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INTRODUCTION 

According to the tremendous increase of traffic on the roads in 
. our country, traffic congestions and accidents have been rapidly 
promoted. As the first step of the theoretical studies to prevent 
accidents caused by improper following, we will consider the stability 
of vehicular traffic flow in this paper. 

The theory of traffic flow may be classified in three types, the first is 
the stochastic approaches to the characterization of random flow, the 
second is the hydrodynamiC expressions performed by P. 1. Richards,l) 
and the third is the traffic dynamics by L. A. Pipes.2) 

After investigating the dynamic equation of Pipes, we have 
introduced in the equation the transfer lag due to reaction time only. 
In the follO\ving discussions a fundamental equation to traffic dynamics 
will be drived in which the transfer delay of reaction time is being 
considered. Thus the stability of traffic flow will be given by the 
cycling phenomena not mentioned in Pipes' traffic dynamics and by the 
propagation of a sinusoidal disturbance. 

FUNDAMNTAL EQUATIONS OF TRAFFIC DYNA..,\UCS 

A model of traffic flow which several yehides are traveling in 
queue is shown in Fig. 1. Each driver will dri\-e his "ehide with a 
spacing that will avoid coiliding his car ahead. But there is no absoltite 
proof that his car never collides if.t keeps that spacing. The tinal 
factor of safety depends on the judgement of the dri\-er attained 
through his experience. In fact, an improper following due to his 
misjudgement often leads to accident:;. 

As shown in Fig. 1 consider the queue of individual vehicle 
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traveling to the right. Let Xi: (t) and v" (t) be the coordinate and the 
velocity of the k th vehicle from the leading vehicle at a certain time 
t respectively, and T, the reaction time of driver. The velocity of the 
(k+ 1) th vehicle at the time t, Vk+ 1 (t) is attained as the result of 
reflection of the clearance spacing xk(t-T) -Xl:+dt-T) just before the 
reaction time T of the driver. It is because there will be a delay of 
at least the reaction time to response to the variation of the motion of 
the preceding vehicle. Since the spacing between two successive 
vehicles in queue is expected to depend on the velocities of those 
vehicles, the following relation is given, 

( 1 ) 

where F is a function fixed by the experience of drivers. 
To simplify the analysis F is assumed as a linear function of Vi: 

and Vi:+b then 

where a, /3, and b are constants. In this paper (report I), we consider 
the simplest case that F is the function of Vk+b namely 

F[v" (t-T), Vk+l (t)] =/3Vk+l (t) +b, (3 ) 

and the case of Eq. (2) will be discussed later in the paper (report I1). 
The dynamic ~equation of traffic flow treated in this report 

becomes 
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or differentiating both sides with respect to t. it becomes 

MOVEMENT OF A QUEUE Ol<~ VEHICI.ES 

Applying the Laplace transformation to Eq. (5) and putting 
f3=nT. we have 

or 

(k=1. 2. 3 •... ) (6 ) 

where 

i:md VHl (0) denotes the initial velocities of the vehicles at t==O. Eq. (6) 

gives the motions of the following vehicies if the movements of the 
preceding vehicles are known. 

Suppose now all the vehicles are standing still and the leading 
vehicle starts at a constant veiccity VI) with an impuisiye acceleration 
of the delta function type. 

Now let us consider the movements of all the following vehicles. 
The motion of the following vehicle under such an input of the step 
function type may be cailed indiciai response as generally termed in the 
field of automatic controls. 

In this case, since the initial ,~onditions of Eq. (6) are 

VI (t) =1'0 for t~O. V",; (0) -=0, (k=l. 2. 3 .... ) 

so 

VI (s) -, "o's, VI'; (s) O~. :1, Ik=l, 2, 3 .... ). 

The indicial responses of the (1<-1 1 \ th vehirie are obtained by 
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repeated application of Eq. (6) as follows. 

