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This paper proposes ::t method for find:ng a solution to the discrete 
variable extremum. Given a number of linear constraints, we aggregate 
them with proper weights and obtain one linear constraint which 
appears in the so-called "Knapsack Problem". Discussing relations 
between a solution of the initi:ll problem and that of the Knapsack 
Problem, we get a sufficient condition for optimality and test if a given 
solution is optimal. When it is not, a method for improving the non­
optimal solution is considered. 

INTRODUCTION 

Although a considerable progress has recently been made in the 
techniques of linear programming, it seems that there are only few 
theories on the discrete or integral "::triable programming problem. On 
the other hand, scheduling and ailocation problems in metal or chemical 
industries sometimes require integml solutions. 

In practice, fractional values obtained by linear prognmming 
are rounded off and regarded as the integral optimal solution. But it is 
not a s'ltisfactory one. 

Dantzig, Fulkerson and Johnson 1) solved the" travelling-salesman 
problem" by an ingenious method, ancl Dantzig 0) and Markowitz, 
Manne 3) presented somewhat more general procedures for computing 
the discrete problems. In any event, these twu meth00s ha,,-e following 
common features. We first obtain an optimal solution of a given 
problem by linear programming without the discrete condition. If it is 
not integral, we add to the old conditions :l new linear one which rejects 
the non-integral optimal solution and shouLi be satisfied by the integral 
optimal solution. 

Above mentioned pracedures ~,re repez-,.ted until we attain our 
object. Howeyer, it is not yet pro\-cd tilat \\"~ are guaranteed to reach 

© 1958 The Operations Research Society of Japan



Shinji Kataoka 

an in~ optimal solution by their method. 
In thts paper, we wish to consider this problem from a slightly 

differimt point of view and to make a trial for further development. 
The present object is therefore to construct a simple algorithm 

for the practical use, not to obtain a complete one. 
In the algebraical expression, this is a problem of maximizing a 

linear function Z 

(Z) 

subject to 

(i=l, 2, k) (A) 

XJ=O or 1 (D) 

Though the discrete condition (D) is not equivalent to" xj=nonnegative 
integer" as Markowitz and Manne showed, any integral variable could 
be split into several zero-one variables. Therefore, we can consider (A) 
and (D) as general constraints for the discrete problem. 

DEFINITIONS AND NOTATIONS 

(Definition 1) Constraints. 
Throughout this paper, there appear following four kinds of 

restrictions (A), (B), (C) and (D). 

(A) 

(i = 1, 2, ... , k, j=l, 2, ... , n) 

MUltiplying proper constant tti with the i-th equation of (A) 
and aggregating into one constraint, we get. 

(B) 

or 
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(C) 

and discrete condition 

(D) 

Sometimes we call (A) "initial constraints", (B) "aggregated cons­
traints or Knapsack condition", (C) "continuous (zero-one) condition", 
(D) "discrete (~ero-one) condition". 

(Definition 2) Set of solution. 
Let A denote a set of solution X(Xlt X2, ... , x,,) satisfying (A), 

and B, C and D are sets of X satifying (B), (C) and (D) respectively .. 
A solution which belongs to D is called "zero-one solution". 

(Definition 3) Value of Z. 
When Y is a solution which belongs to a set P, then the value 

of the maximizing fUnction Z is denoted as Z (X f P) or simply Z (P) , 
and the maximum value, max ZiP) to which the optimal solution is 
genoted as :2:. 

(Definition 4) Four problems. 
As stated in Section 1, main purpose of this paper is to maximize 

subject to 

" >~ aoxl=St , 
J~l 

Xj=O or 1. 

Let this problem be denoted as "Problem (AD)", simiIary optimizing 
prohlems under (B) and (D), (A) and (Cl, (B) and (C) as "Problem 
(BD) ", "Probicm (AC)", and" Probiem (BC) respectively. Especially, 
in later disclis~;on, Proble'll (BD) prO\"es to be the so-called" Knapsack 
Problem ". 
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LEMMAS AND THEOREMS 

(Lemma 1) Let P and Q be two sets of nonnegative solution X 
which satisfies some linear equalities (P) and (Q) respectively, and let 
pcQ (all elements of P belong to Q). If:t is an optimal solution of 
Problem (Q) and belongs to P, then )t is also optimal in problem (P). 

