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1. INTRODUCTION

In this paper we wish to discuss the applications of the theory of
dynamic programming to the study of prediction theory of the type
that arise in two fields of time series in statistics and operations
research. and of engineering analysis, electrical and mechanical as well.

We shall first formulate the Wiener Roots Mean Square (R. M.
S.) error criterion in fiiter design.

The.purpose of the paper is to present a simple methods, requring
a minimal mathematical background, which can be used to treat a
large. class of prediction theory, of nonstationary stochastic processes,
of multiple time series.

Finally, we shall discuss the prediction and turn directly to
computational solution of some typical prediction problem.

2. The WIENER R. M. 8. ERROR CRITERION
IN FILTER DESIGN

Here the discussion will be lined to limited filtering devices in
fields of communication engineering.

If we denote a signal by the sequence /. and a message contained
in the signal by the sequence a;, then we can regards a noise as a
sequence of differences, ».—a;. It is our purpose to find the best
way to treat the signal, that is the b, so as to obtain the information,
the a,.

Let us try to determine the nature of a linear filter which, with
input b,, will have an output as close as possible to «. We see that
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our problem is to determine the number A, so that the

M
Ee=ap— ;;lflubu—lc, ( 1 )
are as small as possible.
We want to choose An so that rms of the &
I"t}lg HN+1 21 (et — }JAnbk—n (2)
should be 2 minimum. We introduce the auto-correlation
M
Ry (k) == 112 ZNTl E.JN A y_i»
Rk} =1i 1 N, .
b (R) —-Nl_ll TN z;__,Nblbl—ln (3)
and the cross correlation function
N
R, (k) 432 5 N 1, u fl(bz ke
We can write Eq. (2) as
M M )
M= Ra (0) y 5: AnR’w(”) +- }_:1 AnAmRb(”l - n) * (1)
% KRS

Our probiems is to close the A, so as to make /» 2 minimum,

If we normalize Eq. (1) by dividing by £,(0) ;

(), &M R, (im—n) |
© T AnAn R, (0) (

&)

IM s ] -

MR,
25
R, ) ks An R,

If we now cail [x/R.0), Vi, and if we set
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T
R T
then we have
Vu=1—Exu, (7)
where
Eu=2 53 A= 5 AnAnrn (8)
we see that
0 hlu=l, (9)

and our problem is to determie the maximum of the inhomogeneous
form.

3. DYNAMIC PROGRAMMING APPROACH

To detemine the maximum of the inhomogeneous form (3},
let us define the auxiliary sequence of function

M-l M,
fM (3) = Mmax [2 2\3 A"\!f " T :'—)Z/'L M —_n SAJ flnAm{/Jn— m,] ( lU)
P "oy

CAand ’

We wish to determine fa(0) and the {4,} at which the maximum is
attained.
We see that a measure of the effictiveness of the fiiter output

u
S Anba (1D

k=1
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in representing the massage a,, was gisen by fa(2).

It is an important practical question to decide how large to make
M. ‘Unless fu(z) increases appreciably when M is increased, it is not
worth while to increase M. In practice, this make desirable a
procedure which given us f(z), f: (2}, etc., without undue computational
difficulty. Our dymamic pragraming approch attained this object.

It is easy to see that

fo(@) =max [224,~ ¢0A02]~—;;:— 12
and
Ay= ; (13)

We now wish to derive a recurrence relation connecting far with
fu-i. If we fix A and the minimize over the other A, we obtain
by relation

fu(2) = max[ZzAu—¢0Au2+max {22 Z YnAn
M=1
=21 —PiAn) A-M-l—"ia—_\:l?’n—mAmAn}]

=max [22Ax—PAs*+ fruor (Tu-1—P1Ax) ] (14)

(A}

4. PREDICTION THEORY AND DYNDMIC PROGRAMMING

In Sec, 2 the problem of separating 2 message, represented by a
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sequence a,, from a signal, represented by a sequence b, was considered.
There the optimum set of numbers A, was determined in order that a,,
should be represented as closely as pussibie by

S Aubyn

%o

In Eq. (1) we utlize b, and eariar values suchas &, ;, b3 etc., in
deriving a. ‘I'nere are situations where on the basis of knowing b,
be-1, br-2, etc., we must use Eq. (1) to represent not g, but ai.,, where
s is a positive integer. Here we have a problem involving not only
filtering, that is, the separation of message from noise, but aiso
prediction, In other words, even if there were no noise, there would
‘stiii be the probiem of determining a.., from the knowiedge of a,
ai_y, elc.

Proceeding as in Sec. 2, we now choose the Ax so as minimize
the rms of

M
Ee=0p+s— ">__:|’ Aubren (15)

Instead of Eq. (4), we find

Lu=Ry(0) —2 5% AuRps(n5)+ S0 ApAnRy(m—n). (16)

"=y n,uevQ

In determining the effectiveness of Eq. (19) in representing we get
now, instead of Eq. () and (8),

| x, x
LEy=42 ;_Ju AnPris— n%:l‘uAnAm<7)m—n; (17)

where @, and VY, are defined as Sec. 2.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Prediction theory and dynamic programming 8

The iteration formulas given in Sec. 3 can aiso be generalized to cover
the case of predicting together with fiitering, and we now turn to this
problem.