(k= 1, 2, 3, ... ) 

To compute the inverse transfonns of Eq. (7), expanding VI:+l (s) 
in the power series, 

_ voe-I:7" voke-("'+l)7" vok (k+ l)e-(k+2)7" 
- - (nlTics"'+! - --(liT) 10+15"'+2 +--2-(nTf"'-+Zsk+-3-

vok (k+ 1) (k+2) e-(k+S)7'1 
------3! (nT)I:+S-,Si:+C--+'" (8) 

Therefore the indicial responses required are given by 

:!!.k~~(!L = nk (k~ I)! [( ~ - k)'" I k- ( f--k-l),,+1 In (k+ 1) 

+( f -k-2f 2
j2n2 (k+2) -( ~ _k_3)",+3 j3 ! n3 (k+3) 

( 
t k+4/ ] + -1'--k-4) 14! n' (k+4) - ... , (g) 

where t-kT or tIT -k is zero for t-;;;;;'kT by the translation theorem of 
the Laplace transformation. 

Hence the indicial responses for k= 1, 2 are the following 

v~(t) =_1 (t _]) __ 1_., (_t _2)2+_.1_( t_3)3 
Vo it T 2n- T on3 T 

--2:fti4 -(-~+4)4 +T2GI;r(-f -5r 
- --72-~16 (-~ -6) 6 + --50 ~j}17 ( f -7) 7 - . -

(l0) 
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Fig. 2 shows the indicial responses expressed by Eq. (10) . As 
shown in Fig. 2 the movements (responses) of the (k + 1) th vehicle 
will require the dead time of kT before actual starting, and will accom­
pany oscillations if n is small. 

These oscillations are called cycling in this paper. As time elapses 
this cycling will generally weaken and finally fade and Vk_1 approaches 
its final value Vo. 

Now using Eq. (6) consider the movement of a queue of traffic 
after a sudden stop of the top vehicle. Since all the vehicles in the 
queue of traffic are initially movjng with a uniform velocity. Vo, the 
initial conditions required are 

(!? = 1. 2, 3, ... ). 

Hence we ha ye from Eq. (G) 
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(11) 

and VI (s) vanishes. Then we can write the inverse transformations of 
Ep. (11) for k== 1, 2 in the following forms 

_!'~ ==l--.l(~-l)+ __ l- (.~ _2)2 __ 1_(--! __ 3)3 
Vo n T 2n2 T 6n3 T 

1 (t )6 1 ( t )7 + 720n6 T -6 - 5040n7 T -7 + ... , 
(12) 

-8~4( +--4) 
4 

+ 301n~ (~ -5r 
---i4~)j6-( ~ -6Y +-g.iBn7-( +-7r -... 

l.cr---.:--_~~ 

os 
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The result of indicial responses of each vehicle calculated by Eq. 
(12) is shown in Fig. 3. The actual responses are shown by full line 
in Fig. 3, sinCe the velocity can not be negative. The responses are 
meaningless for the dotted line. 

Replacing v in Eq. (10) by V'tart and v in Eq. (12) by VItO'P' we 
find 

V2"tart (t) + V2,lto'P (t) = Vo, V:hlt4rt (t) + Va,lto'P (t) = Vo (13) 

These relations are self-evident if Eq. (12) is compared with Eq. (10) . 
Hence the following relations are generally suggested, 

(k=l, 2, 3, ... ) (14) 

Eq. (14) should be proved here by means of mathematical 
induction as follows. 

Let G (s) denote the transfer function of Eq. (6). Then we have 

e-7" 
G (s) = nTs+e-7" 

Hence we obtain from Eq. (7) 

Vb,tart (s) =vo[G (s) ]I:-I/S• 

If we put 

P(s) = nT --- +nTe7"G (s) 
nTs+e-7" 

We have from Eq. (11) 

where 

Ht-I (s) =F(s) +F2 (s) e-T'j nT+p3 (s) e- 2T"8/ (nT) 2 

+ ... +Fl«s)e-(H)7'S/(nT)k-1 

(15) 

(16) 

(17) 

(18) 

o=nTeT'C (s) [l-:-C (s) +C2 (s) -+ ... -+CIc-1 (s)]. (19) 
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Now let us assume 

(20) 

or 

G"'-I (s) +sH,,_, (s) = 1, (21) 

Then we can prove the relation GI< (s) +SHk (s) = 1 as follows. 

