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INTRODUCTION 

A computational method, based on a modified method of Ford­
Fulkerson's algorithm for finding maximum network flows \) and on 
the duality theorem of linear programming 2), is proposed for the 
following transportation problem on a network: Consider a network 
connecting the sources and the sinks by way of a number of intermediate 
nodes, and suppose that the arcs can handle certain designated amounts 
of traffic per unit time. Further, suppose that the cost is prescribed 
for the unit flow through each arc, and suppose that the net flow out_ 
of each source node or the net flow into each sink node is prescribed. 
Assuming a steady state condition, find a traffic flow of minimum cost 
from the sources to the sinks. 

In this paper the author will give an extension of Ford-Fulkerson's 
primal-dual algorithm 1),3) for the unc.apacitated or capacitated Hitchcock 
problem 4) to the transportation problem on a general network 5). 

FORMULATION OF THE PROBLEM 

A network is a finite linear graph 6), in which any two nodes are 
connected by a single arc. This means that the graph is complete 6). 

However, this assumption will result: no real restriction, because arcs of 
zero capacity are admissible and many arcs connecting two nodes c.an be 
reduced to an arc 7) and the definition of arc capacities undermentioned 
allows us to include directed arcs. 

The nodes are classified into three classes: the SOlirees PI> ... , 
p" the intermediate nodes P't [, .. ,Pm., and the sinks Pm>1> ... , P". 
Two nonnegativeintegers CiJ and Cjf are prescribed to the are connecting 
Pi and p.'. Ci.' (CjJ represents the prescribed capacity of flow from Pi 

If/1 
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158 Toshio Fujisawa 

(Pj ) to Pj (PI)' dt} (djl ) stands for the prescribed cost of unit flow Pi 
(Pj ) to Pj (PI), where d!j= 00 if cu=O, otherwise do are nonnegative 
integers. It is clear that the definition dl.'=oo for ij such as CI.'=O 

results no real restriction. The net flow out of the source P! (i = 1, "', 
I) is required to be equal to a prescribed positive integer ai> and the 
net flow into the sink P j (j = m + 1, "', n) is required to be equal to a 
positive integer b j • Two sets of positive integers (ab' . " al) and 
(bm'h "', bn) are given to satisfy the following equality. 

(1) 

Needless to say, the net flow out of the intermediate node Pk (k=I+1, 
.. " m) is required to be zero. 

It is known 7),8) that the above network C with many sources and 
sinks can be reduced to a network C' with a single source and a 
single sink. It is obtained as follows: Consider a network C' consisting 
of C plus two additional nodes Po and P n + b where 

(i=1, "', I) 

(k=1 + 1, 

(P=O, 1, 

n+l) 

m) 

In the network NI, Po is a single source and P n +! is a single sink. 
I 

Furthermore, the sum ~ at of the capacities of the source arcs Po Pt 
!" 1 

n 

(i = 1, "', n+ 1) is equal to the sum ~ bj of the capacities of the 
j"m+l 

sink arcs PjPn + l (j=O, 1, "', n). 
According to the above paragraph, without loss of generality we 

may assume that the network C has a single source PI and a single 
sink Pn, and that the equality 

(2) 
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holds. Ct.=O (i=1. ... , n) by the usual convention. 
If we let Xi) ba the flow through the arc PiP} from PI to Pj, 

the constraints for flow are represented in the following way: 

K (i=l) 

--K (i=n) 

o (i=\=l, n) 

where xu=() by the usual convention. 

(3 ) 

(4 ) 

Thus the primal problem is to minimize the total transportation 
cost 

(5 ) 

subject to the constraints (3) and (I). In the sequel, we will call (Xlj) 
satisfying (3) and (I) to be feasible to the primal problem. 

DUAl, PROBI~EM 

The dual problem is to maximize 

subject to 

(6) 

(7 a) 

(7 b) 

We will ('all (ai' "tu) satisfying (7a) and (7b) to be fe:lsible to the 
dual problem. Notice that n feasible solution to the dual is immediately 
available, e. g., a feasible solution is given b)- (ri ="tu=O. 

