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Duality relationships have been established previously [1, 2J for 
classes of quadratic programming problems. The present note presents 
a pair of dual quadratic programs, symmetric in the sense that the dual 
of the dual is clearly the original program again, and proves the duality 
relationship. As in [2J the proof rests on the dual theorem of linear 
programming [3J. 

In what follows capital letters A, D, .. ·denote matrices and small 
letters x, J., .. ·are column vectors. Prime denotes transpose and x'y is 
the inner product of the vectors x and y. A vector inequality applies 
to each component of the vector, i. e., x2:0 implies that each component 
of x is non-negative. 

The dual theorem for linear p:rograms [3J states that if a solution 
to 

subject to 
Minimize P' x 

Ax::::b 
x:,:O 

exists and is finite, then a solution also exists to its dual problem 
Maximize b'v 

subject to 
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94 w. S. Dorn 

A'v:5,P 
v 2':0 

and moreover 
Minimum p'x=Maximum b'v. 

Consider now the following pair of quadratic programming pro­
blems 

Minimize/(z)=z' [}z+A.'z} 
W+r)z2':p 

z2':O 

Maximize g(w)=w'( -[}**)w+f1.'W) 
( -[}*+T')w:5,). 

w2':O 
where the matrices and vectors are partitioned as follows 

[}=!; c, 01 r=! ; c, -cl 
0, 0 0, A 

A=(~) p=(g) 
z=(%) w=(~) 

(I) 

(11) 

and C is a symmetric, positive semi-definite, n x n matrix11, A is an m x n 
matrix, y, x, U, pare n dimensional vectors, and v, b are m dimensional 
vectors. 

Notice that [} is 2n x 2n, r is (m+n) x 2n, A and z are 2n x 1, p 
and ware (m+n) x 1. The matrix [}* in Problem II is equal to [} with 
an appropriate number of columns of zeroes added or subtracted so that 
[}* is 2n x (m+n). Similarly [}** is equal to [}*with the same number 
of rows of zeroes added or subtracted so that [}** is (m+n) x (m+n). 

Dual Theorem: If a solution exists and is finite for either Problem 
I or Problem II, then a solution also exists for the other problem and 

Minimum f(z)=Maximum g(w) 
Proof: Assume a solution exists to Problem I which can be re­

written, 

1) The Symmetry restriction results in no loss of gerality while the positive 
semi-definiteness assures that C and hence {J is convex and thus that a 
local minimum of I(z) is also a global one. 
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Minimize f*(y,x)= ~-y' Cy+p'x 

Cy-Cx?:'O 
Ax?:'b 

y?:'O 
x?:,o 

Let y=y, x=x be the minimizing v\~ctor, and consider the linear problem 

Minimize Fey, x)= --; y' Cy+y' Cy+p'x Cl) 

Cy-Cx?:'O (2) 

Ax?:'b (3) 
y?:,O (4) 
x?:,O (5) 

Denote this as Problem I'. Clearly bi, x is a feasible solution to this pro­
blem. Assume there exists another feasible solution y*, x* such that 

F(y', x*) <F(y, x), 
i. e., 

y' C(y*-y)+p'(x*-x)<O 
Define Yo, Xo as 

yo=ky*+(l-k)y 

xo=kx*+(l-k)x 
Then Yo, Xo is also a feasible solution and 

O<k<l 

(6) 

f(yo, xo)-f(y, x)=k[y'C(y*-y)+p'(x*-x)+ ~k(Y*-Y), C(y*-y)] 

By (6) the first term in square brackets is negative and from the posi­
tive semi-definiteness of C the second term is non-negative. If this 
second term vanishes, then the right hand member is negative. If the 
second term is positive then if k is sufficiently small, in fact, 
.choosing k such that 

k<Min(l, _y'CCy*-y)+p'(x*-X)} 

.L (y" -y)' C(y* -y) 
2 

the right hand member is negative. Thus, it is always possible to 
choose k so that 

f(yo, xo)- fey, X)<O. 
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But fj, x minimizes I(y, x) in contradiction to this last inequality. 
Therefore, 

F(fj, x) -::;'F(y*, x*) 
and fj, x minimizes Problem 1'. 

From the dual theorem of linear programming, a solution exists 
to the dual to Problem 1'. The dual linear problem is 

Maximize G(v)= --~ fj' Cfj+b'v 

Cu-::;'Cfj 
-Cu+A'v-::;.p 

u2:0 
v2:0 

which may be rephrased 

Maximize G(V)=-¥fj' Cfj+b'v 

A'v-::;,p+Cfj 
v2:0 

0) 

(8 ) 
(9) 

Denote this as Problem I1'. If v=v is the maximizing solution then by 
the dual theorem 

b'v=f/ Cfj+P'x 
Now Problem II may be rewritten as 

Maximize g*(u, V)=-iu' Cu+b'v 

-Cu+A'v-::;.p 
u2:0 
v2:0 

Clearly u=fj, v=v is a feasible solution to Problem H. 

or 

Now since C is positive semi-definite 

~-CU-Y)'C(U-Y)2:0 

1 'c > -'C 1 -, C­-2 u u_y u--2y y 

Subtracting 1/2y'Cy from both sides 

1 'C 1 -'C-> - CC -) 2 u u-Z y y _y u-y 

(10) 

(11) 

(12) 

(13) 

(14) 
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So 

g*(y, v)-g*(u, v)= - ty'Cy+ ; u'Cu+b'v-b'v 

~y'C(u-y)+b'v-b'v 

From (10) then 
g*(y, v)-g*(u,,~)~y'Cu+p'x-b'v 

By (3) and (14) 
-b'v~::-x'Av 

and by (5) and (12) 
p'x~v'A.x-u'Cx 

Putting these in (15) 
g*(y, v)-g*(u v)~u'(Cy-Cx) 

and from (2) and (13) 
g*(y, v)--g*(u, v)~O 

Thus y, v is the maximizing solution to Problem 11. 
Finally from (10) 

g*(y, v)=-; Y'CY+b'1J=; y' Cy+p'x=/*(y, x) 

which verifies the equality of the objective functions. 

(15) 

From the symmetry of Problems I and 11, it becomes obvious that 
the existence of a solution to Problem 11 also implies that a solution to 
Problem I exists. 

Finally it should be noted that since C is symmetric, positive 
semi-definite, it may be taken to be a matrix all of whose elements are 
zero. In this special case the dual quadratic programs reduce to the 
corresponding dual linear programs previously stated. 
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