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INTRODUCIEON 

In (1) and (2), using the functional equation technique of dynamic 
programming, we discussed a mathematical model associated with the 
economic question of the most effident utilization of a complex of 
interdependent industries. 

In this paper, we wish to discuss the numerical solution of a 
particular class of problems of this general type. As we shall show, a 
simple device permits us to r€C'uce overtiy the computation. 

A "BOTTLENECK" PROCESS 

Let us assume that we have two interdependent industries, the 
"auto" industry and "steel" industry, and that the state of each 
industry at Bny rart:cu!ar fme tray be clmplttfly s);ecifi€d by two 

quantities, the stockpile of raw material required for production, and 
the maximum production capacity. To simplify the problem for this 
initial computation, we shall assume that the auto capacity is 

1 

© 1958 The Operations Research Society of Japan



Hkhard lJef'man 

unbotmded. The purpose of the process will be taken to produce as 
many auto as possible over a time-period T. 

The process is assumed to be discrete, with allocations made only 
at times t = 0, 1, 2, ... , T -1. At any particular time, 11, let 

x, (n) =amount of steel in the steel stockpile 
( 1) 

x". (n) =capacity of steel mills. 

At each time, n, the steel in the stockpile may be used for either 
of these purposes, to produce additional steel using the existing steel 
capacity, to increase the steel capacity, or to produce auto using the 
existing auto capacity. 

where 

Let us write, 

a. z. (n) =the quantity of steel used to produce an 
additional steel, 

(2) 

b. Zm (n) =the quantity of steel used to increase steel ( 3) 
capacity, 

C. Za (n) ==the quantity of steel used to produce autos, 

Let us impose the following constr~ints, 

(4 ) 

b. z. (n) ~xm (n) . 

The first constraint says that it is not possible to use more than 
a fixed percentage of steel for auto production over any stage, k to k+ 1, 
while the second asserts that there is no point to allocating more steel 
to the steel mills than the m:lximum C~p:l.~ ty. 

Let us now see how the state of the system is affel·ted h\" the 
allocations. assulU ing J inearity, 
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a. x, (n+ 1) =a3z, (n), as> 1, 

·b. xm (n+1) =xm(n) +a~(n), a,>O 
(5) 

Finally, let us assume that the quantity of autos produced in a 
stage is z" (n) • 

It is required to choose the quantities z, (n), z.,. (n) and z" (n), for 
n=O, 1,2,···, T-1, so as to maximize the total quantity of autos 
produced over the period [0, T], given the initial quantities, 

c,=X.{O) , 

C2=X".(0). 

LINEAR PROGRAMMING APPROACH 

The problem reduces to that of maximizing the linear form 

r-' 
L (z) =~ ;z" (n), 

n-o 

(6 ) 

(1) 

subject to the constraints of (2), (4) and (5), a problem within the 
. domain of linear programming. 

Let us, however, count variables, assuming that we are interested 
in a 30-stage process. Taking three unknown at each stage, we have 
a problem inyolving 90 variables, subject to 120 relations. Although 
this is not a formidable problem in terms of the simplex method, it is a 
sizable problem. If we wish to determine the dependence of the solution 
upon Cl and Cc, the initial parameters, this method is unwieldly, since 
it requires a separate computation for each value of Cl and C2' 

In its place, ".-e wish to present a method which yields the 
solution for all positive Cl and C2, by means of the computation of a 
sequence of one·dimensional functions. 

DYNA~nC PROGRAMMING APPROACH 

Let lIS def;ne, for iV c= I, 2, ... , 

In (r!. Cc) = total alltos production over n stages, starting 
with initl:ll qu~ntities C, and C2. and using an ( 1 ) 
optimal policy. 
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Clearly 

(2 ) 

Using the principle of optimality, we have 

( 3) 

for R== 2, 3, ... , N, where the m!lximiztion is over the region in 
z-space defined by 

(a) Za, Z" zm2:0, 

(b) za+z.+Zm=Ch 
(4 ) 

(b) Z/1::;OlC" 

(d) z,<c~ . 