In place of Egs. (11), (12) and (13), we have

z
fo(2) =max[224,— @Al = =,
4o Po
_ oz
A= gy
ful2) =n}ax [2240—poAst faet Wae-100—Pi1As) 1. (18)
M-

We observe that the only difference between these equstions and
Eq. (13) is in the index of Y~ which is now increased by s.

5. CASE STUDY

Let x,. be the temperature difference from monthiy mean value of
temperature at Akita and @, be its seriai correiation coefficients. (Fig. 2)

Our problem is determining x.., from knowiedge of #,. #..,, etc,
and @,, where s is a positive integer. In other words we have a
problem of temperature forecasting.

In this case, there were no noise. So, we have the relation
@.=V¥.. By Eq. (18), we have

Su(2) =IEaX _[QZAM“¢0AM2+fM-1 (Pa-re—P1As) 1,
M

(M=17 2’ 3') ""‘)

=2
fO (Z) bl ¢0 *
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Ay= ;5, 19

Determuning fu(t) and Ay by means of the methods of sutcessive
approximation we obtamn Table 1 and Table 2, (Fig. 3. Fig. 4.)
Let us be k=1941 January, then we have by references io the

appendix,

3
Ky = ”%.;: Aﬂxk*h:ﬁ()n 66’

3 .
Xgrg™= '22, Ap%yn=0, 181, (20)

2
Kpag ™ n},} AnXyn=0. 03,
“u

6. DISCUSSION

A simple methods presented by this paper can be used to tresi
a large ciass of prediction theory of nonstationary stochastic
processes of multiple time series,

A full acount will occur elsewhere,
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Table 1. (a)
s=1
NG
ii ‘ fo(=) Si(=) fa(=)
DL 1. 1. 1. 1740
" 0.9 081  0.8100 | 0.9682
' 0.8  0.64 @ 0.6439 ' 0.7848
0.7 . 0.49 ! 0.4989 ~ 0.6208
0.6  0.36  0.3758 ' 0.4752
0.5 0.25 | 0.2678  0.3570
0.4 | 0.16 . 0.1956 ' 0.2592
0.3 | 0.09 [ 0.1384 | 0.1828
0.2 | 0.04 | 0.1032 | 0.1298
0.1 | 0.01-{ 0.0910 | 0.1002
0. - o 0.0987  0.0900
-0.1  0.01 0.1296  0.1021
—0.2 . 0.04  0.1824 . 0.1418
—0.3 . 0.09 ' 0.2571  0.1948
—0.4  0.16  0.3538  0.2786
—0.5  0.25 | 0.4725  0.3850
—0.6 0.36 | 0.6131 0. 5090
~0.7 0.4 | 0.7758 | 0.6514
—0.8 0.64 ' 0.9604 0.8292
—0.9  0.81 1.1670  1.0174
1.3956  1.2300

‘Table 2. (a)
s=1
1A_fu(z) i
‘;\ A 7 A
LE LN ‘
T 1. 1.0950
0.9 0.9  0.8%01| 0.9840
0.8 - 0.8 | 0:7802: 0.8730
L0707 ' 0.6703 . 0.7620
| o6 06! 05604 0.6510
.05 1 0.5 1 0.4505°  0.5400
I 04 0 0.4 03406 0.4290
0.3 7 0.3 0.2307 | 0.3180
0.2 i 0.2 - 0.1208 ' 0.2070
0.1 . 0.1 : 0.0109| 0.090
0. .+ 0. | —0.0989 —0.0150
—0.1 - =0.1 | —0.2087 , —0.1256
—0.2 | —0.2 | —0.3186 | —0.2370
—0.3 | —0.3 ! —0.4295 | —0.3180
—0.4  —0.4 —0.5384 . —0.4370
—0.5 =05  —0.6483 * —0.5700
—0.6 =—0.6 =—0.7582 —0.6800
—0.7 . —0.7 —0.8681 —0.7910
~0.8 . —0.8 —0.9780 . —0.9020
—-0.9  —0.9 . —1.0879: —1.0130
0 0 —1.1978  —1.1240

theory, Illinois Journal of Mathematics, t, No.
On Stochastic prediction formula,

[4] M. Ocawara :
Meteorological Resarch Institute No.