Lemma l. Given a feasible solution (xol, if it exists, and given 
a feasible solution (ai. "til), the following inequality necessarily holds. 
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(8) 

The above inequality is clear from the duality theorem. However, 
we will prove the lemma and derive a formula useful for later purpose. 

Proof. Remembering that (X;j) satisfies (3), 

+ ':8 'YUX/j->-i Cu'YfJ 
r.J I.J 

(9) 

From (4) and (7), (8) follows. (Q. E. D.) 
In the sequel, we shall denote the set of indices i = 1, "', n by 

N, and the set of ordered pairs ij by NN. A subset of N will be 
denoted by S, and the notations U, n and ~ will be used for the set 
union, intersection and inclusion respectively. Complement will be 
denoted by barring the symbol, e. g the complement of S in N will be 
denoted by S. 

We will (',all a feasible solution to be proper if it has the property 
that 'Yo<O implies dlj=ur-uj+'Yu. 

sets 
For a proper feasible solution to the dual (aj, 'Yu) define the 

A={ij E NNI'YIJ<O} 

B={ij E NNldFj=a;-uj+'YiJ and 'Yu-=()} 

C=AUB 

Lemma:2. If i} E A, then ji E C. 
Proof. If ij E A, then 

(10 a) 

(10 b) 

(10 c) 
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A computational method for the transportation problem on n network 161 

since '1'1)<0. Therefore we obtain an inequality 

which imples ji E C. (Q. E. D.) 
Lemma 3. If c!}=O, then ij EC. 
Proof. It is clear from the fact C;j=O implies diJ = 00. (Q. E. D.) 
With a proper feasible solution (ai' 'Y/j) we will assoeiate a flow 

problem: Maximize 

subject to 

O~XiJ;:SCtJ 

x[j=O 

XiJ=CIj 

>~ (x[j-Xj/) =() 
JrN 

(ijENN) 

(ij Ee) 

(ijEA) 

(i=\= 1, 1l) 

(11) 

(12) 

(13a) 

(13b) 

(13c) 

(U) 

Lemma 4. If a maximizing solution to the flow problem yields 
the possibe limit ~ (XU-XJI) =K, then (xo) is a minimizing solution to 

JcN 

the primal problem. 
Proof. Since ~ (xu-XjI) =K, 5~ (xnj-Xjn) =-Kfollows from (14) 

)IN jf N 

Hence (xoJ is a feasible solution to the primal and the equation (9) 

holds. 
The right hand ~ide of (9) vanishes, since do-a!+aj-'YiJ>O 

implies XiJ=O from (13b) and 70<0 implies co-xo=O from (13~). 

Thus the ineqnality (H) holds with equality sign and it is dear from 
lemma 1 that (xo) is a minimizing solution to the primal. (Q. E. D.) 
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FLOW PROBLEM 

Consider a network G' which differs from G only in the definitions 
of arc-capacities. The arc-capacities of G' will be defined as follows: 

(ij E C) 

(ij E C) 
(15) 

Then, a maximizing solution (xo) to the flow problem (11) - (14) will 
be obtained by finding a maximum flow in the network G', where each 
Xu such as ij E A is fixed to be equal to co. To see this, it suffices to 
notice that the flow value is equal to ~ (xu-xJ'). 

JE N 

The simplicity of the Hitchcock transportation network has 
allowed Ford-Fulkerson to delete the fixed flows Cu (ij E A) simply. 
However, in our general case, the complexity of the network structure 

_ should require a somewhat different consideration. It will be found 
that lemmas 2 and 5 are useful for our purpose. The algorithm for 
finding a maximum flow, which is restricted in the sense that the flows 
XtJ=CIJ (ij E A) are unchanged, will be a modified method of Ford­
Fulkerson's by virtue of lemmas 2 and 5. 

