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1. INTRODUCTION. 

The dynamic linear problem, consisting in optimizing the cost (or 
measure of effectiveness) over some time period, consists of a sequential 
set of static problems which have nearly the same structures each other. 

Applying the standard linear programming technique to such a 
dynamic linear problem without noticing the above feature, the problem be­
comes an in hi bitingly large linear programming problem, and this situa­
tion is not desirable in view of the difficulties of computations, and the 
necessity of higher accuracy of computational results, etc. 

On the other hand, if we notice the above feature of dynamic pro­
blem, and if we solve the problem following to some suitable sequential 
process, it is only necessary to solve many smaller, but nearly same 
structural linear programming problems, and the faults described above 
could be removed. A typical type of these sequential processes is the 
Bellman's dynamic programming, and the other typical one is the 
Danzig's dynamic linear programming method. (2) Although they are 
excellent general methods, there are some difficulties in application to 
the practical problems. That is, in Bellman's dynamic programming, 
the complexity of each static problem is an essential difficulty in 
computations, and it is necessary to invent some devices suitable to the 
problem in the Danzig's method. 

In this paper we will describe a more natural computational method 
(one type of relaxation method) and its numerical examples, and we 
will touch on the extensions of the basic concepts of this method. 
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2. REDUCTION OF A DYNAMIC PROBLEM TO A MULTI· 
STAGE DECISION PROCESS (OR A GENERALIZED 
VARIATIONAL PROBLEM). 

We define a multi-stage decision process (problem) as follows: 
1) It includes decisions (variables) and states(variables), as shown in Fig. 

1., and the relations 

~: ~:i~::~:n (1) 

F, F, F, F, 

~!W4l+-= 
So S. S, S, S, 

L-l 1 ~ 1 o 1 2 4 
hold, 

2) the cost (measure of opti-
mization) of it is separable: Fig. 1. 

F=Fj(So, Xl, SI)+P2(Sl, X 2, S2)+·····, (2) 

and 
3) the constraints are also separable: 

~:i~::;:: ~:~~ ~ 1 (3) 

Where, Si describes a set of states at the i-th "time" (It is not 
necessary "time" is time. It is sufficient "time" is only an order number 
of the sequential state.), Xi, a set of decisions at the i-th stage, res­
pectively. Dynamic programming is applicable to such multi-stage decision 
problems. Then it is necessary to transform a given problem to a pro­
blem which satisfies the conditions (1), (2), and (3) by introduction of 
an adequate set of decisions and states, in order to be able to apply the 
dynamic programming concept. 

Particularly, if we assume the linearities in conditions (1), (2), and 
(3), the problem becomes a linear programming problem, and its stru­
cture is represented by the coefficients matrix form of the following 
equations (3'): 

~:i~::~::~::~:i:~ ) (3') 

Where, ).1, ).2··· .. · are slack va:riables. 
Then, let us discuss the characteristics of the dynamic problems 
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owing to this coefficients matrix (technology matrix) form. These discus­
sions come largely from Danzig's paper. (2) 

Formulating a dynamic problem (or a sequential problem) by linear 
programming, its coefficients 
matrix or technology matrix is 
generally a block triangular one. 

For example, Fig. 2. shows 
the matrix of 4-stages case. Where, 2 

Aij is the sub-matrix which shows 
the effects of the j-th stage varia- 3 

bles onto the i-th stage constraints. 
If only the matrices A 1l , A 22 , 

A 33 , A44 in diagonal parts are not 
zero matrices and others are zero 
matrices, no relations exist betwe­
en the stages. It shows a set of 
four independent static problems. 
Then not all the matrices A 2b A 32 , 

A43 are zero in dynamic problem. 
(See Fig. 3) 

Fig. 4 shows the case in 
which only two variables are in 
common in the constraints of the 
neighboring two stages. If these 
common variables were fixed con­
stant, the matrix which represents 
the structure of the problem 
would be reduced to the matrix 

2 
of a set of the independent 
static problems. 3 

This means that we can 4 

divide the over-all problem to 

4 
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Fig. 4. 

many smaller problems by considering such variables as parameters. Such 
common variables are states (variables), and the remaining variables 
are decisions (variables). Number of these common variables or states 
variables becomes larger according to the higher dimensional system 
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and to the system including the time lag and acceleration effects. Then, 
at last, the matrix may become I 

(~ such as Fig. 5. In this case, it 
is necessary to consider two 
stages as one stage in the new 
problem in order to reduce the 
problem to a multistage deci­
sion process. 

