PTRDDICYGN THEORY AND DYNAMIC PROGRAMMING

TOSIO ODANKA

The Metropolitan Technical Collge

(Received January 31. 1959)
(Presented at the 4th meeting, November. 16, 19.58)

1. INTRODUCTION

In this paper we wish to discuss the applications of the theory of dynamic programming to the study of prediction theory of the type that arise in two fields of time series in statistics and operations research, and of engineering araiysis, electrical and mechanical as well.

We shall first formulate the Wiener Roots Mean Square (R. M. S.) error criterion in filter design.

The purpose of the paper is to present a simple methods, requring a minimal mathematical backgrotind, which can be used to treat a large class of prediction theory, of nonstationary stochastic processes, of multiple time series.

Finally, we shall discuss the prediction and turn directly to computational solution of some typical pretiction problem.

2. The WIENER R. M. S. ERROR (RITERION IN FILTER IDESIGN

Here the discission will be line to limited filtering devices in fields of communication engineering.

If we denote a signal by the sequence b_{6} and a message contained in the signal by the secuence a_{k}, then we can regaris a noise as a sequence of differences, $b_{r}-a_{k}$. It is our purpose io find the best way to treat the signal, that is the b_{k}, so as to obtain the information. the a_{k}.

Let us try to determine the nature of a linear filter which, with input b_{k}, will have an output as close as possible to a_{r}. We see that
our problem is to determine the number A_{n} so that the

$$
\begin{equation*}
\varepsilon_{k}=a_{k}-\sum_{n=1}^{M} A_{n} b_{n-k}, \tag{1}
\end{equation*}
$$

are as small as possible.
We want to choose A_{n} so that rms of the ε_{k}

$$
\begin{equation*}
I=\lim _{N \times \infty} \frac{1}{2 N+1} \sum_{k=-N}^{N}\left(a_{k}-\sum_{n=1}^{M} A_{n} b_{k-n}\right)^{2} \tag{2}
\end{equation*}
$$

should be a minimum. We introduce the auto-correlation

$$
\begin{align*}
& R_{a}(k)=\lim _{N \rightarrow \infty} \frac{1}{2 N+1}, \sum_{l=N}^{N} a_{l} a_{l-k}, \\
& R_{b}(k)=\operatorname{lin}_{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{l=-N}^{N} b_{b} b_{l-k}, \tag{3}
\end{align*}
$$

and the cross correlation function

$$
R_{b a}(k)=\operatorname{lin}_{N-\infty} \frac{1}{2 N+1} \sum_{\imath=\vec{N}}^{N} a_{l} b_{l-k} .
$$

We can write Eq. (2) as

$$
\begin{equation*}
I_{M}=R_{n}(0) \cdots 2 \sum_{n=0}^{N} A_{n} R_{b, t}(n) \underbrace{M}_{n, m i=0} A_{n} A_{m} R_{b}(m \cdots n) \tag{4}
\end{equation*}
$$

Our probiems is to close the A_{n} so as to make I_{M} a minimum. If we normalize Eq. (1) by dividing by $\boldsymbol{R}_{\boldsymbol{a}}(0)$;

If we now call $I_{M} / R_{a}(0), V_{M}$, and if we set

$$
\begin{align*}
& \frac{\boldsymbol{R}_{b a}(n)}{R_{a}(0)}=\varphi_{n} \\
& \boldsymbol{R}_{b}(a) \tag{6}\\
& \boldsymbol{R}_{a}(0)=\psi_{n}
\end{align*}
$$

then we have

$$
\begin{equation*}
V_{M}=1-E_{M,}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{M}=2 \sum_{n=0}^{M} A_{n} \psi_{n}-\sum_{n, m_{-0}}^{M} A_{n} A_{m} \varphi_{m-n} \tag{8}
\end{equation*}
$$

we see that

$$
\begin{equation*}
0 \leqq t_{M} \leqq 1, \tag{9}
\end{equation*}
$$

and our problem is to determie the maximum of the inhomogeneous form.

