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The behavior of a line of cars is investigated by assuming indivi­
dual vehicle as a sampled-data control system, which might be used as 
a method of automatic controlling of vehicles in the future. The case of 
relative velocity control is worked out in this paper, and the system is 
found to be stable if two system parameters satisfy some inequality. 

INTRODUCTION 

Recently, theories and experiments on the traffic dynamics were 
developed at General Motors Corporation and at Kyoto Universitym-m_ 
In these theories, vehicles following each other on a highway without 
passing are considered as a linear array of idealized vehicls, each of 
which is assumed to move with acceleration proportional to the difference 
between its velocity and that of preceding one at the instant Ll see. 
Before, i. e., the velocity of the kth car, u,cCt) , is assumed to obey the 
following equation 

d 
Tdiuk(t)=Uk-l(t-Ll)-UkCt-Ll), k=l, 2, ... (1) 

where T and Ll are constants with the dimension of time, and the latter 
is the response time lag of the driver-car system. 

It might be supposed that the behavior of the actual line of vehi­
cles should be far different from the above model because of the in­
dividuality or characteristic of the drivers and the vehicles. However, 
Chandler et. al. Cl) discovered considerably good agreements between ex­
periments and the theory stated above, and could determine the mean 
value of T and of Ll with rather small variance. 

This fact means that the actual driver-vehicle system can be con­
sidered as an automatic control system with its velocity and that of 
its leading car as the output and input respectively, the block diagram 
of which is as shown in Fig. 1. The chain of vehicles is then consider-

114 

© 1958 The Operations Research Society of Japan



Traffic Dynamics: Analysis as Sampled-data Control Systemes 115 

ed as a set of these systems UK_,(s)+ EK(s) 

connected in cascade. 
In the future, if the 

vehicle should be controlled Ei'ig. 1. The block diagram of the kth 
automatically, the theory of diver-vehicle system. 
traffic dynamics will have more realistic importance, as vehicles will 
be controlled mechanically in accordance with some definite rule of 
motion, and the constants such as T and .d will be less ambiguous than 
those of present human-vehicle systems. 

There might be a number of rules for controlling vehicle speed, 
but one of the simplest rule of use is possibly the equation (1). The 
relative velocity is measured by means of the microwave or ultrasonic 
emitted at regular intervals, and the force proportional to the relative 
velocity is automatically applied to the vehicle. If the intervals between 
successive pulses are fairly short, the existing theories are applicable. 
On the other hand, however, if the intervals are long compared to the 
significant time constant of the system, this control system must be 
reconsidered rather distinctly, i. e., as a sampled-data control system. 
The anaysis of the latter case, especially the investigation of the stabili­
ty condition is the purpose of our paper. 

SAMPLED-DAT A CONTROL SYSTEM 

Let us consider the control system of the kth vehicle. The input 
and the output of the system are the velocities of the preceding vehicle, 
Uk-l(t), and own Uk(t), with Laplace transforms Uk- 1(S) and Uk(s) respec­
tively. The output is feeded back to the summing point and compared 
to the input, and the error ek(t)=uk-l(t)-ukCt) is used as the actuating 
signal, the Laplace transform of which is denoted by Ek(s). This 
continuous signal is sampled at regular intervals of time, every , sec. 
Therefore the sampler output e*kCt; is a train of regularly spaced unit 
impulses modulated by ek(t), viz. 

~ 

e*k(t) = ~ ek(nr)iJ(t-n,) 
n=O 

(2) 

where iJ(t-n,) is the well known delta function or impulse function oc­
curring at t=n" and the Laplace transform of (2) is given by 
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"" Ek*(S)= ~ ek(m)e-n.· (3) 
n=O 

For this trains of pulses can be used to control the output of the 
whole system, the high frequency components introduced by the sampler 
must be removed before the signal reaches the output. A large portion 
of the required smoothing is usually accomplished by the mechanical 
components in the system, but in many cases more complete filtering is 
accomplished by introducting an additional circuit. 

One of the simplest filtering circuit is the holding circuit, in which 
the value of sampling pulse is held until the arrival of the next pulse. 
The transfer function of this filter is given by 

l-e-" 
GH(s)=--- (4) 

S ' 

and, for convenience, this circuit is introduced in our system as shown 
in Fig. 2. 

Next, the signal is usually transported with time lag Ll, more or 
less, and this effect is expressed by inserting the transfer function GL(s), 

GL (s)=e-J8 • (5) 

Finally, the transfer function of the control circuit is 
1 

Go(S) = TS' (6) 

where T is a time constant. 

Fig. 2. The block diagram of the kth sampled-data 
control system. 