(Proof) Omitted. 
Next, consider the above mentioned sets A, B, C and D. 

AcB 

meet D 

ADcBD 

and 

DcC 

meet B 

BDcBC 

then 

A.DcBDcBC 

From (1) and (Lemma 1) \ve get the following theorem, 
(Theorem 1) 

(1) 

The sufficient cond:tion for )t to be optimal in Problem (AD) is 
that :t is optimal in Problem (BC) and belongs to the set AD (that is 
)t is a feasible solution of the linear constraints (AD)). 

KNAPSACI( PROBLEM 

The maximizing problem unc1er the constraint (B) and discrete 
condition (D) would be interpreted as the so-called" Knapsack Problem" 
which was treated by D~~1tZ:g and Beilmnn 2\ Tn this prohlem. a person 
is planning a hike ami has (1::~(>:(ied not to carry mure than R kilograms 
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of different items of which j-th items is qj kilograms weight and has 
value Vj. This is a problem how to select items in order to carry 
maximum total value in his sack. Tn mathematical term, 
maximizing 

under 

~QjXI~R 

Xj=O or 1 

(2) 

Where xj=l means that the j-th item is selected, and Xj=O 

means that it is not selected. 
In order to obtain an optimal solution of this problem by linear 

programming, let only the equality (2) hold and all v's be positive not 
-equal to zero. The reason why these assumptions are necessary will be 
explained in the later part of this section. Thus restriction (2) can be 
reduced to (B) and the above mentioned problem and Problem (BD) 
agree with each other. 

Methods of getting the optimal solution of the Knapsack Problem 
was discussed by Dantzig and Bellman, the former solution is attained 
by successive use of linear-programming and the latter is a rigid one 
obtained by dynamic programming, but usually requires enormous 
labors for its success. 

In practical cases, as intuition or experience could always search 
a considerably good solution, we are at first concerned with a eriterion 
with which to decide whether a given feasible solution is optimal or 
not. 

Replacing (C) instead of (D) in Problem (BD), get Problem 
(BC), which is a regular linear programming problem and can be easiy 
solved by a brief method. 

(Theorem 2) Problem (BC) 

to maximize 
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subject to 

has following optimal solution X(xt. x~, 

where 

Xr+l=~--­
q.+l 

X,.+?=··· =x,,=O 

and a number r is determined dy 

(Proof) Appendix 1 

x,,) such as 

(3 ) 

Theorem 2 can also be shown pictorially as stated in ref. (2). 
Due to ~eln 2 it proves that any item having zero Vj value 

can never be selected in the optimal solution of Problem (BC) *for 

.9L becomes infinity. 
Vj 

Accordingly, even if a slack variable is introduced to (2), it never 
has positive value. This is the reason why we assumed (i) Vj>O and 
(ii) only equality does hold in (2). 

Since 

* It is to be noticed. however, that problem (BD) may have non-zero X} of 
which Vt = 0 in an optimal solution. 
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BDcBC: 

(Theorem 3) The sufficient condition for X to be optimal in Problem 
(BD) is that (i) X fulfils the constraints (B) and condition (D) and 
(ii) satisfies the optimality condition of Theorem 2. 

DISCRETE PROGRAMMING PROBLEM 

We now return to the initial discrete programming problem (AD). 

