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INTRODUCTION

A computational method, based on a modified method of Ford-
Fulkerson’s aigorithm for finding maximum network flows" and on
the duality theorem of linear programming », is proposed for the
following transportation problem on a network: Consider a network
connecting the sources and the sinks by way of a number of intermediate
nodes, and suppose that the arcs can handle certain designated amounts
of traffic per unit time. Further, suppose that the cost is prescribed
for the unit flow through each arc, and suppose that the net flow out .
of each source node or the net flow into each sink node is prescribed.
Assuming a steady state condition, find a traffic flow of minimum cost
from the sources to the sinks.

In this paper the author will give an extension of Ford-Fulkerson’s
primal-dual algorithm »,» for the uncapacitated or capacitated Hitchcock
problem ¥ to the transportation problem on a general network ®,

FORMULATION OF THE PROBLEM

A network is a finite linear graph ®, in which any two nodes are
connected by a single arc. This means that the graph is complete ®.
However, this assumption will result no real restriction, because arcs of
zero capacity are admissible and many arcs connecting two nodes can be
reduced to an arc © and the definition of arc capacities undermentioned
allows us to include directed arcs.

The nodes are classified into three classes : the sources P, ---,
P,, the intermediate nodes P,,, ---, P,, and the sinks F,.i,, -, P
T'wo nonnegative integers ¢;; and ¢j are prescribed to the arc connecting
FP; and P..  ¢;:(c;) represents the prescribed capacity of flow from P,
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158 Toshio Fujisawa

(Py) to P;(P,). d,(dy;) stands for the prescribed cost of unit flow P,
(Ps) to P;(P), where d;;=co if ¢;;=0, otherwise d;; are nonnegative
integers. It is clear that the definition d;:=co for Zj such as c¢;:=0
results -no real restriction. The net flow out of the source P, (=1, ---,
1) is required to be equal to a prescribed positive integer «;, and the

net flow into the sink P; (j=m-+1, -+, n) is required to be equal to a
positive integer b;. ‘Two sets of positive integers (e, ---, @) and
(Om+1, -, ba) are given to satisfy the following equality.

4 »

Sai= 5 =K (1)

=1 Jem+1

Needless to say, the net flow out of the intermediate node P. (k=I+1,
-+, m) is required to be zero.
It is known »,® that the above network G with many sources and
sinks can be reduced to a network G’ with a single source and a
single sink. It is obtained as follows : Consider a network G’ consisting
of G plus two additional nodes P, and P,.,, where

p=a; dy=0, c¢,=0, dp=o00 (=1, ---, )

Chn+1 =Dy dyni1=0, €au1,3=0, dyiy=00 (F=m+1, ---, n)
Coe=Ceo=0, dyp=d,=00 (k=1+1, -+, n+1)
Cnr132=Conr1=0,  dpir,p=dpni1 =00 (=0, 1, ---, m)

In the network N/, P, is a single source and P,.,; is a single sink.

14

Furthermore, the sum tS_]a, of the capacities of the source arcs P, P,
=1

n
(¢=1, ---, n+1) is equal to the suijlbj of the capacities of the
=M+

sink arcs P;P,., (4=0, 1, ---, n).

According to the above paragraph, without loss of generality we
may assume that the network G has a single source P, and a single
sink P, and that the equality

gc,,=glcm=1f (2)
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A computational method for the transportation problem on a network 159

holds. ¢;=0 ((=1, ---, n) by the usual convention.
If we let x,; bz the flow through the arc P,P; from P; to Py,
the constraints for flow are represented in the following way :

K (#=1)
St =) K (i=n) (3)
1 0 (=1, n)
0=xi=cis (4)

where x;;=0 by the usual convention.
Thus the primal problem is to minimize the total transportation
cost

gdmxu (5)

subject to the constraints (3) and (l). In the sequel, we will call (x,;
satisfying (3) and (1) to be feasible to the primal problem.

DUAL PROBLEM

The dual problem is to maximize

K(a,—ay) -’r}} CisVis : (6)

subject to
di 20—+ (7 a
v=0. (7 b)

We will call («;, 7v:;) satisfying (7a) and (7b) to bhe feasible to the
dual problem. Notice that a feasible solution to the dual is immediately
available, e¢. g., a feasible solution is given by «;=1v,;;=0.