Assume that a flow (xu) satisfying ,(12), (13) and (14) is given. 
We shall introduce some auxiliary variables 

(16) 

which satisfies the inequality 

(17) 

by (13) and (15). 
Lemma 5. If flil> 0, then 

{ij, ji} nC~f/I (void set) 

Proof. If ij E C, then cu'=O and XfJ=O. 

Therefore 
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which implies ji E C. (Q. E. D.) 
We shall mention the modified algorithm for finding a r~tricted 

maximum flow in G'. 
For certain values of i~l, ."", 11, we shall define labels fJ-j 

recursively as follows: Let fJ-1:-= O. For those j, such as au> 0 and 
{lj, jl}nB~q" define fJ-j=l. In general, from those i which have 
received labels fJ-I, but which have not previously been examined, select 
an i and scan for all j, such as 

a;j>O, {ij, ij}nB~r/J (18) 

and fJ-j have not been defined. For those .1, define fJ-j=i. Continue this 
process until fJ-n have been defined, or until no further labelling may 
be made and fJ-n have not been define.d. 

In the latter case which we will call case (b), the computation 
ends. In the former case which we will call case (a), proceed to obtain 
an increased flow (x'ij). 

In case (a), we will obtain a path connecting the source PI and 
the sink P" 

such as 

Define 

and a set 

We will define a new increased flow (xt/) in the following way 
If ikiko l E B, 
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(19a) 

(19b) 

If ij E D, 

(19c) 

Lemma G. (xJ) is a flow satisfying (12) - (14) and 

(20) 

Proof. Since AnD=,p from (18) and lemma 2, it suffices to 
prove the following facts: 

(I) If ikiktl E Band ik1dk E B, then ~'ik+!ik;:;:O. 

(1r) If ikik"1 E Band ik+dk E (5, then X'lk+lik=O. 

(I) is clear from the fact that h;;;;aik'k+1=C,kik+l-Xlkl,HI+Xlk+l1k. 

(IT) is clear from the fact that h;;;;aikik+l=Ciklk+l-Xiki!,+[ since 
Xlk +1I k =0. 

(m) is clear from the fact that h;;;;aiklkll = X/!,+ ilA' since C'/klk 

=Xlk lk + 1 =0. (Q. E. D.) 
If XI} are integers, i. e., the flow is integral, then h is a positive 

integer and the flow (x' I}) is also integral. Therefore the flow value 
increases by hi;;1 in passing from (XI}) to (X' I}). Since the flow value 
cannot be increased indefinitely by (12), we shall obtain case (b) after 
a finite number of iterations of the above procedure. 

Lemma 7. In case (b), (xo) is a restricted maximum flow. 
Proof. Define the set 

S={i E N I PI has been labelled} 
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Then 1 E S, n E S, and therefore (5, Si forms a cut 8). It is easily 
seen 8) that 

In our flow problem, where Xtj=Ctj such as ij E A are fixed, the 
restricted maximum flow will be obtained if 

In case (b) the fact that the above equality holds can be shown in the 
following way. 

From lemma 2 it is clear that pairs ij E SS falls into four 
mutually exclusive and exhaustive classes: (I) ij E SS, ij E A and 
.ii E C. (IT) ij E SS, ij E C and ji EA. (ill) ij E SS, {ij, ji} nB~,p 
and {ij, ji} n A = ,p. (IV) ij E SS and {ij, ji} n C=,p. 

Case (I) xtj-Xjt=ctj=c'u, since XtJ=CiJ and xJt=O. 

Case (IT) Xtj-Xjt= -Cjl since c'/j=O, Xtj=O and Xjt=Cjl. 

Case (ill) aiJ=O, since PI E 5 and Pj E S. Therefore Xlj-X;i=C'/J 

since O=a/j=c'/J-XiJ+Xjl. 