The over-all system is visualized by the block diagram shown in Fig. 2. 
If the time solutions are to be described only at the sampling 

instants, the z-transform method is much of use(8l. 
Generally, the z-transform F(z) of a time function ICt) is a gene­

rating function of its sampled data I(n'r), and is defined as 
00 

F(z)= ~/Cm)z-n. (7) 
n-O 

For example, Ek(z), the z-transform of e/c(t), is nothing but the formula 
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(3) with eT8 replaced by z. 
Let the z-transforms corresponding to Uk-1(S), Uk(s) and G(s)= 

GH(S)GL(s)GO(s) be Uk-1(Z), U",(z) and G(z) respectively. Then the out­
put is found to be related to the input by the following formura: 

G(z) 
Uk(z) = l+G(z) UI- 1(Z), k=l, 2, (8) 

where zero initial conditions are assumed, and G(z) can be derived if 
we apply the z-transformation on the inverse Laplace transform of G(s); 
and is expressed as 

G(z)= i; [}_r+io'G(S)etsds] z-n 
n=O 27rZJc-lo) t=nt' 

(r-L1')z+L1' 
Tzn+J(z-l) (9 ) 

with L1=nr+L1', O:C;L1'<r, n=O, 1,2, ... 

CRITERION FOR STABILITY 

The closed-loop system shown in Fig. 2. is stable if the denomi­
nator of (8) possesses no zeros outside the unit circle, I z I = 1. 

Denoting 

,}=p, ~=A=np+X with Os,).'<p 

we have the characteristic equation 
p(z)=zn+J(z-l)+ (p-).')z+).'=O, 

(10) 

(11) 
and the stability condition for A~p is easily derived because (11), quad­
ratic in z for n=O, has no roots outside the unit circle if I P(O) I <1, 
P(l) >0 and P( -1) >0. Thus the criterion for stability is 

{

A<l, 
when A:C;P, 

p<20+1). 

(12a) 

(12b) 

The A> P case is somewhat complicated to be analyzed, and for practical 
purpose, it might be sufficient to know the criterion only for A=np, n=l, 
2, .... Therefore only this special case will be investigated. 

If we introduce " 
1 ,=-z 

the required condition is that the equation 

(13) 
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l-'+pCn+l=O (14) 
has no roots inside the unit circle, I C I = 1, and the method similar to 
that of SatcheC9JCIO) is successfully applied to obtain this condition. 

Plot two functions 

and 
I(O=pcn+1 
g(0=C-1 

(15) 

in the complex plane for C tracing the contour I C I =1. If the vector 
I(O-g(O does not make complete rotations around the origine, there 
are no roots inside the unit circle. 

Fig. 3. illustrates the con­
tours of 1(0 and g(C). The 
angles cp and cP in this figure 
are 

p2 _PJl- 4 cp=tan L __ _ 
pZ 

l--Z- (16) 

cjJ=tan-J2J~-_~2 
--~ ---

-p 
respectively, and the rule 
stated above requires that 

-1 

the representative point of Fig. 3. Paths of fer:.) and get:.) 

1(0 starting from the point in the complex plane. 

(p, O)must not reach the intersection point Q, before the representative 
point of gCO reach this point, namely, 

(n+1)cp<cjJ. (17) 
This formula together with (16) yields, for example 

and 

p<l as ).=p, 
VS--1 

p<--- as ).=2p, 

IT 
p<--

2 

2 (11') 

as p->-O and n->-oo, with finite ).=np, which is the condition for the case 
of continuous control, already pointed out by Herman et. al. (2) and 
Kometani and Sakaki (5)C6) independently with each other. 
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These criteria are shown in Fig. 4. If the set of parameters 1 and 
p is inside the domain enclosed by dotted lines and coordinate axes, the 
system is stable, viz., the system output is damping with or without 
oscillation. 

The condition (17) is more readily obtained by the following 
intuitive method. Inserting 

'=pei~ 

into the characteristic equation (14), we get 

{
1- p cos cp+ ppn+l cos (n+ l)cp=O 
-p sin cp+ppn+l sin (n+l)cp=O 

(18) 

(19) 

and the same condition as (17) is easily derived if we take the limit 
p-l, and eliminate cp from these two equations. 

CRITERTION FOR DAMPING WITHOUT OSCILLATION 

The above method can be used to determine the condition for 
critical damping. From the equation (19), after, taking the limit cp-O 
and eliminating p from these formulae, we get the condition for critical 
damping 

p=l(~l~)n+l 
n n+l 

and the response of the system to a stimulus dies down without any 
oscillations if the stimulus is removed, when the next inequality is 
satisfied by the system: 

II~- _.- as l=nll 1 ( n )n+l 
r-n n+l' r> (20) 

n=l, 2, ... 

If p-O, and n-oo with finite l=np, this condition approaches the known 
result(2)(5) (6) 

p~e-l. (20') 
As to the l~p case, the characteristic equation (11) is quadratic 

in z, and its roots are real and positive when 
p<I-2,11 +1 as l~p (21) 

Namely, (21) is the required condition for l~p. The domain enclosed 
by the solid line and the coordinate axes in Fig. 4 corresponds to in­
equalities (20)and (21). 
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CRITERION FOR ASYMPTOTIC STABILITY 

If the velocity of the leading vehicle deviates from the normal 
value, the fluctuation propagates down the chain with increasing or de­
creasing amplitudes. When the line of vehicles is fairly long, this fluctu­
ation must not grow as it propagates down the line, and in such a case, 
rather severe condition, named the condition for asymptotic stability(lJ, 
must be fulfilled by the control systems. 

