. 3J 
o 

-o:zlM(x, y, z)+a!n-l(O)) <0. 

[R. N. 4J 
o 

-aylK(x, y z)+a!n-l(y-Z)) <0. 

[R. N. 5J 
o 

-Oy{M(x, y, z) ,+a!n-l(O)] >0. 

[R. N. 6J Non-Convexity. 
Here [R. N. 1] requires that P(x, y, z)+a!n-dMax,(Y-z, 0») is contin­
uous in y and z, and [R. N. 6J requires that any part of the function 
P(x, y, z)+a!n-dMax(v-z, 0)) is not convex in y. 

The cases with linear profit functions mentioned in the previous 
section satisfy the requirement [R. N. 1J because of the assumption 
of non-existence of constant costs. It must be noted, in addition, that 
all the requirements are satisfied in both of the following two cases; 

case A : returning (or disposal) is permitted and a 'C. a', 
case B : neither returning nor disposal is permitted. 

This can be shown as follows. 
Case A. The explicit form of one-stage profit function is as fol­

lows. When x:S;yCi, e., the case of ordering), 
(2.4) K(x, y, z)=pz-a(v-x)-b(y-z) 

= (p+b )z- (a+b )y+ax 
(2.5) M(x, y, z)=py-aCv-x)-c(z-y) 

= -cz+(p+c-a)y+ax 
and when x'C.y Ci. e., the case of returning or disposal, or we may say, 
the case of "negative ordering "), 

(2.6) K(x, y, z)=pz+a'(x-y)-b(y-z) 
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=(p+b)z-(a' +b)y+a'x 
(2.7) M(x, y, z)=py+a'(x-y)-c(z-y) 

= -cz+CP+c-a')y+a' x. 
That [R. 1. 1J""[R. 1. 5J are satisfied is obvious. From the as­

sumption a-:::'a', it can be seen that p+c-a~p+c-a'. Hence, [R. 1. 6J 
holds. 

It is also apparent that fleX) is a function of the form 

(2.8) ftCX)=Vl+{-a(Yl*-'X) (when x~y/) 
a'(x-Yl") (when X-:::'Yl*) 

where Vl is a certain constant and Yl* is the optimal starting stock 
when only one stage is considered. (Note that Min P(x, x, z) is less 

than Min P(x, Yl*, z) unless X=Yl*.) 
Now, suppose that 

f {
-a(Yn"l*-X) (when X~Yn-l*) 

(2.9) n-l(X)=Vn-l + '( *) (h *) a X-Yn-l W en X-:::'Yn-l 
where Yn-l* is the optimal starting stock for the first stage when n-1 
stages are allowod. Then. 

o {a (when X~Yn-l*) 
(2.10) a--;/n-l(X)= a' (when X-:::'Yn-l*). 

It is apparent that [R. N. 1J, [R. N. 3J and [R. N. 5.J hold. For [R. N. 
2J, since 

(2.11) 
o 

oz K(x, y, z)=p+b 

and 

(2.12) a-~-fn-l(Y-Z)= {-aa, 
oz -aa 

(when y-Z~yn-l*) 
(when Y-Z-:::'Yn-l*), 

thus [R. N. 2J holds. For [R. N. 4J, 

o {-(a'-tb) 
(2.13) -0- K(x, y, z)= ( b) 

y - a+ 
(when x-:::.y) 
(when x~y) 

and 

(2.14) o {aa (when Y-Z~Yn-l*) a--fn-l(Y-Z)= ay aa' (when Y-Z<Yn-l*). 
Hence, if -(a'+b)+aa<O, [R. N. 4J holds. It is, now, also clear that 
[R. N. 6J is satisfied. The solution j",.(x) is a function of the form 

( 2.15) f ()- {-aCY,,*-'X) (when x~y,,*) 
" x -V"+'( *' (h > *) a x-y" ) w en x_Y" 
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16 IDroshi Kasugai and Tadami Kasegai 

where Vn is a certain constant and Yn * is the optimal starting stock for 
the first stage when n stages of operations are considered. According 
to the mathematical induction mentioned above, it has been verified 
that an optimal non-randomized ordering policy for the first stage exists 
regardless of the number of stages considered, and, for n=l, 2, 3, ...... , 
the solutions are the functions of the form (2.15). 

