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There may be more than one optimal solution to a linear program­
ming problem. A general means for locating all optimal solutions is 
known. 1) The author will provide an improved method. 

DETERMINATION OF ALL OPTIMAL BASIC SOLUTIONS 

TO A GENERALIZED MATRIX PROBLEM 

Let P= [Po, Pt> ... , p .. l be a given matrix whose j-th column, 
Pp is a vector of (m + 1) -components. Let M be a fixed matrix of rank 
m+ 1 consisting of m+ 1 I-components row vectors. The generalized 
matrix problem 2) is concerned with finding a matrix X satisfying 

(1) 

where x J (the (j + 1) -th row of X) is a row vector of I-components 
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98 Toshio Fujisawa 

satisfying the conditions, in the lexicographic sense, 

Xj~O (j=1,2,···, n), (2 ) 

xo=max. ( 3) 

A basic solution 2) is one in which only m + 1 variables (including 
xo) are considered in (1), the remainder being set equal to zero; that 
is, it is of the form 

(4 ) 

where B= [Po, P j1 " . " Pjm ] is a (m+ 1) -rowed squsre matrix of rank 
m+ 1 and V is a matrix of m+ 1 rows and I columns whose (i + 1) -th 
row is denoted by vt (i=O, 1, "', m). 

Let us augment M and P so that 

[PoJ- ~[Pf]- [ . ]- [ M • ] o Yo+Yo;YJ + 1 Yn+l= KO ···01' (5 ) 

where y has one more component than x and • represents the null 
vector, and 0" K are arbitrary constants. YJ is required to be non­
negative in the lexicographic sense, but neither Yo nor Yn+l is restricted 
to be non-negative. It is also required that a basic solution to (S) 
consists of m+2 variables including Yo and Yn+l' 

There is a one-to-one correspondence between the set of basic 
solutions to (1) and the set of basic solutions to (5). This corres­
pondence associates with a basic solution (4) a basic solution to (5) 

(i=1,2, "', m), 
1 (6) 

( . .) S 
J~Ji . 

Conversely, the correspondence associates with a basic solution to (5) 
a basic solution to (1) whose variable vectors x consist of the first 
i-components of y. 

The generalized simplex method 2) gives a means of transition 
from a basic solution to any adjacent basic solution. If we consider 
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br.sic solutions as nodes and we connect every pair of two nodes repre­
senting two adjacent basic solutions by an edge, we will obtain a finite 
lirear graph. 3) It is clear that two basic solutions to (5), which 
correspond to two adjacent basic solutions to (1), are also adjacent, 
and conversely. Therefore, the graphs so obtained from (1) and (5) 
are identical from the point of view of abstract graph theory. 

Let us assume that a basic solution to (1), 

(7 ) 

is given. Then, let us set ok
l
=l (i=d, 2, "', m), oj=l (j~k!) in (5), 

and maximize Y,,+I' Starting from a basic solution (6), after some 
iterative calculations we will obtain a maximizing basic solution to (5), 
which corresponds to (7) since max Y"+1 = [K, 0, "', 0, 1J occurs only 
when Yj=O (j~ki)' This shows that the graph of (5) has a path 
connecting any two nodes. 

According to the above, the graph is finite and connected; that 
is, it is a labyrinth. 3) Thus, applying the known solution to labyrinth 
problems, such as Tarry's one,3) we can determine all basic solutions to 
(1) by the simplex technique whenever one basic solution is found. 

Let us assume that an optimal basic solution (4) is found. Let 
fli denote the (i + 1) -th row of B-1 : 

where primed letters stand for transpose. It is known 2) that 

(j= 1, 2, "', n) (9 ) 

and a solution is optimal if and only if it has the property that Xj=O 
whenever (floPj»> O. Therefore, the set of optimal basic solutions to 
( 1) coincides with the set of basic solutions to the reduced problem 
which is given from the problem (1) by eliminating all Xj such that 
(floPj) » O. Hence, whenever one optimal basic solution is found, we 
can determine all optimal basic solutions by applying the abovemen­
tioned wandering procedure to the reduced problem which is given 
from the original one by eliminating all Xl such that (floP}»> O. 
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100 Toshio Fujisama 

DETERMINATION OF ALL OPTIMAL SOLUTIONS 

TO A LINEAR PROGRAMMING PROBLEM 

The fundamental problem is to find a set (xo, Xl' X,,') 
satisfying the equations 

(bk~O; k=2, 3, ... , m) 

such that 

(j = 1, 2, ... , n'), 

xo=max. 

