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Abstract This note addresses the undirected multiflow (multicommodity flow) theory. A multiflow in a
network with terminal set T can be regarded as a single commodity (A, T \A)-flow for any nonempty proper
subset A ⊂ T by ignoring flows not connecting A and T \ A. A set system A on T is said to be lockable
if for every network having T as terminal set there exists a multiflow being simultaneously a maximum
(A, T \A)-flow for every A ∈ A. The multiflow locking theorem, due to Karzanov and Lomonosov, says that
A is lockable if and only if it is 3-cross-free.

A multiflow can also be regarded as a single commodity (A,B)-flow for every partial cut (A,B) of
terminals, where a partial cut is a pair of disjoint subsets (not necessarily a bipartition). Based on this
observation, we study the locking property for partial cuts, and prove an analogous characterization for a
lockable family of partial cuts.
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1. Introduction

By a network (G, T, c) we mean a triple of an undirected graph G = (V G,EG), a specified
node subset T ⊆ V G, and a nonnegative edge-capacity c : EG → R+. A node in T is called
a terminal, and a node in V G\T is called an inner node. A multiflow (multicommodity flow)
is a pair f = (P , λ) of paths P connecting distinct terminals and a nonnegative flow-value
function λ : P → R+ satisfying the capacity constraint

∑
P∈P:e∈P λ(P ) ≤ c(e) for each edge

e ∈ EG. A multiflow is said to be integral if its flow-value function is integer-valued. For
a nonempty proper subset A ⊂ T , any multiflow f can be regarded as a single commodity
(A, T \A)-flow by ignoring paths not connecting A and T \A. One of interesting phenomena
in multiflows is: for a special set system A ⊆ 2T \ {∅, T} there always exists a multiflow f
being simultaneously a maximum (A, T \ A)-flow for all A ∈ A. For example, take A as
the set of all singletons {{s} | s ∈ T}. Then Lovász [16] and Cherkassky [2] independently
showed that there exists a multiflow being simultaneously a maximum (s, T \ s)-flow for
all s ∈ T . Moreover, if the capacity c is integer-valued, then there exists a half-integral
multiflow of this property.

For a multiflow f , we say “f locks A” if f is a maximum (A, T \ A)-flow for all A ∈ A.
Then A is said to be lockable if for every network (G, T, c) there exists a multiflow locking
A. The multiflow locking theorem, due to Karzanov and Lomonosov [14], gives a complete
characterization of such a lockable set system. Two subsets A,B ⊆ T are said to be crossing
if none of A \ B, B \ A, A ∩ B, and T \ (A ∪ B) is empty. A network (G, T, c) is said to be
inner Eulerian if c is integer-valued and every inner node has even degree.

Theorem 1.1 ([14]). Let A ⊆ 2T \ {∅, T} be a set system on T . Then A is lockable if
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and only if A has no pairwise crossing triple. In addition, if lockable, then there exists an
integral multiflow locking A in every inner Eulerian network (G, T, c).

See [7, 15] for proofs, and also see [12] and [18, 73.3c] for further information. The aim
of this note is to give an extension of this result. A pair (A,B) of two disjoint nonempty
subsets is called a partial cut; we do not distinguish (A, B) and (B,A). For a partial cut
(A,B) on T , any multiflow f can also be regarded as a single commodity (A,B)-flow (by
ignoring paths not connecting A and B). So we can extend the locking concept for partial
cuts. Let A be a set of partial cuts on T . For a multiflow f , we say “ f locks A” if f is
a maximum (A,B)-flow for all (A,B) ∈ A. Then A is said to be lockable if there exists a
multiflow locking A in every network (G, T, c).

Our main result is an analogous characterization of a lockable system of partial cuts.
Two partial cuts (A,B) and (C,D) are said to be laminar if one of the following four cases
holds: (i) A ⊆ C,B ⊇ D, (ii) A ⊆ D,B ⊇ C, (iii) A ⊇ C,B ⊆ D, (iv) A ⊇ D,B ⊆ C.
Otherwise (A,B) and (C,D) are said to be crossing, and, in addition, said to be regularly
crossing if A ∪ B = C ∪ D and irregularly crossing if A ∪ B 6= C ∪ D. A terminal s is said
to be proper if s ∈ A ∪ B for all (A,B) ∈ A, and improper otherwise. A network (G, T, c)
is said to be properly inner Eulerian (with respect to A) if it is inner Eulerian and each
improper terminal has even degree.

Theorem 1.2. Let A be a set of partial cuts on T . Then A is lockable if and only if A
has no pairwise crossing triple and no irregularly crossing pair. In addition, if lockable,
then there exists an integral multiflow locking A in every properly inner Eulerian network
(G, T, c).