Case. (IV) Xtj-Xji=C'/j since C'lj=c'j/=O and Xlj=Xji=O. (Q.E.D.) 
We shall derive some results for later use. 
Lemma 8. In case (b), if iiESSnB, then xtJ=O. 

Proof. This follows from the fact that the relations Xlj> 0 and 
j E 5 would imply by (18) that i E S, since ajl=Cji-Xj/+Xlj;;;;Xij> 0 ... 
(Q.E.D.) 

Lemma 9. In case (b), if ij E SSnB, then Xlj=Ctj. 

Proof. This follows from the fact that the relations XtJ <Cl} and 
i E 5 would imply by (18) that j E S, since alj=cij-Xlj+xp.;;;;Clj-Xij>O. 

NEW DUAL SOLUTION 

Let us assume that a maximizing solution (XI}) to the flow 
problem is obtained and an inequality 
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holds. It is equivalent to 

where 

and 

K-V>O 

Define new dual variables by 

'Ytj-k 

'u'~{ ,,,+k 
'YIJ 

(iE S) 

(i E S ) 

(ij E SSnC) 

(ij E SsnA) 

(otherwise) 

(22) 

(23a) 

(23b) 

O<k=min [min (dtJ-at+aJ-'YtJ) , min \ 'YtJ 11 (23e) 
Ilfss-no tJE8SnA 

Lemma 10. (at', 'Yd) is a proper feasible solution to the dual 

Proof. Table 1 accounts for all cases. We flee from the table 
that with k determined by (23c) (at', 'YJ) satisfies (7) and is proper. 

From (23), 

=k(l\- V) (Q.E.D.) 

With the new dual proper feasible solution (at', 'Y;/), we will 
associate a new flow problem. Sets A, Band C for the new flow 
proLlem are designated by A', B', and C' respectively. 

We shall prove the fact that (Xii), which is a maximizing solution 
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Index sets 1'0' -1'11 -1X1'+1X/-1'tJ' 
- (-IX/+lXj-1'o) 

-
cnSS 0 0 

en:s.s 0 \1 

Cnss 0 -k 
-

enS's 0 k 

AnSS 0 0 

AnSS 0 0 
----~ 

Anss -k 0 
-

A(1ss k 0 
-----,---- -

Bnss 0 0 
-------- - -

Bnss 0 0 
- --------

Bnss -k 0 
-

Bn"Ss 0 k 

Table 1 

to the old flow problem, is alSO an admissible flow to the new flow 
problem. 

Lemma·ll If ij E A', then Xu==Cu. 

Proof. If ij E A, this follows from the fact that the computation 
leaves Xt} unchanged. On the other hand the table shows that any 
ij E A' that is not in A is in Bn SS, and the conclusion follows from 
lemma 9. (Q.E.D.) 

Lemma 12. If ij E C', then xu=O. 

Proof. If ij E C, the, computation does not change Xi}. If ij E C, 
it follows from the table that ij E Bn ss, and lemma 8 applies. 
(Q.E.D.) 
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Lemmas 11 and ]2 give the desired 
Lemma 13, The maximizing solution (xu) to the old flow problem 

may be taken as a starting flow for the new flow problem. 

COMPUTATIONAL PROCEDURE AND A 
PROOF OF COVERGENCE 

A computational procedure proceeds as follows: First, find a 
proper feasible solution (at. 'YfJ) such as ((i are integers and 'Yu=U. 
The associated flow problem has zero flow as a starting flow. It should 
be remarked that the flow is always integral and that ai, 'YiJ are 
always integers since k is a positive integer. If a maximum flow yields 
the value equal to K, then (xu) is a minimizing solution to the primal. 
Otherwise, define new dual variables. The associated new flow problem 
has (Xu) , which is a maximum flow in the preceding flow problem, as a 
starting flow. Continue the process until a maximum flow which 
value is equal to K will be obtained. 