Because the fewer states 

2 

3 

4 

5 

6 

are in a stage, the more easily Fig. 5. 

the problem is dealt with, the central problem is how to obtain the more 
loosely-coupled matrix by the introduction of the suitable states and 
decisions. 

3. ARBITRARINESS OF THE CHOICES 
OF STATES AND DECISIONS. 

In Fig. 5 case, it was necessary to take two stages in the old pro­
blem as one stage in the new problem in order' to reduce the problem 
to a multi-stage decision process. 

Let us call the variables which the constraints of a stage and the 
constraints of the next stage have in common as the coupling variables. 
We designate the number of the coupling variables, the states, the deci­
sions and the all variables of one stage, ne, n., nd, and n, respectively. 

If 
(K-l)n <: lie <: Kn, (4) 

then it is necessary to take at least K stages in the old problem as one 
stage in the new problem in order to reduce the problem to a multi­
stage decision process. If we take K 
stages as one stage in the new phase, 
under the condition K 2: 2, the rela- <I i'm:777:'*"""",.".,j----;-----j---+--___j 

" tion 
nd ::;; n.( =nc) (5) 

exists. The equality is valid only 
when ne=n, that is, Fig. 6 case. 

The fewer states are in a stage, 
the more effective a multi-stage deci-

~~~~~~""~--.--+---+-----j 

Fig. 6. 
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sion process is. That is, it is more effective when applied to the problem 
which has the week couplings between the stages. Moreover, when the 
couplings are stronger, the classifications of the states and the decisions 
are more and more artificial, and there are no physical differences 
between them at all. 

In this situation, the application of the following relaxation 
method, based on a standpoint of taking K stages as one stage in the 
new problem only from the view point of the division of the variables 
(not necessarily from the view point of the division of the constraints), is 
more systematic and more effective sometimes in the stronger coupling 
problems. 

Let us consider the Fig. 5 case, for example. We take the combi­
nation of the I-st and the 2-nd stages in the old problem as the I-stage, 
the combination of the 3-rd and the 4-th as the II-stage, and the combi­
nation of the 5-th and the 6-th as the Ill-stage, respectively, in the new 
division of the variables. See Fig. 5. 

We assume that a multi-stage decision process MJ which has the 
variables of the odd stages (the 1-, the Ill-stages) as its decisions and 
the variables of the even stage (the II-stage) as its states, the another 
multi-stage decision process M2 , which has the variables of the even stage 
as its decisions and the variables of the odd stages as its states. 

First, from a standpoint of MJ , the decisions of the I-stage are 
determined independently of the Ill-stage decisions, preserving the vari­
ables of the II-stage (states) constant, Next, from a standpoint of M 2 , 

the decisions of the II-stage are determined, preserving the variables of 
the 1- and Ill-stages constant (using the newest informations). In the 
next place, from a standpoint of MJ again, the decisions of the Ill-stage 
are determined, preserving the variables of the II-stage constant. This 
processes are repeated again and again. 

In this method, two kinds of multi-stage decision processes are used 
alternately, and corresponding to the kind of multi-stage decision 
process the variables of a stage are regarded as the decisions, and also 
as the states in the another one. 

We should bear in mind that the division of the constraints do not 
necessarily correspond to the division of the variables. For example, in 
the above case, from a standpoint of M1, the decisions of the I-stage 
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are the variables of the I-st and the 2-nd stages of the old problem, 
but the constraints to these decisions are the constraints of the I-st, 
2-nd, 3-rd and 4-th stages of the old problem. 

This method is a relaxation method, and similar to the over­
