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1. INTRODUCTION 

In this paper we wish to discuss the applications of the theory of 
dynamic programming to the study of prediction theory of the type 
that arise in two fields of tim',- series in statistics and operations 
research. and of engineering ar.::tiysis, electrical and mechanical as well. 

We shall first formulate the Wiener Roots Mean Square (R. M. 
S.) error criterion in filter design. 

The purpose of the paper is to IE'esent a simple methods, requring 
a minimal mathematical backgrOl;nJ, which can be used to treat a 
large. class of prediction theory, of nonstationary stochastic processes, 
of multiple time series. 

Finally, we shall discuss the prediction and turn directly to 
computational soh:tion of some typic31 prediction problem. 

2. The W II<~NER R. M. S. ERROR CRrrERION 

IN FII,TER DESIGN 

Here the c1iscnssion \Viii be line~\ to iimiteo filtering c1ey ices in 
fields of communjration engineering. 

If we denote a signal by the seqlience b,. and a message contained 
in the signal by the sequence a... then ,ve can regards a noise aiS a 
sequence of differences, he-a,.. It is our purpose to fh,d the best 
way to treat the signal, that is the b,., so as to obtair: the information. 
the ak' 

Let us try to determine the nature of a linear fiHer which, with 
input b., will have an output as close as possible to a,.. We see that 
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Premetion theory and dynomic proRramminll 81 

our problem is to determine the number An so that the 

(1 ) 

are as small as possible. 
We want to choose An so that rms of the et 

(2 ) 

should be a minimum. We introduce the auto-correlation 

Rb I k) "-lin __ L .e.. b b \ 'IN+l L..J !-!-k> 
N'~ L. !~-N 

(3 ) 

and the cross correlation fUnction 

We can write Eq. (2) as 

M M 

IM,-=R,, (Ol - .::! '5:~ A"R,.,(n) .:. ~ AnAmRb(m--n). 
n u Il,.ru.~o 

Our probiellls is to close the All so as to m~kc IM a minimum. 
If we normalize Eq. (1) by di Yitling by Ra (0) ; 

(;) ) 

1£ we now eaU 1MI Ra (0), V M, amI if we set 
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(6 ) 

then we have 

(7 ) 

where 

(8 ) 

we see that 

(9 ) 

and our problem is to determie the maximum of the inhomogeneous 
form. 

3. DYNAMIC PROGRA~I.MING APPROACH 

To detemine the maximum uf the inhomogeneous form 
let us define the auxiliary sequence of function 

(8) , 

( LU) 

We wish to determine f M (0) and tile {An} at which the maximum is 
attained. 

We see that a measure of the effictiYcness of the fliter output 

(11) 
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in representing the massage at! was gisen by f M (2) • 
It is an important practical question to decide how large to make 

M. Unless f M (z) increases appreciably when M is increased, it is not 
worth while to increase M. In practice, this make de·sirable a 
procedure which given us /1 (z) , 12 (z}, etc., without undue computational 
difficulty. Our dymamic pragraming approch attained this object. 

It is easy to see that 

(12) 

(13) 

We now wish to derive a recurrence re~ien connecting fN' with 
/ M-I. If we fix A., and the minimize over the other A .. , we obtain 
by relation 

4. PREDICTION THEORY AND DYNDMIC PROGR~ING 

In Sec, 2 the problem of sep:lfating a mess:lge, represented by a 
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sequence an, from a signal, represented by a sequence bt was considered. 
There the optimum set of numbers An was determined in order that ab 

should be represented as closely as poseible by 

In Eq. (1) we utlize bit. and eariar values such as blt.-1, bt - 2, etc., in 
deriving ak. There are situations where on the basis of knowing bt , 

bt-l> bt - 2, etc., we must use Eq. (1) to represent not alt. but at+" where 
s is a positive integer. Here we have a problem involving not only 
filtering, that is, the separation of message from noise, but also 
predictIOn. In other words, even if there were no noise, there would 
stili be the probiem of determining atH from the knowledge of ab 

at-l> etc. 
Proceeding as in Sec. 2, we now choose the AM so as minimize 

the rms of 

(15) 

Instead of Eq. (4), we find 

M M 

IM=Ra(O)-2 ~ A"Rb"(n+s) + .~ A"A".Rb(m-n). (16) 
I'-U ")11' .... 0 

In determining the effectiveness of Eq. (19) in representing we get 
now, instead of Eq. U) and (8), 

(17) 

where ({.lit. and 'h are defined as Sec. 2. 
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Prediction theory and dynamic programming 

The iteration formulas given in Sec. 3 can also be generalized to cover 
the case of predicting together with filtering, and we now turn to this 
problem. 

In place of Eqs. (11), (12) and (13), we have 

Ao= _z , 
rpa 

We observe that the only difference between these equstions and 
Eq. (13) is in the index of ",. which is now lllcn~a:>eu by s. 