Case B. The one-stage profit function of this case is all the 
same as that of the case A mentioned before when yzx. But it is im­
possible to let y:o:;x. 

It is apparent that there is a certain initial stock level Xl * which 
is "optimal" in the sense that 

(2.16) Min P(Xl*, Xl*, z»Min P(x, x, z) 
• • 

for any X such thal X""Xl*' It is also clear that, for X<Xb* 

(2.17) Min P(x, Xl*' z»Min P(x, x, z) 
z z 

and, for X>Xl*, 
(2.18) Min P(x, x, z»Min P(x, y, z) 

z 

where y> x. That [R. l. lJ'"'-'[R. l. 6J are satisfied is obvious and the 
proof is omitted here. The solution flex) is a function of the form 

(2.19) f ( ) {a(XI*-X) (when X:S::X1*) 
1 x =Vl- b(x-xl*) (when X2Xl*) 

where VI is a certain constant and the optimal starting stock is Y1 * =Xl * 

if X:S::Xl* and Yl*=X if X2Xl*' 
Now, suppose that 

( 20) -I" () {a(Xn-l*-X) 
2. )n-I X =Vn-l- b( _ *) 

X Xn-l 

(when X:S::Xn-l*) 

(when X2Xn-I*) 
where Vn-l is a certain constant and Xn-l * is the "optimal" initial stock 
for the first stage when n-1 stages are considered. It is apparent that 
[R. N. 1J, [R. N. 3J and [R. N. 5J are satisfied. That [R. N. 2J holds 
is verified because 

(2.21) 

and 

(2.22) aaafn_l(y-Z)={-ab (when y-zzx,,-.*) 
z -aa (when y-Z:S::Xr.-l*)' 

Further, 
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(2.23) -tyK(X, y, z:'=-(a+b) 

if and only if Y~x. (Note that it is impossible to be y<x.) And it is 
also easily seen that 

(2.24) a-?-!n-l(V-Z)= {aa (when Y-Z:S;Xn-l*) 
ay -ab (when Y-Z~Xn-I*). 

Hence, that [R. N. 4.J is satisfied had become clear. It is, now, also 
clear that [R. N. 6J is satisfied. 

Here, it must be noted, however, that the profit functions of these 
cases are linear in y, and not" strictly" concave. Thus the optimal stra­
tegy for the management is not unique although there is one optimal 
strategy which is pure. 

In the succeeding two sections, we will obtain the exact solutions 
for the cases discussed here. 

3. SOLUTION FOR THE CASE A 

Suppose that the profit function is given by (2.4)"'(2.7) and the 
demand Z in any stage will be any number in the closed interval [Zmin, 

Zmax]. By the previous discussion, it is apparent that 

(3.1) 

and 

(3.2) 

(p+b)Z,,-Jn+CZmax 
p+b+c 

(when X:S;Yl*) 

(when X~YI*). 
The explicit expression of VI in terms of p, a, a', b, C, Zmin and Zmax is, 
of cause obtainable, but it may be omitted here because it is not so 
important. 

Now, suppose that 

{ -a(Yn~l*-X) (3.3) !n-I(X)=Vn-l+ '( *) 
a X-Yn-l 

(when X:S;Yn-l*) 

(when X~Yn-l*). 
For the convenience of calculation, it is valid to consider 

(3.4) K(x, x, Zmin)+a!n-I(X-Zmln) 

in stead of K(x, y, Zmin)+a!n-I(Y-Zmin). (The reasoning will be easily 
found by examining the slope of the security level.) 