lapping method described in the following paragraph. 

4. OVERLAPPING METHOD AND ITS AVAILABILITIES. 

Although this method is applicable both to the multi-stage decision 
processes (paragraph 2.) and its extensions (paragraph 3.), we shall ill­
ustrate it with respect only to the former. 

4-1. ONE FORM OF OVERLAPPING METHOD. 

If a problem is reduced to a multi-stage decision process, the rela­
tions between decisions and states are shown in Fig. 1, as already 
described. 

Now, we take the successive approximations due to overlapping as 
follows: 

The initial estimates of states are 50
CO), 51(0), 52(0), 53(0), ......• 

( i) The two-stages optimization problem of which boundary con-
ditions are 50=50

co>, 52 =52 (0), is 
solved. The solution determines 
51=51(1). See Fig. 7. 

(ii) The two-stages opti­
mization problem of which boun­
dary conditions are 51 =51 (1), 53 

(1) (1) (1) (1) (1) (1) 
S. 82 S. S. SN-2 SN-1 

V',~~~ ~~~-
(0) (0) (0) (0) (0) (0) (0) (0) 
So 8. S2 S, S. SN-2 SN-1 SN 
0----t-+--*3 --+;i----;N'."--'--;2"N"-'---' l.----1N 

Fig. 7. 

=53(°>, is solved. The solution determines 52=52 (1). See Fig. 7. 
(iii) The two-stages optimization problem of which boundary 

conditions are 52 =52(1), 54=54(°\ is solved. The solution determines 53= 
5 3(1). See Fig. 7. 

The similar step, that is, solving the two-stages optimization pro­
blem using the newest 5 informations as its boundaries, and then 
moving one stage to the right, is repeated until getting 5N (1). Next, 
again back to the initial two-stages optimization problem. These approxi­
mation steps continue until all 5 i have converged. 

For the problems having free end states conditions, many modi­
fications are possible. For example, modifying the end states 5N 
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gradually, taking a particular sub-problem of which boundary conditions 
are SN-l =SN-l (n) without SN=SNln), etc. 

The validity of this method is proved as follows. We consider a 
maximization problem, and we suppose the uniqueness of the solution 
for simplicity. 

(1) Each step of "overlapping" (solving the two-stages linear pro­
gramming) has monotone increasing property. From this property and 
the boundedness of the problem, it is clear to converge to some states. 

(2) We assume that So(l) is a series of states or a set of argu­
ment functions converged by overlapping method, and OSi,m(t) is a set 
of variational functions which are zero before the i-th "time" and after 
the i+2-th "time". 

Then, general argument functions are expressed by 
N-2 

S(t) =Soct) + ~ OSi,i+2 
i~O 

Because the cost is linear with respect to decisions, and the rela­
tions between decisions and states are linear, 

N-2 

cost (S(t)) =cost(So(t)) + ~ cost (OSi,i+2(t) ) 
i~O 

Now, the following conditions hold: 
coSt(OSi,i+2(t));;;;;; 0 Ci=O, 1, "', N-2). 

For if any cost (OSi,i+2) were positive, the overlapping method would 
have not yet converged. 

From (1) and (2), the optimality of So(t) has been proved. 
There are many types of overlapping method which vary due to 

the number of stages of the sub-optimizing problems, the order of over­
lapping (Non systematic overlapping is a general relaxation method for 
optimization problems.), etc. We can reduce the number of sub­
optimizing problems if we increase the number of stages of each sub­
optimizing problem. The same proof is established for the extension of 
the multi-stage decision process(See paragraph 3.). 

4-2. EFFECTIVENESS OF OVERLAPPING METHOD . ........ . 
APPLICATIONS OF PARAMETRIC LINEAR PROGRAMMING. 

There are so many dynamic problems each of which consists of 
a sequence of the static problems. Although these static problems have 
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nearly same structures each other, their envoirments are different. If 
these envoirments vary not suddenly but slowly, according to the 
progress of the" time" sequence, a sub-optimization problem is easily 