This condition is written as 

(22) 

for 

As before, the cases of J..-;;;;'p and J..> p will be treated separately. 
If J..-:::;'p, (22) becomes 

I (p-J..)z+J.. I < I zL(I+J..-p)z+J.. I , 

or 1 + 2J.. _ > J.. 1-cos 2w!" 
PI-cos w!" 

(23) 

The right hand side has a maximum value 4J.. as w~O, therefore J.. must 
satisty the inequality, 

p<I-2J.. as J..-:::;'p (24) 

in order that the relation (23) is held for any value of w. 

When J..=np, n=I, 2, ... , (22) is written as 

p< I zn(z-I)+p I 

or 1 cos nw!"-cos(n+I)w!" --> J..=np 
p I-cos w!" ' 

(25) 

and the required condition is 

1 
P<2n+i=1-2J.. as J..=np (26) 

n=I,2, 
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because the maximum value of the right hand side of the inequality(25) 
is 2n+1. This condition is held in the limit of p~O and n~oo with finite 
).=np, which coincides the known 
result also<O. 

The condition for asymptotic 
stability is shown by the interior 
of the dashed line in Fig. 4. If we 
have a glance at this figure, we 
can conclude that the condition for 
damping output is most weak, that 
for asymptotic stability is the next, 
and the condition for damping with­
out oscillation is the most strong 
limitation of all. Therefore, if the 
condition for nonoscillatory and 
damping, (20) or (21), is satisfied 

A-
Te /2 
3/2 ". 

"-­
"''--':~\, 

: 
L--------------------------------------.7 

/,,// 

,,"/// 

/ ,../ 

{/// 3 
4 J.l 

Fig. 4. Graphical representation of 
the conditions necessary for 
the system. 

by the system, it is stable in any way, i. e., the vehicle can safely follow 
the leading car. 

MOVEMENT OF THE KTH VEHICLE 

Given the motion of the leading vehicle, we can easily obtain the 
expression for the velocity of the kth vehicle, Uk(t), by means of the 
inverse z-transformation. For example, let us consider a line of cars 
initially at rest, supposing the controlling system of individual vehicle is 
free of response lag, L1 =0, and supposing the sampling instants of every 
systems are perfectly coincide, though the latter is by no means prac­
tical assumption. 

If the leading vehicle starts at t=o (assumed O<o::;r), with a 
velocity of step function type, the z-transform of the velocity of the 
kth vehicle is given by 

where 

Uk(Z)=[-_p ___ ]A'UO(Z), k=l, 2, .,. 
z-(l-p) 

1 Uo(z)=--, 
z-l 

(27) 

(28) 
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and the relative velocity Vk(z) is 

Vk(z) = Uk-1(Z) - Uk(z) 

_1[ p J!: -p z-(l-p) 

pk-1 00 (n-l)! 1 
=(k-1) f ~k (n~k5!(l- p)n-kz;; . 

Therefore the inverse z-tranform of Vk(z) is found to be 

Uk- 1 (m-) - Uk(m-) 

(k-l)! (1 )n-k k-l 

_f(n~l)T(n-=-k)! -p p 

-10 
and finally we get 

f k (n-l)! . 1- ~· ______ (l_p)n-mpn-l n>k 
Uk(m-)= l 0 m~1(n-m)!(m-1)! ' 

n~k-1 

for k=l, 2, ... 

(29) 

(30) 

(31) 

If the sampling period T is extremely short, i. e. p-+O and n-+oo 

with finite np=t/T, the above expression goes over to 

le e-~ (t )m-l 
uk(t)=l-~1(m--1)! T k=1,2, ... (31') 

which is just the same formula already given by Pipes(lll. 

The formula (31) tells us only 
the values of the output at discrete 
sampling instants. The behavior of 
Uk(t) between sampling instants, how­
ever, is easily found to be linear in 
t, as the acceleration of a vehicle in 
the chain is constant between succes­
sive sampling instants. In Fig. 5, the 

1 
curves of several UkS for p= 2- are 

plotted together with the corres-

u,(t) 

----------

4 tiT 

Fig. 5. Uk(t) for several values of 
k. The solid lines represent p= 
1/2 case and the dotted lines are 
corresponding curves for p=O 
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ponding curves of the continuous-control-case investigated by Pipes. 
For completion of our present study, it :is necessary to analyze 

separation distances between cars, the criterion for the local stability 
and so on. Similar discussions with those in the previous sections can 
be also carried out as to the case of other rules for controlling cars, for 
instance, constant speacing and California Code control case Cll • Such 
investigations are now being prepared, and will appear in future publica­
tions. 
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