This theorem includes the previous one for a special case where A ∪ B = T ′ ⊆ T for each
(A,B) ∈ A. Originally we found this result by using a framework in [10, 11]; we can associate
A with a cubital folder complex KA, and can derive Theorem 1.2 by [11, Proposition 2.9,
Theorem 5.1]. However, we here prove it by a basic technique involving splitting-off and
submodularity of cuts, similar to that in [7, 16].

2. Proof

Let (G, T, c) be a network, possibly having multiple edges and loops. An edge e joining
nodes x and y is denoted by xy. We begin to prove the only-if part.

Only-if part. Let A be a set of partial cut on T . Suppose first that A has an irregularly
crossing pair (A,B), (C,D). We may assume A\(C∪D) 6= ∅. Take s ∈ A\(C∪D). Suppose
the case where both B ∩ C and B ∩ D are nonempty. Take t ∈ B ∩ C and u ∈ B ∩ D.
Consider the network on T consisting of only two edges st, tu with unit capacity. Then
there is no multiflow locking {(A, B), (C,D)}. Indeed, to lock (C,D), we need to push unit
(t, u)-flow passing through t, s, u in order. However if push, then it is impossible to add flows
to lock (A,B). Next suppose the case where B \ (C ∪D) is nonempty. We may assume that
A ∩ C or A ∩ D is empty; otherwise it reduces to the case above. Take s′ ∈ B \ (C ∪ D),
t ∈ C, and t′ ∈ D. Consider the network consisting of four edges st, ts′, s′t′, t′s with unit
capacity. Again there is no multiflow locking {(A,B), (C,D)}. Indeed, we may assume
t′ 6∈ A. To lock (A,B), we need to push unit (s, s′)-flow passing through s, t′, s′ in order.
If push, then it is impossible to lock (C,D). So we may assume B ⊆ C. Since (A,B) and
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(C,D) are not laminar, D \ A is nonempty. Take t ∈ B ⊆ C and u ∈ D \ A. Consider the
network consisting of two edges st, su of unit capacity. Again there is no multiflow locking
{(A,B), (C,D)}.

So we may assume that A has no irregularly crossing pair and has pairwise crossing
triple (Ai, Bi) (i = 1, 2, 3). Then A1 ∪B1 = A2 ∪B2 = A3 ∪B3. In this case, we can directly
use a proof [15, p. 44] of the only-if part of the ordinary locking theorem (Theorem 1.1).

If part. We need some notions. For a partial cut (X,Y ), the capacity c(X,Y ) is the sum
of capacity of edges e joining X and Y . A cut is a bipartition (X,Y ) of node set V G. For
a partial cut (A,B) on T , a cut (X,Y ) is called an (A,B)-cut if A ⊆ X and B ⊆ Y . The
minimum capacity of (A,B)-cuts is denoted by κA,B. The cut distance δA,B : T × T → R+

is defined by

δA,B(s, t) =

{
1 if (s, t) ∈ A × B or (t, s) ∈ A × B,
0 otherwise,

(s, t ∈ T ).

Let A be a set of partial cuts on T . For a nonnegative weight α : A → R+, let µA,α =∑
(A,B)∈A α(A,B)δA,B. Consider the following maximum multiflow problem:

Max.
∑
P∈P

µA,α(sP , tP )λ(P ) s.t. f = (P , λ) : multiflow in (G, T, c). (2.1)

Here sP , tP denote the ends of P . For a multiflow f , let valA,α(f) denote the objective value
of (2.1). Then we have

valA,α(f) ≤
∑

(A,B)∈A

α(A,B)κA,B. (2.2)

Indeed, this follows from∑
P∈P

δA,B(sP , tP )λ(P ) = (the total flow-value of (A,B)-flows in f) ≤ κA,B.

By the max-flow min-cut theorem [5], a multiflow f locks A if and only if f attains (2.2)
with equality. Therefore the if part and the latter part of Theorem 1.2 are rephrased as
follows:

Theorem 2.1. Suppose that A has no pairwise crossing triple and no irregularly crossing
pair. Then, for every nonnegative weight α : A → R+ and every network (G, T, c), the
following relation holds:

max{valA,α(f) | f : multiflow in (G, T, c)} =
∑

(A,B)∈A

α(A,B)κA,B. (2.3)

In addition, if (G, T, c) is properly inner Eulerian, then there exists an integral multiflow f
attaining the maximum in (2.3).