The explicit form of (3.4) is, for X-Zmln:S;Yn-I*, 

PZmln-b(x-Zmln) +avn-l--aaY-n-l* +aa(x-Zmln ) 
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18 Hiroshi Kasugai and Tadami Kasegai 

(3.5) = (p+b-aa)Zmin-(b-aa)x+av,,-I-aaYn-1 * 
and, for X-ZZYn-I*, 

(3.6) (p+b-aa')Zmin-(b-aa')x+avn-l-aaYn-I*. 
Consider, in addition, 

(3.7) M(x, x, Zml\x)+a!n-I(O) 

the explicit form of which is 
(3.8) (P+c)X-CZmax+avn-l-aaYn-1 *. 

When X=Zmin+Yn-I*, (3.5) and (3.6) are equal, but the slope of (3.5) and 
(3.6) are different. Hence, one and only one of (3.5) and (3.6) intersects 
(3.8). 

If we assume that (3.5) and (3.8) intersect, the x-coordinate of 
the intersection Xn * is 

(3.9) 
* (p+b-aa)Zmin+CZmax 

Xn = 
p+b+c-aa 

which is apparently not less than Xl*' It is worth noticing that, for a 
certain n, if (3.9) is valid, i. e., (3.5) and (3.8) intersect, the limitting 
solution x* as n-HX) is equal to (3.9) because Xr+l * - Zmin < Xr * and Xr * = 

Xn* for rZn. 
If we assume that (3.6) and (3.8) intersect, the x-coordinate of 

the intersection Xn * is 

(3.10) Xn*=--b-~--,((p+b-aa')Zmin+CZml\x+a(a-a')Xn-I*)' 
p+ +c-aa 

Thus, we can easily obtain, from (3.10), 

(3.11) 

For 

(3.12) 

* * aea-a') (* *) 
Xn+l -Xn = p+b+c-aa' Xn -Xn-l . 

0< aea-a') <1 
p+b+c-aa' 

the series (Xn) converges as n->oo The limit is easily found to be 

(3.13) x* = (p+b-aa')Zmln+CZmax 
p+b+c-aa 

(Note that, if a>a', (3.13) is less than (3.9).) However, it must be noted 
that, from (3.13), 

(3.14) X*-Zmin (a(a-a')-C)Zmin+CZmax <x* 
p+b+caa 

as cp+b-aa') > (a(a-a')-c). Hence, contrary to the assumption, (3.6) 
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does not intersect (3.8) when n-->oo. Thus, we can conclude 

(3.15) X* 
(p+b-aa)Zmln+CZmax 

p+b+c-aa 

19 

The series iYn *) of the optimal starting stock for the first stage when 
n stages are considered is all the same as iXn *). (The reason is easily 
seen by subtracting the cost a(Yn*-X) or adding the revenue a'(X-Yn*) 
and examining the slope of the security level.) 

For sufficiently large n, we can set 
(3.16) Vn+l=':-czmax + (P+c)x* +avn-aax* 

= -czmax+(p+c-aa)x* +avn. 
Hence, 

(3.17) Vn+l-Vn=a(lIn-Vn-a. 
If a=l, the series (vn ) approaches to a certain arithmetical series. For 
O<a<l, the series converges. Let v denote the limit of [vn ), then, from 
(3.16), 

(3.18) V= 1 ~ ((p+c--aa)x*-CZmax ). 
-a 

where x* is given by (3.15). 
Summarizing our conclusions in this section, the optimal starting 

stock for the first stage is given by 

(3.19) *_ (p+b)Zmin+CZmax 
Yl - p+b+c 

if only one stage is allowed to be considered. However, as the number 
of stages considered increases, the optimal starting stock for the first 
stage also gradually increases, and approaches to the limit y* such that 

(3.20) *- Cp+b-aa)Zmin+CZmax 
Y - p+b+c-aa-

The solution fn(x) is, for any n, the function of the form 

(3.21) fn(X)=vn+{-a(Yn*-X) (when X:S;Y*n) 
a'(x-Y*n) (when x:2:Y*n) 

and the series (vn ) also converges to a certain limit. 