In the next section we shall discuss the numerical determination 
of the sequence {f R (Cl> c,J} for R= 1, 2, ... , and Cl> C~~O. 

REDUCTION TO A SEARCH OF VERTICES 

The region in the (Z/1, Z" Zm)­
plane determined by those inequali­
ties has the form of figure 1. These 
vertices have the following signif­
icance in terms of the procoss : 

1. Where mill capscity does 
not represent a constraint, allocate 
all availabie steel toward the prod­
uction of more steel. 

2. Allocate as much steel as Z", 

possible towards the production of 
steel and when the miil capacity is met, 
increasing mill capacity, 

Fig. l. 

allocate the rest toward 

3. The allowable percent of steel stockpile is assigned to auto 
production, the remaining to steel production . 

. 1. The Yertex O("'llrs when mill r.aparity is low. It represents an 
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allocation to auto production up to the allowable percentage, and an 
allocation of remaining steel to expanding mill capacity. 

5. AllQcate as much steel as allowable to steel production and 
the remainder to auto production. 

6. Allocate all of the current steel stockpile toward the expansion 
of mill capacity. 

7. Produce as many autos as possible and then expand mill 
capacity with the remaining steel. 

Obviously all of these conditions do not occur at once, but 
depend on steel capacity and steel stockpile, which vary throughout 
the process. 

It may be shown, either from the fUnctional equation in (3), or, 
as a consequence of known results in the theory of linear inequalities, 
that the maximization over the region depended by (4, 4) reduces to a 
maximization over the seven possible vertices marked in the figure 
above. 

Of these seven, only the first five are actually possibilities, since 
vertices 6 and 7 effectively and the process-no new steel being 
produced. 

The stagewise maximization probelm is thus quite trivial. The 
tabulation problem, however, remains non-trivial, because of the 
possibility of an expanding (Cl> c~) -domain as R increases. The difficulty 
will be overcome in the following section. 

REDUCTION IN DlMENSlON AND MAGNITUDE 

Let us show that we can reduce the problem to a sequence of 
no-dimensional problems and simllltaneously introduce shrinking 
transformatIons. 

It is first of all cle.'lr from the linearity of all the constraints and 
production function that In (Cl> cz) is a homogeneous function of Cl and 
Cz of the first degree. 

Hence, for Cl> c~>O, we have 

(1) 
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It folloW9 that we need comput only In (1, x) or In (x, 1). Turning 
to (4.3), we have 

(2) 

We see, then, that caluculation of IR(Ch C2) for C22:0, depends 
only upon a knowledge of I R-dl, C2) for c?2:0. This is the required 
reduction in dimensionality. However, we still face the difficulty of 
an expanding range for C2' 

In order to avoid this difficulty, let us show that we can compute 
IR(1, x) and IR(X, 1) for 0:::;; x.::; 1, knowing IR-dl. x) and IR-dx. 1) 
for O<x::;1. 

Referring to (2), we have 

(3) 

Combining this equation with observation above concerning the 
maximization over vertices, we have a fairly simple computational 
scheme. 

COMPUTATIONAL TECHNIQUE 

The simplification introduced by the transformation technique of ch. 4 
represent the most significant contribution of the particular study, 
with respect to the programming the results are these: 

1) a reduction in time and space requirements from N- to 2N and 
2) considerable further reduction afforded by the elimination of 

expanding grid. 
Let us elaborate upon these two points. 
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Normally, the express all possible states of a system defined by 
two independent . parameters (here Ch steel stockpile, and C2, mill 
capacity) it is necessary to construct a grid of !-r(Ch cz) ,in (Ch C2) 
space, and then to interpolate over this 2-dimensional region to 
determine 17' (Ch C2), the steel allocatable to auto production during an 
N-period process where the initial conditions are ct and c{ and an 
optimal policy is pursued. This fWl.ction is necessary for our recursive 
calculation of 17'+1 (Cb C2)' Where the interval [0, Cl] and [0, C2] are 
divided into N parts by this grid, we must compute and store N2 values 
of 17' (Cb C2) for future use. 