Lemma 1. Given a feasible solution (x;;), if it exists, and given
a feasible solution (a;, 7,5}, the following inequality necessarily holds,
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}7‘. dexg;z K (o - oty) +§i'_‘-30,-ﬂu (8)

The above inequality is clear from the duality theorem. However,
we will prove the lemma and derive a formula useful for later purpose.
Proof. Remembering that (x,;) satisfies (3),

.,S} dyyx;— K (o — o) —,Zj.cfmj
:?:;: di]xif—?j‘l (x5 —25) gf'»ﬂu
Sduxn—ZmWrSa;xu—S Yis%is

"LIS} 'Yijx/j—?,;‘ CiVis

'_"S_;z (di;—o+a—,5) x;;—g} {€5—x:i) Vi) (9)
" From (4) and (7), (8) follows. (Q.E.D.)
In the sequel, we shall denote the set of indices i=1, ---, » by

N, and the set of ordered pairs i by NN. A subset of N will be
denoted by S, and the notations U, N and & will be used for the set
union, intersection and inclusion respectively. Complement will bhe
denoted by barring the symbol, ¢. g the complement of S in N will he
denoted by <.

We will call a feasible solution to be proper if it has the property
that «;; <0 implies diy=a;—as+y;;.

For a proper feasible solution to the dual («j 7;;) define the
sets

A={ij € NN|y;<0} (10 a)
B={ij € NN|d;;=a;—a;+v;:; and r;;=0} (10 b)
C=AUB (10 ¢)

Lemma 2. If ij © A, then ji EC.
Proof. If i € A, then

diy=o—ayry <o —ay

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A computational method for the transportation problem on a network 161

since 7:3;<0.. Therefore we obtain an inequality
o—o+ Y=oy <—diy=0=dy

which imples 7 €C. (Q.E.D)
Lemma 3. If ¢;;=0, then i €C.
Proof. It is clear from the fact ¢;;=0 implies d;;=c0. (Q.E.D.)
With a proper feasible solution (@, 7v,;) we will associate a flow
problem : Maximize

?_E]N(xx.f—xn) 1
subject to
2 (=) SK (12)
0=x=cy; ({j & NN) (13a)
x;5=0 (FE0 {13b)
Xiy=Ciy (fje A (1.3c)
S (=2 =0 (%1, m) ad

N

Lemma 4. If a maximizing solution to the flow problem yields
the possibe limitjz (x;—x5) =K, then (%;;) is a minimizing solution to
CN

the primal problem.
Proof. Since Zj (xy—x;) =K, S]N(xn,-—x,n) = —K follows from (14)
EN Jje

Hence (x;5) is a feasible solution to the primal and the equation (9)

holds.

The right hand side of (9) vanishes, since dy—a;+a;—v;>0
implies x;;=0 from (13b) and «,;-<20 implies c¢;;—x;;=0 from (13c).
Thus the inequality (8) holds with equality sign and it is clear from
lemma 1 that (x;;) is 2 minimizing solution to the primal. (Q.E.D.)
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162 Toshio Fujisawa

FLOW PROBLEM

Consider a network G’ which differs from G only in the definitions
of arc-capacities. The arc-capacities of G° will be defined as follows :

(s @EOC

e =1 S (15)
0 G0

Then, a maximizing solution (x;;) to the flow problem (11)~ (14) will
be obtained by finding a2 maximum flow in the network G’, where each
x4 such as ¢j € A is fixed to be equal to ¢;;. To see this, it suffices to
notice that the flow value is equal to jFZN (13— 2%31) .

The simplicity of the Hitchcock transportation network has
allowed Ford-Fulkerson to delete the fixed flows ¢;(ij € A) simply.
However, in our general case, the complexity of the network structure

-should require a somewhat different consideration. It will be found
that lemmas 2 and 5 are useful for our purpose. The algorithm for
finding a maximum flow, which is restricted in the sense that the flows
xi5=¢y (ij € A) are unchanged, will be a modified method of Ford-
Fulkerson’s by virtue of lemmas 2 and 5.