4. SOLUTION FOR THE CASE B 

Consider the case B where neither returning nor disposal is per­
mitted. Here we can't reduce the stock except by selling the merchan­
dise to the customers. 
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From the discussion in the section 2, it is already clear that 

(4.1) 

(4.2) 

and 

(4.3) 

Now, suppose that 

(p+b )Zmln+CZmax 

p.+b+c 
(when X:O;;XI*) 

(when X:?:XI*) 

(when X:O;;XI) 

(when X:?:XI)' 

(4 4) f ( {a(Xn-I*-X) 
. n-I x) =Vn-I- b( _ *) 

X Xn-I 

(when X:O;;Xn-I*) 

(when X:?:Xn-I*) 

and consider, for the convenience of calculation, 
(4.5) K(x, x, Zmln)+a!n-I(X-Zmin) 

the explicit expression of which is, for X-Zmin:O;;Xn-t*, 

(4.6) (p+b-aa)Zmin-(b-aa)x+avn-I-aaxn-l* 

and, for X-Zmln:?:Xn-l* 

(4.7) (p+b+ab)zmin-(b+ab)x+avn-I +abxn-I*' 

Consider, in addition, 
(4.8) M(x, x, Zmax)+a!n-I(O) 

the explicit expression of which is 
(4.9) (p+c)x-czlUax+avn-1 -aaXn-I*' 

Again, it is apparent that one and only one of (4.6) and (4.7) intersects 
(4.9) by the similar reason to the previous case. 

Suppose, then, (4.6) intersects (4.9). The x-coordinate of the inter­
section is 

(4.10) xn*= (p+b-aa)Zmln+CZm • x 

p+b+c-aa 

which is apparently larger than XI*' If, for a certain n, (4.10) is valid, 
i. e., (4.6) intersects (4.9), the limitting solution as n-->oo is equal to 
(4.10) because x*r+1-Zmln<Xr* and Xr*=x*n for any r~n. 

Suppose, on the other hand, (4.7) intersects (4.9). Then, x-coordi­
nate of the intersection is given by 

(4.11) Xn*= p+b:c+ab ((p+b+ab)zmln+CZmax+a(a+b)xn-t*) 

Here, we can obtain 
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(4.12) Xn+l*-Xn* a(a+b) (* *) 
p+b+c+~rb Xn -Xn-l 

and it is clear that the series {Xn * I converges, because 
a(a+b) 

(4.13) O<P+b+c+ab <1. 

The limit x* is the solution of the equation 

(4.14) x* p+b:c+ab {cp+b+ab)zmin+Czml\x+a(a+b)x*l. 

Hence, 

(4.15) * (p+b+ab~zmln+CZml\x 
x = 

p+b-'t'c-aa 
which is larger than (4.10). However, x*-zmin<x*where x* is given by 
(4.15). Thus, contrary to the assumption, (4.7) does not intersect (4.9) 
when n is sufficiently large. We can conclude that the limitting solution 
is given by 

(4.16) X* = (p+b-aa)Zmln+CZm"" 
p+b+c-aa. 

Here, it must be noted that 

(4.17) * _ {Xn * Yn -
X 

and the limitting solution 

(4.18) {
x* 

Y'= x 

(when x~Xn*) 
(when x~xn *) 

(when x~x') 
(whenx~x*). 

The reason can be easily found by examining the security level. 
Now, for sufficiently large n, 

(4.19) vn~(P+c)x* -czm,.x+avn-l-aax* 
and we can see 

(4.20) Vn+1-vn=a(vn-Vn-l). 
Hence, if a=l, the series {vnl approaches to a certain arithmetical 
series. For 0< a< 1, the series {vnl converges to a limit v given by 

(4.21) V= 11 - {(p+c-aa)x*-czmaxl 
-a 

where x* is given by (4.16). The function fn(x) is of the form 

(4.22) r ()_ _ {a(Xn*-X) (when X~Xn*) 
.In X -Vn 

b(x-xn *) (when x~x*). 
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5. COMPARISON OF SOLUTIONS 

As was mentioned before, the case example ~we discussed in our 
previous papers [l1J [12J was the one under the conditions of a=a' and 
the demand interval [0, zm~x]. Hence, it is a special case of the one 
which we have analysed in the section 3 of the present article. In order 
to compare the solutions, it is interesting to set a=a' and Zmin=O in 
the solutions obtained in the section 3. 