5. CASE STUDY 

Let XI< be the temperature difference from monthly mean value of 
temperature at Akita and Pit. be its serial correlation coefficients. (Fig. '2) 

Our problem is determining Xt+l from knowledge of tt. tt-1o etc, 
and CfJb where s is a positive integei-. In other words we have a 
problem of temperature forecasting. 

In this case, there were no noise. So, we have the relation 
p",=o/",. By Eq. (18), we have 

Z2 
lo(z) =---'-. 

Po 

(M=l, 2, 3, . --) 
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n- <Po' (19) 

Determming lit \t} and A. by means of the meth€KIs of successive 
approximation we obtain 'fable 1 and Table 2. (Fig. S. Fig. 4.) 

Let us be k=1941 January, then we have by references to the 
appendix, 

6. DISCUSSION 

A simple methods presented by this paper can be Ufred to treat 
a large class of prediction theory of oonstationary stnchastic 
processes of multiple time series. 

A full a<;ount will occur elsewhere. 
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Fig. 1. 
An example of extrapolation of 

monthly mean temperature of 
Akita 
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Fig. 2. 
An example of serial correlation 

coefficients of monthly mean 
Temperatnre of Akita (due to 
Mr. Ogawara) 
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Fig. 3. (b) 
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(5= 3) 
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(5= 2) 
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Table l. (al Table 2. (a) 

s=1 s= 1 

I~. • !~ ! 21 : 10(21) ,/ds ) 12(21), Aa A~ Aa 1--- ---------------- 121 , ----1----- ------ 1-

I. t. 1. 1. 1740 1. 1. 1. 1. 0950 i 

0.9 0,81 0,8109 0,9682 0,9 0_9 0,8901 I 0.9840 ' 

0.8 0,64 0.6439 0, 7848 0.8 0.8 0,7802 0.8730 ' 

0.7 0,49 I 0,4989 0,6208 0,7 0. 7 0.6703 0, 7620 

0.6 0.36 0, 3758 0,4752 0.6 0,6 0.5604 0.6510 

0,5 0,25 0.2678 0,3570 0.5 0.5 0,4505 0.5400 

0.4 0. 16 0,1956 0,2592 0.4 I 0.4 0.3406 0.4290 

0.3 0.09 0,1384 ° 1828 0, 3 0.3 0.2307 0.3180 

0.2 0.04 0.1032 0, 1298 0.2 0,2 0, 1208 0.2070 

0,1 0.01 0,0910 0,1002 0, 1 0. 1 0,0109 0.0960 

0. 0, 0,0987 0,0900 ° 0. ! -0,0989 -0,0150 

-0,1 0.01 0,1296 0. 1021 -0.1 -0.1 I -0.2087 . -0,1256 

-0,2 0,04 0, 1824 0,1418 -02 I -0.2 ! -0.3186 • -0.2370 

-0.3 009 0,2571 0,1<)48 -0.3 -0.3 ! -0,4295 i -0.3180 

-0,4 0,16 0,3538 0, 2786 -0.4 -0.4 -0,5384 . -0,4370 

-0,5 0.25 ! 0.4725 0.3850 -0.5 -11,5 -0,6483 . -0.5700 

-0,6 0.36 0.6131 0,5090 -0,6 -0,6 -0.7582 -0,6800 

-0,7 0.49 0. 7758 0,6514 -0.7 -0,7 -11.8681 -0,7910 

-08 0,64 1 0,9604 0,8292 .-0,8 -0.8 -0.9780 ' -0.9020 

-0,9 0,81 1,1670 1. 0174 -0,9 -0,9 -1. 0879 i -1. 0130 

-1 1. 1,3956 1. 23(10 -1.0 -1,0 -1. 1978 -1. 1240 , - -~----.-.- -- --- ~------ --_._-------- -- - - ------... -~----- ~ ---------- --~~ "-- -

theory, Illinois Journal of Mathematics, 1. No. 2. June (1957), 
[41 M. OGAWARA: On Stochastic predidion formula, in Japan Memories of 

;\Ieteorological Resa~ch Institute No. 24 (l<)47) 

APPENDIX 

On Some Applications of Dynamic Programing to Numerical Soiution 
of L:near Equations, 
The purpose of this appendix is to discuss some applications of the 

function technIque of dynam!c progrnm ing to some questions of 
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Table 1. (b) 

5=2 

~_/o (z) _~ 11 (z) ___ 1_2 (_Z)_ 

1.0 

0.9 

0.8 

0.7 

0.6 

o 5 

0.4 

0.3 

0.2 

1. 1. 0317 

0.81 0.8315 

0.64 0.6533 

0.49 i 0.4970 

0.36 0.3627 

0.25 0.2504 

0.16 0.1601 

0.09 0.0917 

0.04 I 0.0454 

1. 1419 

0.9279 

0.7387 

0.5693 

0.4247 

0.3047 

0.2000 

0.1198 

0.0634 

0.1 0.01 

O. '0. 

0.0210 i 0.0529 

1 0.0185 0.0182 

-0.1 0.01 0.0381 0.0272 

-0.2 0.04 

-0.3 

-0.4 

I -0.5 
i 

i -0.6 
I -0.7 

-0.8 

-0.9 

-1.0 

0.09 

0.16 

O. 25 

0.36 

0.49 

064 

0.81 

1. 