According to lemma 10, the value of the dual objective function 
(6) increases by k (K - V) ~ 1 in passing from a cycle to a next cycle. 
Therefore, it is dear from lemma 1 that the computation terminates 
after a finite number of iterations whenever a feasible solution to the 
primal problem exists. Summarizing these results, we obtain 

Lemma 11. If a feasible solution to the primal problem exists, 
then a minimizing solution to the primal problem is obtained after a 
finite number of iterative computations. 

Gale has given a necessary and sufficient condition for the feasibility 
of requirement on network flows 8). It is very simple from the 
theoretical viewpoint, but it is impossible to apply his criterion to 
large-scale problems. Therefore we shall have to prove the convergence, 
i. C., the fact that the computation also terminates after a finite 
number of iterations when the requirement is not feasible. 

Termination occurs only when we shall have obtained k=oo or 
~~ (XU-Xjl) =K. But the latter ease cannot occur in the infeasible 
}iN 

ease. k=oo means from lemlTla I() that the dual ohjectiYe function has 
no upper bound, and this means from lemma I that no feasible solution 
exists to the primal problem. Hence, for ,our purpose it suffices to 
prove that !l ,-,00 occurs after a finite number of iterations if the given 
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requirement is not feasible. 
k=oo is equivalent to say that 

and either 

or 

We notice the fact that the requirement is not feasible is 
equivalent to the fact that the maximum flow value of G is less than 
K. 

According to the above, let us assume that the maximum flow 
value of G is equal to K' <K. 

Lemma 15. If the maximum flow value of a flow problem in a 
cycle is equal to the maximum value of the flow problem in the next 
cycle, then S;;;;;;S' i. e., each labelled node in the preceding flow p~oblem 
is also labelled in the next flow problem. 

Proof. If Pi E S, there exists a path 

(~'1a) 

such as 

aiOII>O, "', alm_1aim>O (24 b) 

{ioil> idol n B="t-r/>, "', lim-dm. imim-1l n B="t-r/> (24c) 

(~lc) means that either id~ cl E B or iJkil E C. It is clear from table 
I that ikik>1 E B' or ikik cl E C' respectively, since ikik+ 1 E Bn SS 
or ikik+1 E cnss respectively. As the same way i""1ik E B (C), 
which follows from (~Ie), implies that i k lik E B' (C'). Therefore the 
following relations hold. 

(25a) 
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which imply Pi E S', i. e., Pi will have received a label in the next 
flow problem. (Q.E.D.) 

Lemma 16. If a flow which value K" is less than K' is given, 
we shall obtain an increased flow after a finite number of iterations. 

Proof. Since the value of the flow (xo) is less than K', from 
Ford-Fulkerson's theory I) there is a path connecting PI and Pr! 

(26) 

such that 

(k=O, 1, "', m-I) (27) 

The left hand side of the inequality coincides with ao only when 
ikik+IEC. 

First notice that iki~+1 E AI (k=O, 1, "', m-I) because ikik + 1 E A 
means Cikik+1 =Xikl.k+1 and Xtk+!ik=O from lemma 2. 

Let us aSSume that the flow value could not be increased in any 
finite number of iterations. Then the desired contradiction would be 
obtained if we will have given Pro a label in a flow problem associated 
with a dual solution which is obtained after a finite number of 
iterations. 

Let t be a positive integer such as 

ioES, "', it-l ES and itES. (28) 

Let us assume that it E SCq
) for any q which is a positive integer. 

From the invariance assumptiom of flow it follows that 

(2U) 

for any q, since {S,S', S", "', S(q), ... } is a nondecreasing sequence 
of sets from lemma 15. 

We notice that 

(30) 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A computational method for the trall3poriation problem On a network 111 

because it_lit EB would imply it E 5 from the fact ait_Iit~Cit_Iit-Xit_Iit 
+Xitit_l>O and the fact {it_lit, itic-,JnB'"'r-f/J. 

It is clear from (30) that Xlc_11t=0. Hence (27) reduces to 

(31) 

If Clt_llt>O, i, e., d;t_,it <00, then table 1 shows that there exists 
a positive integer It such as it-dt EB (IL). This implies it E S"') and this 
contradicts (29). 