Then, we obtain, from (3.19), 

(5.1) * CZmax YI =---~--
p+b+c, 

and, from, (3.20), 

(5.2) 
CZmax y* 

p+b+c-aa, 
which correspond to (1.5) and (1.6), respectively. From (3.18) and (3.19), 
the explicit expression of the limit v is obtained as 

(5.3) 
1 

v (I-a) (p+b+c-aa) ((p+c-aa)Cp+b-aa)Zmill+bcz1l1~x 1. 
Setting Zmin=O in (5.3) and substituting into (3.21), 

(5.4) I(x) = -bczm~x +{-a' (y*-x) 
(1-a) (p+b+c-aa) a(x-y*). 

Here, we obtain, for a=a', 

I(x) -bczm~x . ay*+ax 
(I-a) (p+b+c-aa) 

(5.5) =ax (a(l-a)+blczm l\x 

(l-a)cp+b+c-aa) 
where y* is given by (5.2). Note that (5.5) is the same solution as (1.8). 

Now. let us turn to the comparison of the case A and case B. 
First of all, it must be noted that we can find a corresponding property 
in the one-stage solutions of these two cases, i. e., the stock level given 
by the formula 

(5.6) (P + b )Zmin + CZml\X 

p+b+c 
has a critical meaning in both cases. In the case A, the optimal or­
dering policy is to adjust the stock level to Xl * given by (5.6), i. e., to 
order x*-x if x::S:;x* and to return (or dispose) X-XI* if x;;:::Xj*. In the 
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case B, the optimal ordering policy is to order Xl*-X if X~Xl* and not 
to order if X;:::::Xl*. For the limit, as 1/->00, of the 1/-stage solutions, the 
stock level given by 

(5.7) x*= (p+b-aa)Zmin+CZm~x 
p+b+c-aa 

has a critical meaning in both cases in the following sense. The optimal 
ordering policy for the case A is to order x*-x if x~x* and to return 
(or dispose) x-x* if x;::::: x'. On the other hand, the optimal ordering 
policy for the case B is to order x*-x if x~x* and not to order if 
x;:::::x*. The correspondence existing for any n is similarly clear. 

That the limitting solution in each cases satisfies the equation 
(Ll) will be also clear. This will be easily verified by substituting I(x) 
and y* in each case to the equation (1.1). 

6. NOTES ON PRACTICAL INTERPRETATIONS 

Two points must be noted here as to the interpretation of our 
study from the practical viewpoint. 

Firstly, the solution Yn * (or xn*) is, in any case, the optimal start­
ing (or initial) stock" for the first stage when n stages are allowed to 
be considered". It is the fundamental doctorine of our study and also 
of the dynamic programming approach pioneered by Richard Bellman 
and others to make decision for the present stage considering succeed­
ing stages. 

It seems for us, however, that many of the mathematicians who 
are interested in the theory of multi-stage decision processes lay too 
much stress on the limitting solution as n->oo because of the theoretical 
interest. From the point of view of practical businesses, on the other 
hand, it has little meaning to consider too many stages under the 
assumption of stationary conditions. Thus, we should like to suggest 
to pay more attention to the series Yl *, Y2 *, Y3 *, ...... (or the series xi, 
X2 *, X3 *, ...... ) with a clear recognition of the assumptions of the num­
ber of stages under consideration. The observed tendencies of the series 
will be suggestive in making practical decisions. 

Hence, such formulae as (3.1), (3.9) and (3.10) are particularly 
important in the case A, where Yl* is given by (3.1), and Yn* is given 
by either (3.9) or (3.10), especially by (3.9) for sufficiently large n. 
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(Note that, in case A, yli=x,,*.) 
Similarly, such formulae as (4.1), (4.10) and (4.11) are particularly 

important in the case B, where the critical stock level XI* is given by 
(4.1), and x,,* is given by either (4.10) or (4.11), especially by (4.10) 
for sufficiently large n. (Note that, in case B, y,,*=x,,* if x:::;;x,,*, and 
y,,*=x if x>x,,*.) 