3. DYNAMIC PROGRAMMING APPROACH

To detemine the maximum of the inhomogeneous form (8), let us define the auxiliary sequence of function

$$
\begin{equation*}
f_{M}(z)=\max _{(A n)}\left[2 \sum_{\sum_{0}^{M-1}}^{M} A_{n} \psi_{n}+2 z A^{M}-\sum_{n, n \in 0}^{M} A_{n} A_{m} \psi_{n-m}\right] \tag{10}
\end{equation*}
$$

We wish to determine $f_{M}(0)$ and the $\left\{A_{n}\right\}$ at which the maximum is attained.

We see that a measure of the effictiveness of the filter output

$$
\begin{equation*}
\sum_{k=1}^{M} A_{n} b_{n-k} \tag{11}
\end{equation*}
$$

in representing the massage $a_{k_{1}}$ was gisen by $f_{\mu}(z)$.
It is an important practical question to decide how large to make M. Unless $f_{M}(z)$ increases appreciably when M is increased, it is not worth while to increase M. In practice, this make desirable a procedure which given us $f_{1}(z), f_{2}(z)$, etc., without undue computational difficulty. Our dymamic pragraming approch attained this object.

It is easy to see that

$$
\begin{equation*}
f_{0}(z)=\max _{\boldsymbol{A}_{0}}\left[2 z A_{0}-\varphi_{0} A_{0}^{2}\right]=\frac{\boldsymbol{z}^{2}}{\boldsymbol{\varphi}_{\theta}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{0}:=\frac{2}{\varphi_{0}} \tag{13}
\end{equation*}
$$

We now wish to derive a recurrence relation connecting $f_{\text {ir }}$ with f_{M-1}. If we fix A_{μ} and the minimize over the other A_{n}, we obtain by relation

$$
\begin{align*}
& f_{\mathcal{M}}(z)=\max _{\left\{A_{\mathcal{M}^{\prime}}\right.}\left[2 z A_{\mathcal{M}}-\boldsymbol{\varphi}_{0} A_{\mathcal{M}^{2}}+\max _{\left\{\mathcal{M}_{\mathcal{M}^{\prime}}\right\}}\left\{2 z \sum_{n=0}^{M-2} \psi_{n} A_{n}\right.\right. \\
& \left.\left.-2\left(\psi_{M-1}-\varphi_{1} A_{n}\right) A_{M_{-1}}-\sum_{n, \sum_{m=1}^{M-1}}^{M_{n-m}} A_{m} A_{n}\right\}\right] \\
& =\max _{\left(A_{M}\right)}\left[2 z A_{\mathcal{M}}-\psi_{0} A_{M^{2}}+f_{\mathcal{M}_{-1}}\left(\psi_{\mathcal{M}-1}-\varphi_{1} A_{\boldsymbol{M}}\right)\right] \tag{14}
\end{align*}
$$

4. PREDICTION THEORY AND DYNDMIC PROGRAMMING

In Sec. 2 the problem of separating a message, represented by a
sequence a_{n}, from a signal, represented by a sequence b_{k} was considered. There the optimum set of numbers A_{n} was determined in order that a_{k}, should be represented as closely as possible by

$$
\sum_{n=0}^{N} A_{m} b_{k-n}
$$

In Eq. (1) we utlize b_{k} and eariar values such as b_{k-1}, b_{k-2}, etc., in deriving a_{k}. There are situations where on the basis of knowing b_{k}, b_{k-1}, b_{k-2}, etc., we must use Eq. (1) to represent not a_{k} but a_{k+8}, where s is a positive integer. Here we have a problem involving not only filtering, that is, the separation of message from noise, but aiso prediction. In other words, even if there were no noise, there would stiii be the probiem of determining a_{k+s} from the knowledge of a_{k}, a_{k-1}, etc.

Proceeding as in Sec. 2, we now choose the A_{μ} so as minimize the rms of

$$
\begin{equation*}
\varepsilon_{k}=a_{k+z}-\sum_{n=0}^{M} A_{n} b_{k-n} \tag{15}
\end{equation*}
$$

Instead of Eq. (4), we find

$$
\begin{equation*}
I_{M}=R_{a}(0)-2 \sum_{i=0}^{M} A_{n} R_{b a}(n+s)+\sum_{n, m+0}^{M} A_{n} A_{m} R_{b}(m-n) . \tag{16}
\end{equation*}
$$

In determining the effectiveness of Eq. (19) in representing we get now, instead of Eq. (7) and (8),

$$
\begin{align*}
& I_{M}=1-L_{M}, \\
& E_{M}=+2 \sum_{n=0}^{M} A_{n} \varphi_{n+3}-\sum_{n, m-0}^{\mathcal{M}} A_{n} A_{m} \varphi_{m-n}, \tag{17}
\end{align*}
$$

where ψ_{k} and ψ_{k} are defined as Sec. 2.