Since (1) ADcBDcBC 

(Theor~m 4) The sufficient conditon for X to be optimal in Problem 
(AD) is that 

(i) X fulfils (A) and (D), 
( ii ) X is the optimal solution of Problem (BC) with properly 

selected constants. 
As easily be seen, Theorem2-Theorem 4 only speak about the sufficient 
condition but not about necessary one, then even though a feasible 
solution does not satisfy the condition of Theorem 4, it is not always 
a non-optimal solution of Problem CAD). By choosing another set of 
7l" s or by adding other linear constraints proved to be the optimal 
solution, we may obtain another aggregated problem in which that 
feasible solution X can be optimal this time. Though the technique of 
selecting a suitable set of 7l" s or constraints to be added is not yet 
described systematically, with respect to such a special problem, in 
which a combinatorial problem au=:O or 1 for example, we can state it 
fairly well. 

Before proceeding with the combinatorial problem, it is worthwhile 
to note that when a feasible zero-one solution X is given, a necessary 
condition for another feasible solution X' to be optimal in. (AD) is 
Z(Xl <Z(X') 

A COMBINATORIAL PROBLEM 

In order to put our methcd to test, \ve consider the following 
problem as an example. 
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Table I 

VJ -I 4 I 4 I 5 I 2 I 4 I 9 I 7 I 9 110 I 8 I 7 111 113 113 1141 9 \ 5 I 
I Xl I X2 I X8 X, X~ Xe X7 I X8 Xg I XtO I Xu XI21 X18 Xl, I Xt~ I X161 X17 i s 

It I I I 1 1 1 \ 1 I I \ 11 
12 I \ I I I (I 1 1 111-11 
Ia[ [ I \11 111 11 111 I 1 I i \1 
1,1 I I I I \ I I 111 I 11 \ 111 I \ \1 
Is I I I I I 1 \ \ 1 11 I I 1 I \ I I 1 \ \ \ 1 
Iel III I , , 1/ I / /1/ 11/ / I 1111 
17 I I I I I , I \ I I 1 I I 1 I I I 1 I \ \1 
I s \ I I \ I \ I I I I / I I I 11 \1\ 11 
Ig \l\ I 1\ \ \ I I 1 \ \11 111 I 11 \1 

I 1 I \ 1 \ I \ \ 11 I I I \ ! \ .1 
qf1) I 1 \ 1 I 1 \ 1 I 1 -I 2 I 2 \ 2 , 2 I 2 I 3 I 3 I 3 I 3 I 3 I 2 I 2 I 
f l)1 10 51 ! ° 1 I I 10 ! / o! I 1 771 

1 I 1 I 1o 41 q Vj,. 2 ;0.25 .2 0.51°.25:°.22: .28,0.22 .2
1
°.250.43 O. ~ O. ~3 0.23:0. ZIp. 22i . I 

I © I © I I I I 0 I \ I 0 I I I I I i 0 I I I: 
I I -I x I I I I I x 1 I I 1 I xl x I I x I i 

47t2 I I I I \ I I I 0. 5 I 0. 5 ! ! I 1 0. 51 I 10. 51 I 
qP) I I I I ! 1 I ! 2. 5 ! 2. 51 I I 13. 5\ I 12. 51 I 

qP)/vj! I I ! I I \ la. 28:0. 25~ i I ;0. d ! \0.28! I 
i ! I I I I I I ill I \ I I I I i 

47tl I I (0. 251 I :0.2510. 251- ! I I I ;0. 251 I , , i 

qfS) I i, 11. 251 I 12.25'2.25! I I : I 13. 75 1 i ! 
, I , '_ -,---' --.---_,----,----'._-;--_,-,-_____ _ 

,qf2)IVJi i iO. 25; I 10. 25:0. 32~ ! i , I 10. 28 I : ! 

l_i __ 1_1_: 1 __ I._I_LJ_:LJ __ ' _13_'_-. ,--;---
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"We have items Ih 12, ..• , Ig and try to combine them into 
several combinations. When th~ value of each combination is given, 
for example (Table 1) combination (Il la) is 9 units valuable and (12 

I,) 10 units valuable and so on, what is the most valuable combining 
pattern of these nine items?" 

The full set of possible combinations for this problem is shown 
in Table 1. Zeros are implied at all row-column intersections other 
than those with ones. If i-th item is involved in the j-th combination, 
then i, j element of this matrix al} is equal to one, and zero if not. 
The values v's of these combinations are inserted into the second row 
of Table l. 