This relation becomes 

However, under the assumption of Eq. (21) we have from Eq. (19) 

n1'spT'(l+G(S) +G2 (s) + ... +O'(s)] =l-G~-' (s) +nTseT,. 

Hence we find 

GIc(S) +sH/c(s) =GIc(S) +G(s) [l-Gk-I (s)+nTsi"'] 

=G(s) (l+nTseT
'] 

=1. 

The inverse transformation of Eq. (22) becomes 

(22) 

(23) 

Thus, whenever we assume Eq. (20) we can find the relation of 
Eq. (23). The vaiidity of Eq. (23) for k = 1, 2 is clear as was in Eq. (13), 
so the reiation of Eq. (23) is generally proved for all k. 

Therefore, if we know either 1I""rt or i',top, we can calculate 
another unknown. 

STABILITY OF INDICIA!' RESPONSE UNDER 

STEP FUNCTION DISTURBANCE 

If the ill(1:(~I3.1 response approurhes its finaJ \'[lIue l'o as time 
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elapses, the response is stable, but that the indicial response shows a 
permanent continuation of cycling the response is unstable. 

As the transfer function of Eq. (6) is given by 

(24) 

it is clear that the queue of traffic flow constitues a feedback system 
with feedback transfer fUnction 3) e-r'/nTs as shown in Fig. 4, which 
is its block diagram showing a 
servo system. 

A practical and simplest 
method of obtaining the response 
is Power Series Method such as 

lL.-~~~~~:~_e_-_X_n_TS_I-' ~~~~~~r--V.t_+l 
described in the foregoing para-

Fig. 4. 

graph, but if the stability problems are to be 
characteristic roots will be more proper. 

considered a method by 

The characteristic equation of Eq. (2,40), that is 

has the following roots whose form is now assumed; 

(£=1,2,3, ... ). (25) 

Then these roots may be calculated from 

(26) 

The indieial response of the 2nd vehicle is 

(27) 
. r e-T'e"t J =v '" Resldues of l----- - --- --o .--' s (nTs+e-7") . 
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If we place 

P(s) e-'I" 
-(Y(S)--= s(nTs+e-'I") , 

e·tp(s) IQ (s) behaves regularly except s:=:O and s=S" accordingly its 
residue is unit at the simple pole s=O, and the residues at the simple 
poles s = S! ~re described by 

Hence we have from Eq. (27) 

(28) 

If we write 

Rl=-ll (1 + TS!) , (i:=: 1, 2, 3, ... ) (29) 

corresponding to a conjugate imaginary pair of roots: ,> 

(30) 

then we have 

(31) 

Denoting SI the nearest root from the imaginary axis of all the 
characteristic roots, the response is represented approximately by a 
component response of S1> that is 

(32) 

As an example of the use of Eq. (32), we consider the responses 
for n,=-l, 2. The characteristc roots SI are calculated from Eq. (26) as 

-O.318IT±1.338j/T, -O.791/T±O.770j/T 
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and they correspond to the 
points 11 and 12 in Fig. 5. 

Hence the indicial re­
sponses are given as follows 

=vo[l + 1. 334e-O.318t/7' 

('os (1. 338t IT 

-4.24)] for n= 1 

cos (0. 770tlT 

-4.63)] for n=2. 

(33) 

These responses for tiT> 1 
well coincide with the resp-
onses obtained by Power F!g. j. 

Series Method. 