solved from the solution of the neigh boring sub-optimization problem 
by the parametric linear programming technique. 

Then, making an extreme argument, we shall be able to say the 
complicated computations of the linear programming are necessary only 
for the initial sub-optimization problem only once, and others can 
be solved easily depending on this solution or on the solution of the 
neigh boring problem. 

After having solved the all sub-optimization problems once for 
each, we can take the newest matrix as its start point for solving a sub­
optimization problem. 

4-3. DETERMINATION OF THE MOST DESIRABLE 
INITIAL STATES So. 

In the ordinary variational problems, the fixed terminal conditions, 
that is, fixed initial and end states are usually given as their boundary 
conditions. However we can not confine the practical dynamic proble­
ms within the fixed terminal conditions type. There are cases which 
have the free end states, which should be chosen the best values of the 
initial states, and so on. 

One of the most typical conditions of the non-fixed terminals 
problems will be the de terminations of the most desirable initial and 
end states when the same dynamic problems are repeated cyclically in 
T interval period. 

For such determinations, the overlapping method determines auto-
matically the most desira­
ble initial (and end) states 
So by continuing the over­
lapping endlessly, as shown 
in Fig. 8. 

This is one of the 
remarkable features of the 
overlapping method. 

I~~ 11 I I~t I 

L1~:t= l:LCti= 
o 1 2 3 N 2 N 1 N-O 1 2 : ' 

:!<-, -------T 

0: the first estimation 
x : the second approximations 
f'c,: the third approximations 

Fig. 8. 

T--
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4-4. INITIAL ESTIMATIONS. 

We must give the initial estimations of the states at each" time" 
So'<O), SI(O), ... , SN(O), in the overlapping method. 

These initial estimations are not entirely arbitrary, and have to be 
consistent with all the constraints. Usually, we can find such estimations 
easily, because in many problems we have known the "approximate" 
solution. (It is sufficient to know only the "states" approximation.) 

However, we shall require some suitable techniques for the pro­
blems which have the complicated constraints and have not been known 
their appearances at all. 

One of the powerful methods for these situations is the relaxation 
of the constraints. That is, at first, establishing the initial estimations, 
we then alter the given problem to a new one of which constraints are 
consistent with the initial estimations. After solving it, we back its 
constraints to the proper constraints gradually. The parametric linear 
programming techniques are also effective means in this phase. 

5. ITERATIVE METHOD FOR A SET OF THE 
ALMOST SAME STRUCTURAL PROBLEMS. 

Let us consider the following constraint: 
ajIXI+aj2X2+······+ajnXn=bj 

If we express ajl, aj2, ... , as 
ajl =ajl + Jajl } 

aj~.~~:~~.~~.j.2. 
ajn=ajn+Jajn 

equation (6) becomes 
ajlXI +aj2X2+··· +ajnXn=bj-(JajIX\ + Jaj2 X 2 + ... 

+···+JajnXn) 

(6) 

(7) 

(8) 
Generally speaking, if Jaji (i=l, 2, 3, ... , n) are sufficient small com­
pared with aji (i=1, 2, 3, ... , n), it will be possible to solve the problem 
by an iterative method in which at first we give the adequate initial 
estimates to Xi (i=l, 2, 3, ... , n) in the bracket of the right hand side 
of (8) and solve the problem regarding the right hand side of (8) con­
stant, and next, substituting the new solution Xi into the bracket of the 
right hand side of (8) we solve again the problem regarding the 
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right hand side constant, and this process is repeated until getting the 
convergent Xi. 

However, in general, if iJaji are comparable with aji, or if the 
initial estimates of Xi deviate from the true answers of Xi very much, 
this method may be incorrect. However, in our overlapping method, the 
above iterative method is always correct, however large iJaji are, or 
whatever values Xi take. 