Now, let matrix of Table 1 except row v and column S be A, 
and column vector (Xl Xz ... xn)' * be X, then the concerned combina­
torial problem can be described in mathematical term as follows. 

Maximizing 

subject to 

AX=S 

and 

This is a typical discrete programming problem discussed before, and 
we shall deal with it by our aggregation method. 

Computational Procedures 
(Procedure 1) Let all nine n's be equal to one and aggregate the 

nine linear constraints (A) into one equation (B l ) 

where 

* A dash shows transpositon. 
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q (1) 
(Procedure 2) Compute EP) = J_ for every combination. 

VJ 

(Procedure 3) By inspection (intuition or experience) choose a better 
solution X(l) which may be thought as a quasi-optimal solution. In 
Table I, selected combinations are 1-8t, 2-nd 6-th, 9-th and 15-th, 
denoted by single circle, O. 

(proc. 4) 
q (1) 

Find the maximum EP)=_J_ from among that of selec­
VJ 

ted combinations. (xJ= 1) In Table I 

max (EP») =max (0.25, 0.25, 0.22, 0.2, 0.21) 
"rl 

where the first and second combination shown by double circles, 
@, have maximum EP) of the selected combinations. . 

(proc. 5) Find combinations not seiected in the feasible solution and 
has smaller EP) value than the maximum found in Proc. 4. These 
are denoted by cross x 

(proc. 6) Increase proper 71:'S from one until EP) of single circle-
combinations reach the maximum value, O. 25. Possible increments of 
71:' s are denoted by .:171:' s in Table 1. 

First we consider the second constraint 

XS+Xg +Xls+x16=1 

multiplying 71:2 before aggregation, 

q9(2) =71:2+ 1 

qg<2) 71:2+ 1 
v;-= 10 0.25 

where superscript (2) means that q(z)' s are the coefficients of x's in the 
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second aggregation problem, ttl = 1, :'l'2= 1. 5, 7t3=··· =7t9= 1. Since EJ 

values except 8-th, 9-th, 13-th, 16-th do not change, only these four 
values are written in row qP). 

Similary in order to raise qS(2) /V6 from 0.22 to 0.25, noticing the 
first restriction, 

then 

q3(3) =qg(2) +0. 25=q/l) +0. 25= 1. 25 

lJ6(3) =q3(2) +0. 25 =2. 25 

At the third step 15-th combination is yet left with smaller value 
than 0.25, but because even if it is raised, the increasing effect does 

qj 
not affect the cross-combinatiuns that have still smaller Ej= -- values 

Vj 

than 0.25 such as 14-th combination, we need not increase it. 
This procedure can also be simplified as follows: 

put 

then 

If in order to increase (j to (j+i::l.(j \\·e raise only i-th 7t, tti to 7t! 

+...'l.7T[, then 
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and ~b the increment of fl: other than fj, will be 

If (/1) is increased to Er by multiplying 7ft + ~7ft with i-th equation. 
then 

Qk(2) 
and (k(l) will be increased to f",(2), - in the next step. 

v'" 

Thus it turns out that (Er-Ek) 's are transformed in the same 
way as the elimination method of the linear computation. Table II 
shows this step transformation. 

(Proc. 7) At last, there may be left some cross-combinations which 
can not be equai to or larger than the maximum value by any means, 
such as 14-th. 

Try if there exists such another feasible solution X' that has 
larger Z(X') than Z(X), and involves at least one left cross-combination. 

(Theorem. 5) If there is not such a solution as in (Proc. 7), the 
initial feasible solution X is optimal in the given combinatorial 
problem. 