Assume that a flow (x;;) satisfying (12), (13) and (14) is given.
We shall introduce some auxiliary variables

ay=cf —xy+%3 (16)
which satisfies the inequality
Oéa(j (17)

by (13) and (15).
Lemma 5. If a;;>0, then

{ij, 7i}NCx¢ (void set)

Proof. If ij € C, then ¢;;=0 and x;;=0.
Therefore
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A computational method for the transportation problem on a network 163
0<ay=cif —xpy+xn=2%5

which implies ji € C. (Q.E.D.)

We shall mention the modified algorithm for finding a restricted
maximum flow in G’.

For certain values of i—=1, ---, #, we shall define labels u;
recursively as. follows : Let p,=0. Tor those j, such as ;>0 and
{14, 71}N B=x¢, define wu;=1. In general, from those ¢ which have
received labels p:;, but which have not previously been examined, select
an 7 and scan for all , such as

and p; have not been defined. For those 7, define p;=:¢. Continue this
process until x, have been defined, or until no further labelling may
be made and u, have not been defined.

In the latter case which we will call case (b), the computation
ends. In the former case which we will call case (@), proceed to obtain
an increased flow (x':;).

In case (@), we will obtain a path connecting the source P, and
the sink P,

PP, Piy--- P, P, (iy=1, ip=mn)

such as
‘ (lt‘oi1>0, ai|i2>0v T alm~l"m>0’
Define
h=min (i, aiyig, -, @ip_yi,) >0,
and a set
D:{iuilv ilit' T im—lim'r imim-l' izib ilio}

We will define a new increased flow (x:) in the following way
If ikik-l = By
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’ . .
X ot =Xty tmin (B, €ty —Xttes1)

(19a)
i =X, —max (0, B—Coy, 1+ Xy, )
et E B,
x”klk+1:xlklk+l
(19b)
Xt ste =Xt 1, — R
ij €D,
xu’=xu (190)
Lemma 6. (x,7) is a flow satisfying (12) ~(14) and
S () —x5") =S (x—2x5) +h (20)
€N Jen

Proof. Since AND=¢ from (18) and lemma 2, it suffices to

prove the following facts :

(I) If ikik+1 & B and ik:»l-lilc (S B, then x_"ik,”ilczo-
(H) If ikik_u\ = B and 1',“.11.]5 = —é, then x,;k*llk:O.
(III) If ikik+1 = 6 and i;“.lik & B, x'z,c,yllkZO.

(I) is clear from the fact that h=<ai.,,,=Cuips1— Finirs 1+ Xigs i
(1) is clear from the fact that h=<a,., =i, —Xi+; Since

Xty 11, =0.
(m) is clear from the fact that h=<ai,, =%y, Since i,
=X1y0,,,=0. (Q.E.D.)

If x:; are integers, 7. e., the flow is integral, then 2 is a positive

integer and the flow (x":;) is also integral. Therefore the flow value
increases by A=1 in passing from (x:;) to (x”1;). Since the flow value
cannot be increased indefinitely by (12), we shall obtain case (b) after
a finite number of iterations of the above procedure.

Lemma 7. In case (b), (x:;) is a restricted maximum flow.
Proof. Define the set

S={i € N | P, has been labelled}
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Then 18, nE S, and therefore (S, S) forms a cut®. It is easily
seen ® that

D (X xn) = 2 (Xeis—2x51)
JeEN 1J€88

In our flow problem, where xi;=c;; such as ij& A are fixed, the
restricted maximum flow will be obtained if

> Fu—xn) = Cu— D tw= 2 = B =V (2]

tJESE 1J€8S KLESSNA ij€38N0  ki€gsNa

In case (6) the fact that the above equality holds can be shown in the
following way.

" From lemma 2 it is clear that pairs {7 & SS falls into four
mutually exclusive and exhaustive classes: (1) #/ESS, /&€ A and
HEC. () ijesS ifj&Cand jicc A (W) ijESS {ij, /i}NBx¢
and {if, ji}NA=¢. (V) i €SS and {ij, ji}NC=¢.