If Cit_Iit =0, i. e •• dit_lit = 00, then (31) reduces to 

(;)2) 

This implies itic'-1 E Anss because £tic-I E B would imlpy it E S from 
the fact that it-I E S, alt_lit=Xltit_I>O and {it_lit, itit-i}nB'"'r-f/J. 

itit-l E AnsS shows from table 1 that there exists a positive 
integer u' such as itit_, E B(U'). This implies it E S(U') and this contrad­
icts (29). 

According to the above paragraph, there exists a positive integer 
v such as q~v implies i k E S(Q) (k=O, "', t). Therefore applying 
mathematical induction it is easily seen that there exists a positive 
integer wsuch as 

This means that P" can be labelled after (IV-I) -times iterations. This 
is the desired contradiction. (Q. E. D.) 

Lemma 17. If the given requirement is not feasible, we shall 
obtain k= 00 in a finite number of iterations. 

Proof. We remark that an increment of flow value is not less 
than 1 since flows in consideration are integral. Therefore by the 
conclusion of lemma IG we shall obtain the maximum flow value K' 
after a finite number of iterations. Hence let us assume that we are 
given a flow (Xu) , which value is equal to K', associated with a dual 
solution (a;, '¥o). 

Let us assume that k= 00 does not occur in any finte number of 
iterations. Then the flow value is always K' in any cycle hereafter, 
and we shall obtain a nondeereasing sequence of sets 
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(33) 

from lemma 15 and the finiteness of the network G. Here S(q)=S(ql.T) 

for any positive integer r. 
We shall show that 

and either 

(35a) 

or 

If (34) is not satisfied, then a pair ij E S(q) S(q) n A (q) exists. 
From table 1 and jEs<q+r) for any nonnegatiye integer r it is known 
that there exists a positive integer w such as ij E B(~+"). This implies 
i E S(q+",) since j E S(q+'lJ) and ajl=cjl-Xjl+XiJ~xtJ=ctJ>O. This means 
that 

which contradicts (33). 
If (35a) is nQt satisfied, then a pair ij E S(q) S<q) n C(q) exists. 

Furthermore if Clj>O for the pair ij, then from dlJ<oo and table I it 
is known that there exists a positive intgeer w sucP as ij E B(q .. ·). 

This implies j E S(q+IIJ) since i E S(q+ .. ) and ao=clJ-xO+Xji=CO+Xjl~ctJ 
> O. This means 

which contradicts (33). Therefore Cd=';O, i. e., do=oo and (35b) holds. 
(Q.E.D.) 
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CONCLUSIONS 

The problem treated in this paper is a linear programming 
problem, but the usual linear programming approach will be inefficient. 
Alternative approach is either a primal-dual method presented here or a 
tree-simplex method. The author has used a primal-dual method owing 
to Dantzig-Ford-Fulkerson I), 3), 9) though Watanabe 5) has used a tree­
simplex method owing to Hitchcock-Koopmans-Flood 4),10),11).* 

The present method will be more efficient if we could find a 
general method which gives a proper feasible dual solution more 
adequate rather than a!='Yt}=O. 

There is no loss of generality in assuming that Ct} (do) are 
integers rather than rational numbers,. since the problem is essentially 
unchanged if Ct} ~do) is replaced by CCt} (ddtJ) , where C (d) is any 
positive integer. The effect of irrationality of prescribed constants is a 
possible lack of convergence of the iterative process. However such a 
consideration is not of importance in the usual applications. 

Careful reading will show that the method is also applicable to 
the case where some of the capacities of arcs excluding source arcs and 
sink arcs are infinite. 

It is easy to see that a little modifkation of the method gives an 
algorithm for finding the path of minimum cost between any two 
distinct points of a network. However in such a case, the computational 
method will be much simpler than the transportation problem on a network 
discussed above. 
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