For we suppose that the initial estimation of each SUb-optimization 
problem is a feasible solution of it, and each sub-optimization problem 
in the following overlapping steps has at least one feasible solution of 
it certainly. 

This iterative method is easily carried out by parametric linear 
programming techniques, and it is effetive when 

C i) all the static problems constituting a dynamic problem have 
the nearly same but slightly different structures, or when 

C ii ) aji are nearly equal to the simple integers, and if we take 
these integers as the coefficients of the technology matrix 
instead of ajl themselves, the computations of the linear 
programming is simplified very much. For example, if we 
can approximate the technology matrix by a matrix of which 
coefficients are 0, + 1, and --1, its effectiveness is remarkable. 

6. EXAMPLES. 

Example I. 
Let us consider a power system in which three hydroplants, flow­

-interconnected on a stream, and an integrated thermal system supply 
the power to a lumped load. See Fig. 9. 

Our problem is the minimization of the total fuel cost over a day: 

Min.~~F dt 

where, F is the fuel cost per unit time of the thermal system. 
Characteristics and constraints of the system: 

Cl) Load PRCt) is shown in Fig. 10, and the following relation 
must be satisfied: 

3 

PRCt) =G(t) + L PiU). (MW) 
!~1 
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Thermal System 
,J, 

Load P. 

-- : The water flow paths. 

: The electric power flow paths. 

Fig. 9. 

Where, G is the thermal output (MW), and Pi is the i-th 
hydroplant output (MW). 

( 2) Characteristics and constraints of the hydro-plants: 
Pi = (JiQi, 

where, Q is the discharge flow into the hydroturbine (m3/sec), 
and (J is a constant. 

Qi,min S Q(t) ~ Qi,max 

Si,min ~ Sct) ~ Si,ml\x 

Where, Si is the water storage of the pond of the No. i-hydro­
plant (m3). 

There are the relations between Si and Qi as follows: 
Ql Ct) +dS/dtCt) = fCt) 
Qi(t) +dS/dtCt) = fiCt) + Qi-1(t). Ci=2, 3.) 

We have neglected the time-lag of flows for simplicity. 
( 3) Constraints and fuel cost characteristics of the thermal 

system. 
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Gmin ::; G(t) ::; Gmax 

The fuel cost per unit time F is a monotone increasing 
no nlinear function of the themal output G. 

In order to be able to apply the linear programming to this pro­
blem, there are two methods, one of which is to approximate F a 
broken line convex function of G, and the other method is a parametric 
linear programming in which we use the average CdF/dG) (t) in some 
small domain, and alter the domain and CdF/dG) (t) successively. 

(MW) 

300 

(0) 
(t) 

P r---, 200 I .J ~ ___ r-
r--- --~ ... _-

__ .J 

100 

(0) 
G.(t) : initial estimation of G (t). 

G (I) : The last result of G (t) . 

20 

(t) 

--, 
I 
I 
I 
I 

0·~~--~2--*--+4~5--1i~7r-~8r-~9r-71~0-71~1-71~2-­

time (Z-hours) 

Fig. 10. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



110 Takeshi Fukao 

We will adopt the latter method. In this case, the above constraint 
becomes 

Max [Gmin, GCt)-LlG] ::s; GCt) :::::; Min [Gml\x, GCt)+LlG], 
where, GCt) is the solution of the just before iterative linear pro­

gramming problem, and LlG is the admissible amplitude of fluctuations 
for the new problem. 

This problem is an exceedingly typical variational problem, be­
cause the time-lag effects of flows are not included. and, reduces to a 
multi-stage decision process if we suppose that Qi are decisions and Si 

arestates. 
The overlapping method can be very easily applied to this process, 

and the results from it are shown in Fig. ID, and in Fig. 11. 
Fig. 11 shows the situa-

tion of the cost reduction. The 
"0 "-position in Fig. 11 means 
the cost of the initial estima­
tion, and the "1 "-position 
means the cost of the result 
of an application of a set of 
overlappings continued succes­
sively from the initial time to 
end time. Repeating the sets 
of overlappings processes, the 
the cost converges to the "3" 