Case (I) xy—xnu=cyy=c";3, since x;5=c¢;; and x5 =0.

Case (II) xiy—x5=—cy since ¢’1;=0, x1;=0 and xu=cy.

Case (IN) a;;=0, since P, S and P;€S. Therefore xi;—xji=c;
since O=ai;=¢"13— %15+ X 5.

Case. (IV) xi3—x5=c"i; since ¢’iy=¢" ;=0 and xi;=x5,5=0. (Q.E.D.)

We shall derive some results for later use.

Lemma 8. In case (), if ij & §SNB, then x,;=0.

Proof. This follows from the fact that the relations x:;;>0 and
J € S would imply by (18) that i € S, since aju=csu—Xs+%:;=%:;>0...
(Q.E.D.)

Lemma 9. In case (b), if i € SSNB, then xi=c:;.

Proof. This follows from the fact that the relations x;;<c;; and
i € S would imply by (18) that j € S, since aiy=ci;— x5+ x5=Cs5—x:5> 0,

NEW DUAL SOLUTION

Let us assume that a maximizing solution (x:;) to the flow
problem is obtained and an inequality

)2 (xp—2xg) <K

€N
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166
holds. It is equivalent to
K-V>0 (22)
Define new dual variables by
§ a;+k (e S)
a"zl _ (23a)
o fes)
ve—k (i € SSNC)
’)’u’={ Ytk (7 € SSNA) (23b)
Yis (otherwise)
where
O<k=min[ min (dy—a,+a;—vy), min  |yul] (23¢)
{jegsna

tje 88N0

Lemma 10. (a/, 7v:f) is a proper feasible solution to the dual

and
K/ —ay) + > ey =K(a—an) + 3 ciyyuyt+k(E—V)
iJeNN iJeNN

Proof. Table 1 accounts for all cases. We see from the table
(e, 1v:f) satisties (7) and is proper.

that with k& determined by (23c)
From (23),

Ko/ —ay) +$_‘.jctfyu’—K‘(al—an) —.}; CusYis

=k[K+ > cy— S el

ijegsnd  1jcgsng
=k(K—V) (Q.E.D.)
we will

With the new dual proper feasible solution (&, v:f),
Sets A, B and C for the new flow

associate a new flow problem.
prollem are designated by A’, B, and C’ respectively.
We shall prove the fact that (x;;), which is a maximizing solution
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A computational method for the transportation problem on a network 167

Index sets Vi~V :C(vi Zzw-g,c;;zq;u)
cnss 0 0
CcN3SS 0 0
CcNS3 0 —k
CcN3s 0 k
ANSS ( 0 ;
ANSS 0 0
ANSS -k 0
ANss k P
BNss 0 0
BNSS 0 :
BNS3 -k 0
BNSS 0 %

Table 1

to the old flow problem, is also an admissible flow to the new f{low
problem.

Lemma-11 If ij & A’, then x;5=c;.

Proof. If ij & A, this follows from the fact that the computation
leaves x;; unchanged. On the other hand the table shows that any
if = A’ that is not in A is in BNSS, and the conclusion follows from
lemma 9. (Q.E.D.)

Lemma 12, 1If ij € €', then x,;=0.
Proof. If i{j & C, the. computation does not change x,;. If ij & C,

it follows from the table that i< BNSS, and lemma 8 applies.
(Q.E.D.)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



168 Toshio Fujisawa

Lemmas 11 and 12 give the desired
Lemma 13, The maximizing solution (x;5) to the old flow problem
may be taken as a starting flow for the new flow problem.

COMPUTATIONAL PROCEDURE AND A
PROOF OF COVERGENCE

A computational procedure proceeds as follows: TFirst, find a
proper feasible solution (a;, v;;) such as «; are integers and ;=0
The associated flow problem has zero flow as a starting flow. It should
be remarked that the flow is always integral and that «; 7;; are
always integers since %k is a positive integer. If 2 maximum flow yields
the value equal to K, then (x;5) is a minimizing solution to the primal.
Otherwise, define new dual variables. The associated new flow problem
has (x5), which is a maximum flow in the preceding flow problem, as a
starting flow. Continue the process until a maximum flow which
value is equal to K will be obtained.