APPENDIX

24 (1947)

2. June

(1957).

in Japan Memories

of

On Some Applications of Dynamic Programing to Numerical Sojution

of Linear Equations,

The purpose of this appendix is to discuss some applu‘atlonv of the
function technique of dynamic

programing

to

some

questions
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Table 1. (b Table 2. (b)

s=2 s=2
Fu® | ; ‘*; | ; |
L felz) 0 fulz) 0 falz) ‘ Ay A A
z : i i : z . !
L0 L 1037 L1419 . L0 L ' 1.050 1.0882
0.9 081 . 08315 ' 09279 ; | 09 . 09 ' 09460 0.9772
0.8 ' 0.64 | 0.6533 | 0.7387 . | 0.8 @ 0.8 | 0.8%0 0.8662 |
0.7 ' 0.49 i 0.4970 | 0.5693 0.7 ' 0.7 © 07260 0.755
0.6 ' 0.36 | 0.3627 | 0.4247 | 6, 0.6  0.6160  0.6443 |
0.5 © 0.25 * 0.2504 | 0.3047 0.5 : 0.5 | 0.5170| 0.5333
0.4 © 0.16 i 0.1601 ; 0.2000 0.4 . 04 ( 0.970 | 0.4223 |
0.3 ; 0.09 ' 0.0917 | 0.1198 0.3 | 0.3 : 0.2870 o.3u3]
| 0.2 © 0.04 . 0.0454 . 0.0634 0.2 ' 0.2 | 0.1870| 0.2004
I 0.1 ! 001 - 00210 | 0.0529 c 011 01 b 006701 0.0894
Lo 0. | 0.0185 | 0.0182 |01 0. 1 —0.0430 —0.0216
i —~0.1 : 0.01 | 0.0381 | 0.0272 ;=01 | —0.1 —0.1530 ' —0.1326
~0.2 | 0.04 | 0,079 | 0.0560 | —0.2 | —0.2 | —0.2630 | —0.2423
~0.3 | 0.09 | 0.1432 | 01097 . | =03 | —0.3 ' —0.3730 ' —0.3545
~0.4 | 016 | 02087 ¢ 01823 | | —0.4 | —0.4 | —0.4830 | —0.4655
| ~0.5 | 025 | 0.3%61 | 0.2845 | —0.5 | —0.5 | —0.5920 | —0.5765
=06 | 0.3 | 0465 | 04046 | | —06 | ~0.6 | —0.7020 | —0.6874
| ~0.7 § 0.49 | 0.617C | 0.5475 | | —0.7 | 0.7 | ~0.8120 ' —0.798¢
~08 | 0.6+ | 0.7904 | 0.7151 | [ -08 | —0.8 —0.9220 —0.9094
'~0.9 | 081 | 0.9858 | 0.902%6 ., | —0.9 —0.9 —1.0320 —1.0204
~10 | L. 12032 | 11098 ' | -0 =10 [—11420 —1.1313

numerical solutions of linear equation.
We shall first consider the solution of a system of liner ejuations

N
;la!jszcl) (i:l, 2) Ty N)- (l)
where A= (a;;) be a positive definite symmetric matrix.

Then we obtain that the problem of soiving (1)is equivalent to
determining the absolute minimum of the form
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N N
Qn(x) = ;___:1 atjxixj_2‘,21 Cix;

Define this minimum to be

Table 2. (¢)
s=3
\A" Ay A A,
BN e
1.0 10 10920 1.10% .
0.9 0.9 | 0.9820  0.9966 -
0.8 | 0.8 | 0.8730 0.8856
0.7 . 0.7 | 07630 0.7746 i
0.6 0.6 0.6530 | 0.6637
0.5 0.5 © 0.5430  0.5527
0.4 0.4 | 0.4330 0.4417 -
0.3 0.3 | 03230 0.3348
0.2 . 0.2 | 0.2130, 0.2198
0.1 0.1 = 0.1050  0.1088 '
0. 0. | —0.0070 | 0.0022 |
—0.1 : —0.1 | —0.1160 = —0.1088 ,
—0.2 ; —0.2 | —0.2260 | ~0.2198 |
—0.3 1 =0.3 | —0.3360 | —0.3348 1
=04 —0.4 | —0.4460 | —0.4471 |
| =0.5 1 —0.5 | —0.5560 | —0.5527 |
—0.6  —0.6 —0.6660 —0.6637
0.7 —0.7 | —0.7760 | —0.7746 |
-0.8  —0.8 | —0.8860 | —0.8856!
0.9  —0.9 | —0.9960 ' —0.9966 |
=10 [ =10 | —1.1050 | —1.1076 |
(2)
(3)

fn(¥) = min @y (x).
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and obtain a recurrence relation connecting fy and fy_;,
fe(x) =n;liﬂ {@uXi — 2220+ fiea1 (Crot —@i-126%0) 1.
k
k=1.2. ---, N.

To distinguish between the various wvalues A, assumes as
changes, we introduce the more specific notation, A¥.
Let us
AM(M):AM)

and determining A0, A, %, .., Ay ., then we have

Tu-1(2 ”—‘Amas [22A 5 ™ — P Ay 1 P08~ fag s 1 (\#M_z-xﬂn}__; PpAr-ged)]
54 <

where

Au-z(u):’Au—:.
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