The iteration formulas given in Sec. 3 can also be generalized to cover the case of predicting together with filtering, and we now turn to this problem.

In place of Eqs. (11), (12) and (13), we have

$$
\begin{align*}
& f_{0}(z)=\max _{\mathcal{A}_{0}}\left[2 z A_{0}-\boldsymbol{\varphi}_{0} A_{0}{ }^{2}\right]=\frac{z^{z}}{\varphi_{0}}, \\
& A_{0}={\stackrel{z}{\varphi_{0}}}_{z}, \\
& f_{\boldsymbol{\mu}}(z)=\max _{\boldsymbol{A}_{\boldsymbol{M}}}\left[2 z A_{\boldsymbol{\mu}}-\boldsymbol{\varphi}_{0} A_{\mathcal{M}}+f_{\boldsymbol{M}-1}\left(\psi_{\boldsymbol{M}-1+z}-\boldsymbol{\varphi}_{\mathbf{1}} A_{\boldsymbol{\mu}}\right)\right] . \tag{18}
\end{align*}
$$

We observe that the only difference between these equstions and Eq. (13) is in the index of ψ which is now increased by s.

5. CASE STUDY

Let x_{k} be the temperature difference from monthiy mean value of temperature at Akita and φ_{k} be its seriai correiation coefficients. (Fig. ${ }^{2}$)

Our problem is determining x_{k+s} from knowiedge of $t_{k} \cdot t_{k-1}$, etc, and ϕ_{k}, where s is a positive integer. In other words we have a problem of temperature forecasting.

In this case, there were no noise. So, we have the relation $\boldsymbol{\varphi}_{k}=\psi_{k}$. By Eq. (18), we have

$$
\begin{aligned}
& f_{M}(z)=\max _{A_{M}}\left[2 z A_{M}-\varphi_{0} A_{M^{2}}+f_{M-1}\left(\varphi_{M-1+z}-\varphi_{1} A_{M}\right)\right] \\
& (M=1,2,3, \cdots) \\
& f_{0}(z)=\frac{z^{2}}{\varphi_{0}}
\end{aligned}
$$

$$
\begin{equation*}
A_{0}=\stackrel{z}{\varphi_{0}}, \tag{19}
\end{equation*}
$$

Determining $f_{\mu}(t)$ and A_{μ} by means of the methods of successive approximation we obtain Table 1 and Table 2. (Fig. 3. Fig. 4.)

Let us be $k=1941$ January, then we have by references to the appendix,

$$
\begin{align*}
& x_{k+1}=\sum_{n=v}^{8} A_{n} x_{k-n}=0.66 \\
& x_{k+2}=\sum_{n=v}^{2} A_{n} x_{k-n}=0.181 \tag{20}\\
& x_{k+3}=\sum_{n=1}^{2} A_{n} x_{k-n}=0.03
\end{align*}
$$

6. DISCUSSION

A simple methods presented by this paper can be to treat a large ciass of prediction theory of nonstationary stochastic processes of muitiple time series.

A full acount will occur elsewhere.

BIBLIOGRAPHY

[1] N. Levison, The Wiener rms (Roots Mean Squars) error criterion in filter design and prediction, Trans. Math. Phy. Vol. XXV, No. 4. January (1949).
$[2]$ K. Belaman, Dynamic Programing, Princeton University Press, (1957).
[3] R. Brilsss, On some Applications of Dynami Programing to Matrix

Fig. 1.
An example of extrapolation of monthly mean temperature of Akita

Fig. 3. (a)

Fig. 2.
An example of serial correlation coefficients of monthly mean Temperatnre of Akita (due to Mr. Ogawara)

Fig. 3. (b)