(Proof) If the above condition is satisfied, we can be sure that left 
cross-combinations never come into the optimal solution and can be 
struck out from the initial set of combinations. On the other hand, 
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Table 11 ( ad = a:;) 
! XI \ X2 loo X~-! ~-X5 - X6 X7 I Xs 1 X9 I XIO I Xu I XI2 I XIS I XI. 1 XIS I XI6 \ XI7 
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le -I O. 1111 o. 1 I I 0.0771 I I o. llll __ -
13 __ ~-!~~;:= o. 111 __ -__ 1~~1~1 __ 0.1251 0.1431 I I 0.0771 1 _____ 1 

I. i ! i I o. 1 ! 0. 0911 1 0.0771 I I 
- _._. - --------~ ---- - ---- -- --- --.------~- ,-----

I r, . I \ 1
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, - - .---.-.--- .-- --I -------~--------.------- ------------------------

I, I I Hi i ~O. 125] , 0.091; l ! 0 071[ ! I' 

Is -\-- -r--- ------ - --T--i-1 I \ 0. 0711 0.111[--= 

19 :0: 251 I I -- - --- -------- -- i .-- I 0.091! \ 0. 077r--T---I~ 
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1

- --- --- -- - - -- - -- --I ------- ------ ----- -- ---.-------
: I Ixl I : x I 1 : x I x I I x I 

1_~...:EP~J_-o-lu--oTo~I----- --- 0.03 , . - --I 0. 03 1 0.05 I I I I 0.02 I 0.02 I 0.04 I 0.03 [-= 
I __ ~=?(2~._ L~L 010. 051 1°. 03 1 1- 0. 03\ ° I I I 1-0. 021.~.~ 1 0.04 !-o. 03\ _ 
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) I ol~ 01 I ~ o! 1-0,071 01 :1 -0.031°.021°.041-0.031 
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through (Proc. 1) - (Proc. 6) by selecting suitable 7(' s, the feasible 
solution X is proved to be optimal in the aggregated problem (BC) due 
to Theorem 3. 

Accordingly we can be sure that X is also optimal in Problem 
(AD) from Theorem 4. 

In Table I, there does not exist such a feasible solution X' that 
involves 14-th combination and Z(X') >Z(X), therefore feasible solution 
(x,=x2=x6=x9 =x,5=1 other Xj=O) is optimal in problem (AD). 

(Proc. 8) If there exists such an X', repeat (Proc. 1) - (Proc. 7) 
replacing X' instead of X. 

CONCLUSIONS 

A method of computing the optimal solution of the discrete 
programming problem have been discussed. The present purpose was 
to give a criterion in the practical form, but not to obtain a complete 
theory. However it is of course desirable to be able to find out 
feasible solutions systematically by using, for example, the punch card 
machine. Then this aggregation method will help us in cutting off any 
unnecessary combinations. We may also regard this method as a kind 
of parametric linear programming. 

APPENDIX I Proof to (Theorem 3) 
maximize 

under 

(a. 1) 

(a. 2) 

(a. 3) 

Where Yl is nonnegative slack yariable corresponding to Xj. Let 
q's be arranged in certain order. Without loss of generality, we can 
suppose it as ql, (]~, ... (]". 

Then a number r is defined by 
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(a. 4) 

As (a. 2) and (a. 3) contain n+ 1 linear independent equations, we can 
solve next n+ 1 variables. 

j::1, 2, .... r. (a. 5) 

(a. 6) 

..Yr+l=l-xr+l (a. 7) 

j::r+2, n (a. 8) 

substituting (a. 5) (a. 6) into (a. 1) , 

(a. 9) 

For the sake of brevity, assuming t'j>O, qj>O, and if 

max(~, .~, 
\ t'i v~ 

(a. 10) 

then due to linearity of the function Z, the optimal solution can be 
obtained by putting vah;es of the independent ,'ariables in (a. 51, (a. 6), 
(a. 7) and (n. ,~, :lS zeros. Thl"i.s (Theorem 3\ has been proved. 

If \\'e happen to have eqt;2lity in (a. ,1). and the condition la. 10) 

are satisfied by certain order, then the zero-one solution .'('(.l·t = ... =xr 
=1. X, .. ,=···· =x,,=OI wouid be optimal one to this Knapsack problem. 
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