It is convenient to augment a redundant equation 

(10) 

(11) 

(12) 

(13) 

Let us consider the following generalized problem: To maximize 
Xo under the constraints 

./ 
xo+~aOJxj= [0, 1, 0, ... , OJ, 

I 

Xj~O (j=1,2,· .. , n'+m). 

0] 

Rewriting the equations we have (1) such that M = Cb, IJ, where I 
stands for (m + 1) -rowed identity matrix and x is a (m + 2) -components 
row vector, and b=[O, bI> ... , b"J', n=n'+m. 

It is clear that the first components of every solution to (14) 
constitute a solution to (10) ~ (13). Conversely, with a solution to (10) 
'"""' (13) we can associate a solution to (14) 

Xo= [xo, 1, 0, ... , 0], %j= [x;, 0, 0, ... , 0] (j=I, 2, 

X"I+I:= [0, 0, ... , 1, ... , 0] (k=l, 2, ... , m). 

n'), 
\. (15) 
f 
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An extreme point solution to (10) ~ (13) is one in which only 
(q + I)' (q~m) variables (including xQ) are considered, the remainder 
being set equal to zero; that is, it is of the form 

(16) 

where Po, P j "', P j are linearly independent.4) 
1 q 

It is easy to see that the first components of a basic solution to 
( 1) form an extreme point solution to (10) ~ (13). Conversely, to an 
extreme point solution there corresponds at least one basic solution to 
( 1 ) . The existence of a basic solution to (1) which corresponds to 
an extreme point solution (16) is demonstrated as follows: Set OJ, =0 
(i = 1, "', q), 0,= 1 (j~.ji' 0 < j~n) in (5) and maximize ;;,,+1 starting 
from a basic solution which necessarily exists. 2) From (15) and the 
assumption Vj=O (j~j" 0 <j~n) it is clear that max Y,,+1 

=max {[K, 0, ",,0, 1]-)jYJ1>[K, 0, -1, "', -1,1] 
j"J , 

occurs only when the first components of Y.J (j~ji' j~O) are zero. 
Hence, the maximizing basic solution so obtained has the property that 
the first components of YJ (j~j!> j~O) are zero, and consequently the 
associated basic solution to (1) is one which corresponds to the extreme 
point solution (16). 

According to the general theory,2) it is known that every optimal 
basic solution to (1) provides an optimal (extreme point) solution. 
Conversely, it will be shown that with an optimal extreme point solu­
tion there is at least one corresponding optimal basic solution to (1). 
Let us assume that the basic solution (4) is associated with an optimal 
extreme point solution, then the first component of Vo is equal to 
max Xo. 

Let us assume that the first components of Vi are all positive. 
If there exists a p. such that ({3op.) < 0, then by introducing p. into 
the basis we will obtain a new solution which gives a strictly larger 
value of Xo than max Xo. This is a contradiction and ({3oPj ) ~O for all j. 
Therefore, the basic solution under consideration is an optimal one. 
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On the other hand, let us assume that some of the first compon­
ents of Vi are zero; that is, degeneracy occurs. If there exists a p. 
such that (,Sop.) <0, then by introducing p. into the basis and dropping 
a P;,. such that the first component of xJr is zero we can obtain a new 
basic solution which gives the value of Xo strictly larger than before. 
The new basic solution is also associated with the same extreme point 
solution as before. Such an iterative procedure necessarily terminates 
in a basic solution such that (3oPj~O for all j. This is an optimal 
basic solution associated with the optimal extreme point solution under 
consideration. 