Fig. 3. (c)

$$
(s=2)
$$

Fig. 4. (b)

$$
(s=1)
$$

Fig. 4. (a)

$$
(s=3)
$$

Fig. 4. (c)

Table 1. (a)

$f^{\prime(z)}$	$f_{0}(\mathbf{x})$	$f_{1}(z)$	$f_{3}(z)$
1.	1.	1.	1. 1740
0.9	0.81	0.8109	0.9682
0.8	0.64	0.6439	0.7848
0.7	0.49	0.4989	0.6208
0.6	0.36	0. 3758	0.4752
0.5	0.25	0.2678	0.3570
0.4	0.16	0.1956	0.2592
0.3	0.09	0.1384	0. 1828
0.2	0.04	0.1032	0.1298
0.1	0.01	0.0910	0.1002
0.	0.	0.0987	0.0900
-0.1	0.01	0.1296	0.1021
-0.2	0.04	0.1824	0.1418
-0.3	0.09	0.2571	0. 1948
-0.4	0.16	0.3538	0. 2786
-0.5	0.25	0.4725	0. 3850
-0.6	0.36	0.6131	0.5090
-0.7	0.49	0.7758	0.6514
-0.8	0.64	0.9604	0.8292
-0.9	0.81	1. 1670	1.0174
-1	1.	1. 3956	1.2300

Table 2, (a)
$s=1$

$f_{n}(z)$	$\boldsymbol{A}_{\boldsymbol{\theta}}$	\boldsymbol{A}_{1}	\boldsymbol{A}_{2}
1.	1.	1.	1.0950
0.9	0.9	0.8901	0.9840
0.8	0.8	0.7802	0.8730
0.7	0.7	0.6703	0.7620
0.6	0.6	0.5604	0.6510
0.5	0.5	0.4505	0.5400
0.4	0.4	0.3406	0.4290
0.3	0.3	0.2307	0.3180
0.2	0.2	0. 1208	0.2070
0.1	0.1	0.0109	0.0960
0.	0.	-0.0989	-0.0150
-0.1	-0.1	-0.2087	-0.1256
-0.2	-0.2	-0.3186	-0.2370
-0.3	-0.3	-0.4295	-0.3180
-0.4	-0.4	-0.5384	-0.4370
-0.5	-0.5	-0.6483	-0.5700
-0.6	-0.6	-0.7582	-0.6800
-0.7	-0.7	-0.8681	-0.7910
-0.8	-0.8	-0.9780	-0.9020
-0.9	-0.9	-1.0879	-1.0130
-1.0	-1.0	-1.1978	-1.1240

theory, Illinois Journal of Mathematics, 1, No. 2. June (1957).
[4] M. Ogawara : On Stochastic prediction formula, in Japan Memories of Meteorological Resarch Institute No. If (1947)

APPENDIX

On Some Applications of Dynamic Programing to Numerical Soiution of Linear Equations,
The purpose of this appendix is to discuss some applications of the function technique of dynamic programing to some questions of

Table 1. (b)

$s=2$			
$f_{\mathcal{M}}(z)$	$f_{0}(z)$	$f_{1}(z)$	$\boldsymbol{f}_{2}(\boldsymbol{z})$
1.0	1.	1.0317	1. 1419
0.9	0.81	0.8315	0.9279
0.8	0.64	0.6533	0.7387
0.7	0.49	0.4970	0.5693
0.6	0.36	0.3627	0.4247
0.5	0.25	0. 2504	0.3047
0.4	0.16	0.1601	0. 2000
0.3	0.09	0.0917	0.1198
0.2	0.04	0.0454	0.0634
0.1	0.01	0.0210	0.0529
0.	0.	0.0185	0.0182
-0.1	0.01	0.0381	0.0272
-0.2	0.04	0.0796	0.0560
-0.3	0.89	0. 1432	0. 1097
-0.4	0.16	0. 2387	0. 1823
-0.5	0.25	0. 3361	0. 2845
-0.6	0.36	0.4656	0.4046
-0.7	0.49	0.6170	0. 5475
-0.8	0.64	0.7904	0.7151
-0.9	0.81	0.9858	0.9026
-1.0	1.	1.2032	1. 1098

Table 2. (b)