0.0796 0.0560 

O. 1432 

0.2287 

0.3361 

0.4656 

0.6170 

0.7904 

0.9858 

1. 2032 

O. 1097 

O. 1823 I 

0.2845 , 
0.4046 I 

0.5475 

0.7151 

0.9026 
1. 1098 I , 

----.--~-----.~-•• - ___ -~----T"--

numerical solutions of linear equation. 

Table 2. (b) 

5=2 

Ao 

1. 0 1. 

0.9 0.9 

0.8 0.8 
0.7 1 0.7 

0.6 0.6 

0.5 0.5 

0.. 0.4 

0.3 0.3 

0.2 0.2 
O. 1 
O. 

O. 1 
O. 

1. 0560 ' 

0.9460 I 

0.8360 : 

0.7260 

0.6160 

0.5170 

0.3970 

0.2870 

0.1870 

0.0670 

1.0882 

0.9772 

0.8662 ! 
O. 7552 

0.6443 i 

0.5333 ' 

0 .• 223 

0.3113 

0.2004 

0.0894 
, -0.0430 -0.0216 

-0. 1 : -0. 1 -0. 1530 : -0. 1326 

-0.2 -0.2. -0.2630 i-a. 2423 

-0.3 -0.3· -0.3730 I -0.3545 

-0.4 -0.4 i -0.4830 I -0.4655 
I I 

-0.5 -0.5, -0.5920 I -0.5765 

-0.6 -0.6' -0. 7020 I -0.6874 

-0.7 : -0.7 : -0.8120 i -0.798-4 I 

-0.8 . -0.8 -0.9220 -0.909-4 

i -0.9 -0.9 -1.0320 '-1.0204 

l=1~0_---=-~~_0_1 =-1.142~~-1.131~_ 

We shall first con"ider the solution of a syatem of liner e:j,uations 

(1) 

where A = (au) be a positiYe definite symmetric matrix. 
ThE'n we obtain th~t the problem of soiying (1) is equh-alent to 

determining the ab~olt.te minimum of the form 
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Table 1. (c) 

5=3 
-- ----.----~-~ 

'~'-- fo (:) \ ... h (z) _ ___ ~2~Z) __ _ 

1.0 

0.9 

0.8 

O. 7 
0.6 

o 5 
o 4 

0.3 

0.2 
O. 1 

O. 

-0.1 

-0.2 

-0.3 I 

1 

0.9 

0.8 

O. 7 
0.6 

o 5 

0.4 

O. 3 
0.2 

o 1 

O. 

A. 1 

0.2 

O. 3 

-0.4! 0.4 

-0.5 

-0.6 

-0.7 
I -0.8 

! -0.9 

-1.0 

0.5 

0.6 

o. 7 
0.8 

0.9 

1.0 

1. 0864 

0.8784 

0.6924 

0.5304 

0 . .\884 

0.2680 

0.1704 

0.0954 

0.0424 

0.0104 

0.0004 

0.0124 

0.0464 

0.1034 

O. 1814 

0.2814 

0.4Q34 

O. 5474 

0.7144 

0.9024 

1.1124 

1.1065 

0.9033 

0.7027 

0.5460 

0.3972 

0.2782 , 

0.1789 ! 

0.0995 

0.0448 
0.0100 

0.0000 

0.0097 

0.0443 

0.0987 

0.1729 

0.2719 

0.3906 

0.5342 
O. 7026 

0.8958 

1. 1040 

Define this minimum to be 

Table 2. (c) 

1.0 1.0 

0.9 0.9 

0.8 i 0.8 
O. 7 O. 7 
0.6 0.6 

0.5 0.5 

0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

O. O. 

-0.1 -0.1 

-0.2 -0.2 

-0.3 -0.3 

1. 0920 

0.9820 

0.8730 . 

0.7630 ! 
0.6530 

0.5430 

0.4330 

1.1076 

0.9966 

0.8856 

0.7746 i 

0.6637 

0.5527 

0.4417 

O. 3230 0.3348 

0.2130, 0.2198 

O. 1030 O. 1088 

! -0.0070 I 0.0022 I 

-0. 1160 . -0.1088 

-0.2260 i -0.2198 

-0. 3360 I -0.3348 

-0.4 -0.4 -0.4460 -0.4471 

-0.5 -0.5 ,-0.5560 I -0.5527 i 

-0.6 -0.6 -0 6660 -0.6637 

-0.7 -0.7 -0.7760 I -0.7746 

-0.8 -0.8 -0.8860 I -0.8856 

-0.9 -0.9 -0.9960' -0.9966 

-1. 0 i -1. 0 -1. 1050 i -1. 1076 

(2) 

fN(X) = minQN(X). \ 3) 
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and obtain a recurrence relation connecting f Nand f N-t. 

(1) 

k=l. 2. "', N. 

To distinguish between the various values Am assumes as M 
changes, we introduce the more specific notation, A ~. 

Let us 

where 
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