21 

As shown in Eq. (31), the real parts of all the characteristic 
roots should be negative when the indicial res pone of the 2nd vehicle is 
stable. Since (T1 =0 at the stability limit, we can derive directly from Eq. 
(26) the condition defining the limit of stability, 

n=2!7C. (34) 

On the other hand, the critical condition in which cycling 
disappears may be similarly derived from CL)1 =0, that is 

n==e. (35) 

Next we consider about the general case. The transfer functions 
to the (k+ 1) th vehicle are giYen explicitly as 

Gt 1 (s) = Gk (s) = ____ c ~- , -( 
-1'8 )k 

- \ nTs+e- Ps , 
(k=l, 2, 3, ... ) (36) 
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A block diagram of this servo system is shown in Fig. 6. The. character­
i8ttc roon of this sY8tem are given by 

Fig. 6. 

and are the roots of k th order of Eq. (26). 
Since the indicia! responses are represented by 

. r e-"T'e" J 
=vo~ Resldues of L -s(nTs-+e 7")" (37) 

= Vo ~ Resid'ues of [J (s) e"], 

we have in general 

As is known from Eq. (38), an indicia! response has Some 
component responses of the form tk-1e-al' when the characteristic 
equation has the root of lz th order. But so far as <1"1>0 these component 
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responses will be damped as time elapses. 
Since the indicial responses may be represented approximately 

in terms of SI as mentioned above, the stability condition in general is 
n>2/?r, and the cri1:ical condition in which cycling vanishes is n=e. 
Hence we have the following conclusion. 

If a spacing between two succssive vehicles is given by the linear 
form of velocity of the following vehicle, the indicial response of pach 
vehicle in a queue of traffic is unstable for n-::;2/?r, stable with cycling 
for 2/?r <n <e, and stable without cycling for n~e. 

Thus the queue traffic regarded as a servomechanism w ill be 
stable if and only if the characteristic equation has no poles in the 
right half of the s-plane or on the imaginary axis, and the stability 
~il1 be lost as a characteristic root will come near the imagInary axis. 

Therefore the stability of the indicial response wan cycling may 
be evaluated by 

which is zero for n==2/?r and unit for n=e. 

STABILITY OF PROPAGATION 01<' 

A SINUSOIDAL DISTURBANCE 

(39) 

When the top vehicle in a queue of traffic was disturbed, a wave 
of the disturbance would travel down the queue of vehicles. 

If the disturbance be a simple sinusoidal oscillation 

a==A sin rut, (40) 

then, it is possible to express a sinusoidal disturbance as the pure 
imaginary part of an exponential function 

(.11) 

but it must be noted the real solution is given by the pure imaginary 
part of the complex solution, devided by j. 

After a sufficient time, the response of a stable system under 
such a sinusoidal disturbance will become sinusoidal with an altered amp-
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Iitude and a phase shift. Considerations are given to the response in 
the steady state. 

Denoting the amplitude z and the phase shift ,p, we may write the 
response as 

which is called the frequency response. 

where 

From the characteristics of frequency response, we have 

z=A/GA:+,(iw) /=A{/G(iw) W, 

<!>=tan-'lm[Gi:+1 Uw) ]/Re[Gi:+, (jw)], 

(42) 

(43) 

(44) 

The initial Sinusoidal oscillation is transmitted to the following 
vehicles magnified if I G Uw) I> 1 and is transmitted damped if I G (jw) I 
<1. Hence the stability condition of the propagation is 

or more explicitly 

However since 

IGUw) 1<1 

! e- jwl' ! 
I-·-T-~\<l I Jnw +e-

GU) t 
-I -nwTcoswT 

arg w = an I-nwTsinwT' 

the stability condition is given by 

(45) 

(46) 
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or 

(47) 

It is clear that all the values of sin wT/wT are less than or equal 
to 1. Therefore if n> 2 the propagation of a sinusoidal disturbance is 
stable for all wT. 

Fig. 7 shows the amplitudes of the frequency responses depending 
on wT. As illustrated in Fig. 7, the amplitude of response increases as 
n becomes smaller and the high frequency componets of a disturbance 
disappear in a short period of time. 
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If the disturbance be no longer a simple sinusoidal oscillation, but 
of a non-periodic function of time. the solution is more difficult. 
However, such a complicated case may be reduced to the simple sinusoidal 
oscillation by use of Fourier theorem.. 
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