$X_{z}^{A_{M}}$	A_{0}	A_{1}	A_{2}
1.0	1.	1.0560	1.0882
0.9	0.9	0.9460	0.9772
0.8	0.8	0.8360	0.8662
0.7	0.7	0.7260	0.7552
0.6	0.6	0.6160	0.6443
0.5	0.5	0.5170	0.5333
0.4	0.4	0. 3970	0.4223
0.3	0.3	0.2870	0.3113
0.2	0.2	0.1870	0. 2004
0.1	0.1	0.0670	0.0894
0.	0.	-0.0430	-0.0216
-0.1	-0.1	-0.1530	-0.1326
-0.2	-0.2	-0.2630	-0.2423
-0.3	-0.3	-0.3730	-0. 3545
-0.4	-0.4	-0.4830	-0.4655
-0.5	-0.5	-0. 5920	-0. 5765
-0.6	-0.6	-0.7020	-0.6874
-0.7	-0.7	-0.8120	-0.7984
-0.8	-0.8	-0.9220	-0.9094
-0.9	-0.9	-1.0320 !	-1.0204
-1.0	-1.0	\|-1.1420	-1.1313

numerical solutions of linear equation.
We shall first consider the solution of a system of liner equations

$$
\begin{equation*}
\sum_{j=1}^{N} a_{i j} x_{j}=C_{l}, \quad(i=1,2, \cdots, N) \tag{1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ be a positive definite symmetric matrix.
Then we obtain that the problem of solving (1) is equivalent to determining the absolute minimum of the form

Table 1. (c)

$s=3$			
$f_{M}(z)$	$f_{0}(\boldsymbol{z})$	$f_{1}(z)$	$f_{2}(z)$
1.0	1	1.0864	1. 1065
0.9	0.9	0.8784	0.9033
0.8	0.8	0.6924	0. 7027
0.7	0.7	0.5304	0.5460
0.6	0.6	0. 3884	0.3972
0.5	0.5	0.2680	0. 2782
0.4	0.4	0. 1704	0. 1789
0.3	0.3	0.0954	0.0995
0.2	0.2	0.0424	0.0448
0.1	0.1	0.0104	0.0100
0.	0.	0.0004	0.0000
-0.1	0.1	0.0124	0.0097
-0.2	0.2	0.0464	0.0443
-0.3	0.3	0. 2034	0.0987
-0.4	0.4	0.1814	0.1729
-0.5	0.5	0. 2814	0. 2719
-0.6	0.6	0.4034	0. 3906
-0.7	0.7	0. 5474	0.5342
-0.8	0.8	0.7144	0.7026
1-0.9	0.9	0.9024	0.8958
-1.0	1.0	1.1124	1. 1040

Table 2. (c)

$$
\begin{equation*}
Q_{N}(x)=\sum_{j=1}^{N} a_{i j} x_{i} x_{j}-2 \sum_{i=1}^{N} C_{i} x_{i} \tag{2}
\end{equation*}
$$

Define this minimum to be

$$
\begin{equation*}
f_{N}(x)=\min Q_{N}(x) \tag{3}
\end{equation*}
$$

and obtain a recurrence relation connecting f_{N} and f_{N-1},

$$
\begin{gathered}
f_{k}(x)=\min _{x_{k}}\left[a_{k k k} x_{k}^{2}-2 z x_{k}+f_{k-1}\left(C_{k-1}-a_{k-1, k} x_{k}\right)\right] . \\
k=1.2 . \cdots, N
\end{gathered}
$$

To distinguish between the various values A_{m} assumes as M changes, we introduce the more specific notation, A_{n}^{M}.

Let us

$$
A_{M}^{(M)}=A_{M},
$$

and determining $A_{M}{ }^{(M)}, A_{M-1}{ }^{(M)}, \cdots, A_{M-i+1}{ }^{(M)}$, then we have

$$
f_{M-1}(z)=\operatorname{mas}_{A_{M-i}}\left[2 z A_{M-i}(M)-\varphi_{0} A_{M-1}(M) 2-f_{M-i \div 1}\left(\psi_{M-i-1}-\sum_{n=0} \psi_{n} A_{M-i+8}\right)\right]
$$

where

$$
A_{M-i}^{(M)}=A_{M-i} .
$$