According to lemma 10, the value of the dual objective function
(6) increases by k(K—V) =1 in passing from a cycle to a next cycle.
Therefore, it is clear from lemma 1 that the computation terminates
after a finite number of iterations whenever a feasible solution to the
primal problem exists. Summarizing these results, we obtain

Lemma 11, 1f a feasible solution to the primal problem exists,
then a minimizing solution to the primal problem is obtained after a
finite number of iterative computations.

Gale has given a necessary and sufficient condition for the feasibility
of requirement on network flows®. It is very simple from the
theoretical viewpoint, but it is impossible to apply his criterion to
large-scale problems. Therefore we shall have to prove the convergence,
i. ¢., the fact that the computation also terminates after a finite
number of iterations when the requirement is not feasible.

Termination occurs only when we shall have obtained k=co or
?‘J N(xlj*xn) =K. But the latter case cannot occur in the infeasible

C

case. k=co means from lemma 10 that the dual objective function has
no upper bound, and this means from lemma | that no feasible solution
exists to the primal problem. Hence, for jour purpose it suffices to
prove that k=< occurs after a finite number of iterations if the given
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requirement is not feasible.
k=oc0 is equivalent to say that

SsnNA=¢,
and either
SSNC=¢
or
dij—a+a—yiy=> if ij € SSNC.

We notice the fact that the requirement is not feasible is
equivalent to thé fact that the maximum flow value of G is less than
K.

According to the above, let us assume that the maximum flow
value of G is equal to K" <K,

Lemma 15. If the maximum flow value of a flow problem in a
cycle is equal to the maximum value of the flow problem in the next
cycle, then SSS’ i. e., each labelled node in the preceding flow problem
is also labelled in the next flow problem.

Proof. If P, € S, there exists a path

PPy Py, (P, (to=1, fn=1) {(24a)

such as
@i, >0, -, @iy Qi 0 (24b)
{igfy, 1 INBxg, -, {lnilp luln-} N Bx¢ (24c)

(21c) means that either 7., & B or #,5;,, € C. It is clear from table
| that fuip., &B or i ©C  respectively, since fife.s € BNSS
or i+ & CNSS respectively. As the same way . &EB (O,
which follows from (2lc), implies that 7. ¢ & B’ (C'). Therefore the
following relations hold.

— — ~ -
Aiyiy = foil> 0’ s iy i T O gy iy 0 (203,)
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{ibil’ ilio}ﬂB’:\‘\:¢; Y {im—lim; imim—l}ﬂB’fFlﬁ (25b)

which imply P, € 8’, i. e., P; will have received a label in the next
flow problem. (Q.E.D.)
Lemma 16. If a flow which value K is less than K is given,
we shall obtain an increased flow after a finite number of iterations.
Proof. Since the value of the flow (x;;) is less than K’, from
Ford-Fulkerson’s theory » there is a path connecting P, and P,

PP, Psy- - Py, Py, (to=1, in=mn) {26)
such that
Ciri- 1—xi,{i,b.+l+x“.+1i,c>0 (k=0, 1, -, m—1) (27)

The left hand side of the inequality coincides with «;; only when
Ll EC. )

First notice that 7., € A1 (=0, 1, ---, m—1) because ;.. € A
means Ciy., = Xigip., and Xy, ., =0 from lemma 2.

Let us assume that the flow value could not be increased in any
finite number of iterations. Then the desired contradiction would be
obtained if we will have given P, a label in a flow problem associated
with a dual solution which is obtained after a finite number of
iterations.

Let ¢ be a positive integer such as

©WeS, -, ;eSS and it €8S, (28)

Let us assume that i & S® for any ¢ which is a positive integer.
From the invariance assumptiom of flow it follows that

LeES?, -, 4., =S and 4, =87 29
for any ¢, since {S,S, S, ---, S™, ...} is a nondecreasing sequence
of sets from lemma 15.