If the set of optimal solutions to (10) ~ (13) is bounded, any 
optimal solution can be represented as a convex combination of all 
optimal extreme point solutions. 4) It is known from the discussion 
above that, in order to find all optimal extreme point solutions to (10) 
~ (13), it is sufficient to find all optimal basic solutions to (1). The 
procedure for latter purpose is described in the preceding section. 

If the set of optimal solutions to (10) ~ (13) is not bounded, any 
optimal solution is, in general, a convex combination of all optimal 
extreme point solutions to the new problem which has one more equ­
ation than (10) ~ (13) , 

(17) 

where K is sufficiently large and Xn+1 is restricted to be non-negative. 
The generalized problem associated with this new augmented problem 
is given by setting oj=l (j=1, 2, ... , n'), 0.,'+1:=0 (k=l, 2, ... , m) in 
( 5 ). There is a one-to-one correspondence between the set of optimal 
baSic solutions to (1) and the set of optimal basic solutions to (5), 
which have Y,,+1 (> 0) in the basis. This correspondence is characterized 
by (4), (6). 

It is easy to see that given an optimal basic solution to (5) in 
which Y,,+1 =0 we can obtain a new optimal basic solution in which 
Y"+1 > 0, by introducing Yn+l into the basis and dropping an unique Yr. 
Then, if we introduce xr into the basis of the optimal basic solution to 
( 1) which corresponds to the basic solution with Y"+I> ° mentioned 
above, xr can be made arbitrarily large without violating the feasibility 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Note on the Determination of All Optimal Solutions 103 
in Linear Programming 

and optimality of the solution. Consequently, we know that a class of 
optimal solutions in which the value of X, can be made arbitrarily 
large corresponds to the optimal basic solution (to (5)) with Y .. +I = 0 
mentioned above. 

To the graph of optimal basic solutions to (1), we will add every 
class of optimal solutions, which arise from an optimal basic solution 
when we introduce some Xj into the basis and we can make Xj arbitr­
arily large without violating the feasibility, as a node. And we will 
connect two nodes, which correspond to a class and an optimal basic 
solution which produce the class, by an edge (end-edge). This graph is 
identical with a connected subgraph of the graph of optimal basic solutions 
to (5) and this graph has same nodes as the graph of (5). Therefore, 
it is not necessary to write down explicitly the additional constraint 
(17). If we wander this labyrinth, we will obtain a set of optimal 
solutions to (10) ~ (13) 

(18) 

where El> E 2 , ••• , are optimal extreme point solutions to (10) ~ (13) , 
F I , F 2 , ... are the parametric representations of all classes mentioned 
above and AI, A2, .. , are arbitrary positive constants (parameters). 
To a E j (Fj) there may be more than one corresponding basic solution 
(class of solutions). Then every optimal solution to (10) ~ (13) is repre­
sented as follows: 

} (19) 
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CONCLUSION 

A general means for locating all optimal solutions to a linear 
programming problem is as follows: find an optimal basic solution by 
the generalized simplex method by which cycling can be avoided. 
Then, eliminate all variables XJ such that (/3oPj ) > O. Starting from 
an optimal basic solution obtained above, wander the labyrinth, for exa­
mple, by Tarry's rule. 8) In the labyrinth, eve,y node is a basic 
solution or a class of solutions which arise from a basic solution when 
we introduce some variable into the basis and the variable can be made 
arbitrarily large. Every edge connects two adjacent basic solutions, or 
otherwise it is an end-edge connecting two nodes which correspond to a 
basic solution and a class arisen from the basic solution. The resulting 
records (18) give a general solution (19). 

In Charnes' wandering, XI such that (!3oPj»O is not rejected in 
principle, and his graph is more complicated than the graph presented 
here. However, when degeneracy does not occur, Charnes' labyrinth 
and the author's one is identical. If degeneracy occurs, the present 
method is simpler than Charnes'. It must be noted, however, that 
when degeneracy occurs Charnes' method will give, perhaps, all the 
extreme point solutions to the dual problem though the author's method 
gives only one solution to the dual. 
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