The second point which we intend to emphasize is the relation of 
solutions to the assumption of demand interval [zm!n, zmax]. Under the 
assumption of identical demand interval [Zmin, zmaxJ (at any stage in 
future), the solutions have been obtained as was already shown. Thus, 
these solutions are particularly valid when the following conditions are 
satisfied; (1) the demand in one period (stage) cannot be less than Zmin, 

but can be Zmin, (2) the demand in one period (stage) cannot be more 
than Zmax, but can be Zmax, and (3) the probability distribution on Z in 
the interval [Zmin, ZmaxJ is completely unknown. The reason why such 
conditions as that "the demand can be Zmln" or "the demand can be 
zmax" are needed is that the least favourable probability distribution on 
z (the minimax strategy of the market) under the assumption is a cer­
tain two-point distribution on Zmln and Zmax. 

Unfortunately, the conditions are not always fully satisfied. In 
many practical cases, decision-makers may be too ignorant to assume Z 

to be a number in a closed interval [Zmln, zmax]. However, the solutions 
we have obtained have quite simple structures, i. e., the quantity given 
by (3.1) or (4.1) corresponds to the point which divides Zmin and Zmax 

internally by the ratio c : (p+b), and similarly the quantity given by 
(3.20) or (4.16) corresponds to the point which divides Zmln and Zmax 

internally by the ratio c : (p+b-aa). Thus, the solutions corresponding 
to various assumptions of the numbers Zmin and ZmRX can be instantly 
found, and the effect of the assumption [Zmin, zmaxJ on the solution is 
easily observed. Therefore, even if we are under the situation of nearly 
complete ignorance, we may be able to find our ways. On the other 
hand, if the decision-maker has any information about the probability 
distribution on z, our model is not adequate because, if it is applied to 
such cases, the information is ignored. For such cases, the stochastic 
models [6J [7J [9J [10J will be more suggestive. 
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7. NOTES ON OTHER CASES 

In this section, notes on several miscellaneous problems which 
have not been referred to in the above discussions will be given. 

In the case A, we assumed a?:.a'. Then, how about the case if we 
assume, on the contrary, a<a'? In such case, we cannot guarantee the 
concavity of the payoff function, and more complicated analyses will be 
required. However, the problem itself is quite nonsensical if a<a', 
because it may be the best policy "to buy more and still more and to 
return more and still more". The reason is that the returning is pro­
fitable in this case. Hence, we omitted the analysis of this case. 

In some cases which we have not mentioned, we often have to 
consider the existence of "constant costs" as to ordering, returning, 
shortage or storage. For example, an additional constant cost, such as 
the procedure cost, may be incurred beside the wholesale price multi­
plied by the quantity ordered. If such constant costs exist, the function 
P(x, y, z) is discontinuous and accordingly the problem is hard to be 
analysed. In order to find our way out of such difficulty, we may re­
construct the model as a finite game. 

Here, we can consider the multi-stage decision process of finite 
type which is closely relating to our study hitherto discussed. There is 
a payoff matrix [aiixo)] which is specified by the initial state Xo. A 
row and' a column must be chosen by the decision-maker and by the 
nature, respectively, and, for each pair of strategy choices i and j, the 
initial state Xl of the second stage is determined by a rule 1>, that is, 
Xl =1> (i, j). Hence, under the assumption of the maximin principle, our 
problem is to solve the functional equation of the form 

(7.1) !(Xo) =Val[ai/xo) +a!(1)(i, j))] 
where !(xo) is the total present value of payoff starting from initial 
state Xo and using the maximin principle in an unlimitted number of 
stages. The method of successive approximations is usable also in this 
case. Here, note that, if the decision··maker and the nature have m and 
n alternatives (strategies), respectively, it suffices for us to consider m 
n initial states (or at most mn+1 initial states). Hence, we have to 
consider mn (or at most mn+l) matrices simultaneously. One merit 
of such a finite type approach is the possibility of utilization of incom-
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piete information about the probability distribution on the state of the 
nature by analysing the problem as a constrained game. 
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