We notice that

it15t € CNSS (30
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because #:_,it =B would imply 7t € S from the fact @i, =Ciy_11,— %114
X4, 0 and the fact {f:_f¢, fete_(J N Bx¢.
It is clear from (30) that x;,_,,=0. Hence (27) reduces to

c;,_lit+xi¢t,_l>0 (31)

If ¢, >0, 7, e., di,_ i, <o, then table 1 shows that there exists
a positive integer x such as 7. ;i €B ™. This implies 7: & S and this
contradicts (29).

If ¢ippi=0, i. e., dy,_;, =, then (31) reduces to

xi:ig_.1>0 (32)

This implies i:i:-, © ANSS because 7cdr_; & B would imlpy 7 &S from
the fact that 7., €S, a;,_i;=%irie1> 0 and {de e, feie-1} N Bx4.

Zele.; & ANSS shows from table 1 that there exists a positive
integer #’ such as irie.; € B®>, This implies ic € S and this contrad-
icts (29).

According to the above paragraph, there exists a positive integer
v such as q=v implies i, € S® (k=0, ---, t}. Therefore applying
mathematical induction it is easily seen that there exists a positive
integer w such as

Pim:Pn & S,

‘'his means that P, can be labelled after (w—1) -times iterations. This
is the desired contradiction. Q. E. D.)

Lemma 17. 1f the given requirement is not feasible, we shall
obtain £=o in a finite number of iterations.

Proof. We remark that an increment of flow wvalue is not less
than 1 since flows in consideration are integral. Therefore by the
conclusion of lemma 10 we shall obtain the maximum flow value K’
after a finite number of iterations. Hence let us assume that we are
given a flow (x;5, which value is equal to K’, associated with a dual
solution («;, ;).

Let us assume that k= does not occur in any finte number of
iterations. Then the flow value is always K’ in any cycle hereafter,
and we shall obtain a nondecreasing sequence of sets
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SCSES’S. S8 =8T D= .. (33)
from lemma 15 and the finiteness of the network G. Here S®=S?'"

for any positive integer 7.
We shall show that

THSONAD=¢ (34)
and either
SHSBNCD= ¢ (35a)
or
dy—a; O +af—ypV=c0 if ij e SOPSONCD (35b)

If (34) is not satisfied, then a pair ij € SOSPNAD exists.
From table 1 and jES¢" for any nonnegative integer 7 it is known
that there exists a positive integer w such as 7j € B“**_, This implies
1 & S gince f € SU™ and aj=cy—x5+2x:3=%,3=c;;>>0. This means
that

S 2 S+

which contradicts (33).

If (35a) is not satisfied, then a pair ij € SPS@ONCH® exists.
Furthermore if ¢;5>>0 for the pair 77, then from d;;j<c and table 1 it
is known that there exists a positive intgeer w such as ij € B@",
This implies 7 & S since £ € S and a;y=ciy— X3+ 25=Ci3+23=2¢y5
>0. This means

S('I) ;sFS('Iflv)

which contradicts (33). Therefore c,;=0, i. e., d;sj=« and (35b) holds.
(Q.E.D.)
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CONCLUSIONS

The problem treated in this paper is a linear programming
problem, but the usual linear programming approach will be inefficient.
Alternative approach is either a primal-dual method presented here or a
tree-simplex method. The author has used a primal-dual method owing
to Dantzig-Ford-Fulkerson »» 3 9 though Watanabe » has used a tree-
simplex method owing to Hitchcock-Koopmans-Flood #» 19 1D *

The present method will be more efficient if we could find a
general method which gives a proper feasible dual solution more
adequate rather than a;=v,;;=0.

There is no loss of generality in assuming that c¢;; (d;;) are
integers rather than rational numbers, since the problem is essentially
unchanged if ¢;; (diy) is replaced by cc;s (ddis), where ¢ (d) is any
positive integer. The effect of irrationality of prescribed constants is a
possible lack of convergence of the iterative process. However such a
consideration is not of importance in the usual applications.

Careful reading will show that the method is also applicable to
the case where some of the capacities of arcs excluding source arcs and
sink arcs are infinite.

It is easy to see that a little modification of the method gives an
algorithm for finding the path of minimum cost between any two
distinct points of a network. However in such a case, the computational
method will be much simpler than the transportation problem on a network
discussed above.
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