12.2 

~ 12.1 

~ 
's 
~ 12.0 
U 

11. 

o 

-position by way of "2". 11·!S,\-o--t---Ir----.r--t----fo---Ir--Ir--+---->. 

The difference of the 
costs of " 2 " and" 3" positions Fig. 11. 

is very small, and then wa may say that the cost will almost converge 
by only two iterations of the sets of overlappings. 

Therefore, if we start from the" 2 "-position using the average 
CdF/dG) Ct) calculated at" 2 "-position and LlG=lO MW, the cost dec­
reases to the" 3 "-position by an application of the overlapping method. 
Repeating one more set of overlappings, the cost further reduces to 
"4". Again, CdFjdG) Ct) is recalculated at there, and so on. 

Example Il. 
There are many dynamic problems which have the following 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Computational Method for Dynamic Linear Programming 111 

structures: 

[
; A ]. [:~~]~[:~] 
BB A Xa ba 
C cc· b4 

(9) 

For example, these are the bottle-neck problems, the expanding instal­
lation system problems, etc. A, B, C are matrices, and we suppose the 
elements of each row of C have the same signs. Then, if we introduce 
the variables SI, S2, S3, St', S2', Sa', 

SI=AXl 

S2=BXl +AX2 
Sa=BXl +BX2+AXa 

St'=CtXl 
S2' =CI X l +- C2X 2 

Sa' = Cl XI +-C2X 2 +-C3X 3 , 

equations (9) are transformed into 

(Xl SI_51' X 2 52 52' j ~3 __ S3 53') 

/ 

A -/ 
C -/ 

i 
1 ~ b2 

.B-A / A -/ =0 
/ C -/ =0 

/ ~ ba 
B-A 1 A -/ =0 

11 C _11, =0 
! 

I I ~ b
4 

__ I 

(10) 

(11) 

(12) 

We may suppose for example, (Xl, SI, 5/), (Xa, Sa, 53') are deci­
:sions, and (X2, 52, S2') are states, when we wish to deal with this pro­
blem as a multi-stage decision process. (Formally, we may introduce (Xo 
=0, So=O, 50'=0) as the states.) 

When we wish to deal with this problem by the relaxation method 
_already decsribed in paragraph 3 (an extension of the multi-stage deci­
.sion process), we may make eXI, SI, St'), (X2, S2, S2') and eX a, Sa, Sa'), 
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the I-stage variables, the I1-stage variables and the Ill-stage variables, 
and we may use the two kinds of the multi-stage decision processes 
alternately. 

7. BASIC CONCEPTS OF THE METHOD AND 
POSSIBILITIES OF THEIR EXTENSIONS. 

The multi-stage decision problem described in paragraph 2 can be 
reduced to a problem which includes only the decisions X!, X 2 , . ", or a 
problem which includes only the states SI, S2,"', if So are given. 

It may appear that the treatment of a dynamic problem by a 
multi-stage decision process is wasteful from a standpoint of reducing 
the size of the over-all problem. 

However, it is true that the method of subdivision can be accom­
plished easily by the additions of the superfluous variables. We shall 
say as follows: 

A matrix of a dynamic problem can be a matrix which has the 
stronger couplings between the stages, or can be a matrix which has 
the more loose couplings between the stages, according to the expres­
sion of the problem. 

To make the matrix, loosely coupled is accomplished by the addi­
tions of the variables to the given system. This corresponds to expres­
sing the inner structure more finely. On the other hand, a compact 
matrix expression of the system without the additional variables corre­
sponds to the standpoint of viewing its structure from the outside, or 
of regarding the system as a black box, if we make an extreme argu­
ment. 

This basic concept will be included in the G. Kron's "Dia­
koptics ". (6) 

The other basic concept of the method is to observe that the 
dynamic problem consists of the many static problems having nearly the 
same structures. On account of it, we can deal with each sub-divided 
static problem on a common base, and the computations become very 
easy. (parametric programming). 

One of the extensions of these basic concepts is a possibility of 
"Network Programming", and the other extension is a possibility of 
the easier computations by the refinement of the system. 
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