The time requirement become ever more serious because of the 
,extra logic needed when dealing with a 2-dimensional system. Hence 
the savings resulting from the reduetion to one-dimensional form. 

The possibility of an expanding grid is a serious obstacle in some 
dynamic programming processes. Non-mathematically the problem is 
this: To calculate the conditions a': time t we must know in advance 
all possible state in which may find yourself :1t time t+ 1. In this 
particular application, to determine auto production over T periods, we 
must know auto production for T-l periods for all allowable steel 

"stockpiles and capacities. But after one period of production, either 
stockpile 17' (Cb C2) can be calculated in smaller than the region over 
which 17'-1 (Cl' C~) is known. One must therefore begin an N-stage 
calculation by considering a large region in order to complete the 
calculation with a modest range of values for Cl and Cz. The technique 
of 6. by passing the obstacle, represents a real and significant advance. 

One further innovation in this problem, the optimization over a 
three dimenSional-region, bears "mention. Techniques for the solution 
of general problems of the multi-dimensional nature ha\-e been little 
investigated. Here, of course, we are saved by the nature of the 
functions and have shown that oniy the vertices of the region need be 
considered. The coding techn;que Gsed to determine and evalute the 
relevent vertices is db.gro.mmed in f:gure l. 

The remainder of the problem is concerned with the calculation 
of a table of values of IT \~\, c2), the block transfer of this table, and 
its subsequent use in the derivation of table of IT-t ~Cb C2)' 

Table 1 present an analysis of 0. typical set of results. The 
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no 
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no 
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Table 1 15- stage process 

---. 

a1= .2 

tZa=2 
a.= .4 
et=l 
c2=1 

Information made available by Actual conditions using optimal 
calculation policy 

Normalized condition at Actual condition Steel allocated 
(ct. C2) at to 

Stage beginning of stage Vertex beginning of stage auto production 

(1, 1) (1) (1. 1) 0 

2 (1, .5) (2) (2, 1) 0 

3 (1, .7) (2) (2, 1.4) 0 

4 (1, .5857) (2) (2.8, I. 64) 0 

5 (1, .642) (2) (3.28, 2.096) 0 

6 (1, .611) (2) (4.192, 2.57) 0 

7 (1, .626) (2) (5.14. 3,22) 0 

8 (1, .620) (4) (6.44, 3.988) 1. 288 

9 (1, .558) (4) (7.976, 4.4536) 1. 595 

10 (1, .586) (4) (8.9072. 5.2196) 1. 781 

11 (1, .573) (4) (10.4392, 5.9817) Z.008 

12 (1, .579) (4) (11.9634, 6.9268) 2.393 

13 (t, .576) (4) (13.8536, 7.9797) 2,771 

14 (1, .577) (4) (15.9594. 9.2086) 3. 192 

15 (1, .577) (4) (11.4172. 10.6226) 3.683 

Total allocation to auto production ,= 18. 853 
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calculation generates the optimal choice of vertex at each stage for each 
initial condition and also lists the total steel allocation to auto-production 
achievable. To better display the results, a hand calculator was then 
performed, using the policy dictated by the computor, which shows the 
actual, unnormalised, growth of the system as a function of time. The 
sensitivity of the process was demonstrated by evaluating the return 
from a policy that was optimal in all but the first decision. An initial 
choice of vertex 3 results in an overall reduction in productivity of 8%. 

DISCUSSION 

Referring to Table 1 in the previous section, it will be observed 
that the optimal policy leads to a certain invariant state. As we shall 
show in a subsequent paper, this invariant state may be predicted in 
advance. 

The existence of this state is related to a number of known 
results concerning the growth of an economic system over time, as we 
shall also discuss. 
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SUMMARY 

In this paper, we consider the computational solution of a maximi­
zation problem arriving in the study of the utilization of interdependent 
industries. Under the assumption of proportional LOsts and returns, it 
is shown that the dimensionality of the problem can always be reduced 
by one, ~nd ail the transformations oc-curing can taken to be "shrinking 
transformations". This transformat:on overtly improves the efficiency 
of the method. 
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