It suffices to consider the case where (G, T, c) is properly inner Eulerian. Indeed, for any
network (G, T, c) having integer-valued capacity, network (G, T, 2c) is obviously properly
inner Eulerian. Consequently, if (2.3) holds for every properly inner Eulerian network, then
it holds for every network having rational-valued capacity. Since both sides of (2.3) are
continuous functions on c, the relation (2.3) holds for general (irrational) capacity c.
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Suppose that A has no pairwise crossing triple and no irregularly crossing pair and
(G, T, c) is property inner Eulerian. Our goal is to prove the existence of an integral multiflow
f attaining (2.2) with equality. The proof is based on the splitting-off method. For a
simplification of the proof, we use a standard technique to make the input network have
a small degree, as in [6, p. 51]. First, by multiplying edges, make each edge have unit
capacity. Suppose that there is an inner node y of degree at least 6, incident to edges ei = xiy
(i = 0, 1, . . . ,m+1) (some nodes xi, xj may coincide). Change the incidence around y by the
following way. Subdivide edge ei = xiy into two edges xizi, ziy for i = 1, 2, . . . ,m. Replace
e0 by x0z1, and replace em+1 by xm+1zm. Add new edge zizi+1 for i = 1, 2, . . . ,m− 1. Then
any integer multiflow in the new network can be transformed into an integer multiflow in
the original network having the same valA,α(·). The converse transformation is also possible.
In particular, the min-cut value κA,B is invariant. By repeating this process, make y have
degree four. Suppose that there is an improper terminal s of (even) degree m ≥ 4. Add m/2
new terminals s1, s2, . . . , sm/2, and join s and each si by two parallel edges (of unit capacity).
Make s being an inner node, i.e., T ← T \ {s}. For each partial cut (A, B) ∈ A with s ∈ A
(resp. s ∈ B), replace A by A∪{s1, s2, . . . , sm/2}\{s} (resp. B by B∪{s1, s2, . . . , sm/2}\{s}).
Then the problem is unchanged. By this reduction, we may assume that each edge has unit
capacity, each inner node has degree four, and each improper terminal has degree two.

Recall the splitting-off operation. A pair {xy, yz} of consecutive edges incident to a
common node y is called a fork. The splitting-off operation at {xy, yz} is to delete edges
xy, yz and add a new edge joining x and z of unit capacity (if x 6= z). A fork is said
to be splittable if the splitting-off operation does not decrease the min-cut value κA,B for
all (A,B) ∈ A. The splitting-off decreases the total number of edges. From an integral
multiflow in the new network, we obtain an integral multiflow in the original network.
Therefore, if we find a splittable fork, then by induction on the number of edges we can
prove the existence of an integral multiflow attaining (2.2) in equality.

By the degree condition, each node x 6∈ A∪B has even degree for (A,B) ∈ A. Therefore,
for an (A,B)-cut (X,Y ), c(X,Y ) is an even integer if and only if A (or B) contains the
even number of odd-degree vertices. Consequently, for two (A,B)-cuts (X,Y ), (X ′, Y ′),
the difference c(X,Y ) − c(X ′, Y ′) is an even integer. Moreover the splitting-off at {xy, yz}
decreases the cut-capacity of (X,Y ) if and only if y ∈ X, x, z ∈ Y or y ∈ Y, x, z ∈ X. If
decreases, then it decreases by 2. Therefore, if {xy, yz} is unsplittable, then there exist a
partial cut (A,B) ∈ A and a minimum (A,B)-cut (X,Y ) such that y ∈ X, x, z ∈ Y or
y ∈ Y, x, z ∈ X. We call this cut (X,Y ) a critical (A,B)-cut with respect to {xy, yz}.

Take an inner node y of degree four incident to four edges ei = yxi for i = 0, 1, 2, 3. We
show that at least one of three forks {x0y, yxi} (i = 1, 2, 3) is splittable. Suppose (to the
contrary) that all three forks are unsplittable. Then there is a critical (Ai, Bi)-cut (Xi, Yi)
with respect to {x0y, yxi} for i = 1, 2, 3. We claim:

(∗1) (Ai, Bi) and (Aj, Bj) are crossing if i 6= j.

This immediately leads a contradiction to the hypothesis of A. Suppose that (A1, B1) and
(A2, B2) are laminar. We may assume x0, xi ∈ Xi and y ∈ Yi for i = 1, 2. Then x2, x3 ∈ Y1

and x1, x3 ∈ Y2 necessarily hold. Indeed, if x2 ∈ X1, then c(X1, Y1) > c(X1 ∪ {y}, Y1 \ {y});
this is a contradiction to the assumption that (X1, Y1) is a minimum (A1, B1)-cut. It suffices
to consider two cases: (i) A1 ⊆ A2, B1 ⊇ B2 and (ii) A1 ⊆ B2, B1 ⊇ A2. Suppose (i). Recall
the submodular-type relation of cuts:

c(X1, Y1) + c(X2, Y2) = c(X1 ∩ X2, Y1 ∪ Y2) + c(X1 ∪ X2, Y1 ∩ Y2) + 2c(X1 \ X2, X2 \ X1).
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Then (X1 ∩ X2, Y1 ∪ Y2) is a minimum (A1, B1)-cut and (X1 ∪ X2, Y1 ∩ Y2) is a minimum
(A2, B2)-cut. However c(X1∪X2∪{y}, Y1∩Y2 \{y}) < c(X1∪X2, Y1∩Y2). A contradiction
to the minimality. So suppose (ii). Then (X1 ∩ Y2, Y1 ∪ X2) and (X1 ∪ Y2, Y1 ∩ X2) are an
(A1, B1)-cut and an (A2, B2)-cut, respectively. There is one more relation:

c(X1, Y1) + c(X2, Y2) = c(X1 ∩ Y2, Y1 ∪ X2) + c(X1 ∪ Y2, Y1 ∩ X2) + 2c(X1 ∩ X2, Y1 ∩ Y2).

By x0 ∈ X1 ∩ X2, y ∈ Y1 ∩ Y2, and e0 = x0y ∈ EG. we have c(X1 ∩ X2, Y1 ∩ Y2) > 0. So
c(X1, Y1) > c(X1 ∩ Y2, Y1 ∪X2) or c(X2, Y2) > c(X1 ∪ Y2, Y1 ∩X2). However this contradicts
to the minimality assumption. Therefore every inner node has a splittable fork.

So it suffices to consider the case where there is no inner node, i.e., V G = T . Suppose
further that a (unique) fork at every improper terminal is unsplittable; if splittable, then
split it off and apply induction. We claim:

(∗2) for each (A,B) ∈ A we have c(A,B) = κA,B.

If true, then the set of all one-edge paths of unit flow-value is obviously an integral multiflow
attaining (2.2) with equality. So suppose c(A,B) < κA,B. By Menger’s theorem, there is
a path (s0, s1, . . . , sm) such that s0 ∈ A, sm ∈ B, and sj 6∈ A ∪ B for j = 1, 2, . . . ,m − 1
(m ≥ 2). For j = 1, 2, . . . ,m−1, terminal sj is improper and is incident only to sj−1 and sj+1.
Consider the splitting-off at a fork {s0s1, s1s2}. By assumption, it is unsplittable. Take its
critical (A′, B′)-cut (X,Y ) with s1 ∈ X and s0, s2 ∈ Y . Then necessarily s1 ∈ A′; otherwise
(X \ {s1}, Y ∪ {s1}) is an (A′, B′)-cut having smaller cut capacity. Thus A′ ∪ B′ 6= A ∪ B,
and consequently (A′, B′), (A,B) are laminar. By laminarity we have sm ∈ B ⊆ A′ ⊆ X
(and A ⊇ B′). Then s2 ∈ B (m = 2) is impossible. So m > 2. However we have
c(X,Y ) > c(X∪{s2, s3, . . . , sm−1}, Y \{s2, s3, . . . , sm−1}); a contradiction to the minimality
of (X,Y ).

3. Concluding Remarks

The size of lockable family. Karzanov and Lomonosov [14] asked: how large is the
size of a lockable family ? A set system without crossing triple is said to be 3-cross-free.
Pevzner [17] showed that the cardinality of any 3-cross-free family on n-set is O(n); see [4]
for a shorter proof. Recently, Dress, Koolen and Moulton [3] proved the tight upper bound
8n − 20 (n ≥ 3).

A similar question arises: how large is the size of a lockable family of partial cuts ? We
show that the size of a lockable family of partial cuts on n-set is not linearly bounded, but is
bounded by O(n2). We give an example of O(n2) size. Let n = 2k be a positive even integer.
Consider a tree Γ consisting of edges x0x

i
1, x

i
1x

i
2, . . . , x

i
k−1x

i
k for i = 1, 2, . . . , k. Namely Γ

is obtained by subdividing a star of k leaves. Let [n] = {1, 2, . . . , n} be an n-element set.
We associate each element j in [n] with a subtree Fj in Γ as follows. For j = 1, 2, . . . , k,
let Fj be the subtree induced by nodes x with dΓ (x0, x) ≤ j − 1, where dΓ is the shortest
path metric on node set of Γ . For j = k + 1, k + 2, . . . , 2k, let Fj be the subtree consisting

of one node xj−k
k . For each edge e in Γ , the deletion of e divides Γ into two connected

components Γ ′, Γ ′′. Let Ae be the set of indices i for which Fi belongs to Γ ′, and let Be be
the set of indices i for which Fi belongs to Γ ′′. Note that if Fj contains e, then neither Ae

nor Be contains j. Now we obtain a partial cut family A = {(Ae, Be) | e is an edge of Γ}
of cardinality (n/2)2 = O(n2). One can easily verify that A is laminar, i.e., each pair is
laminar. In fact, it is known that every laminar partial cut family is obtained by a family
of subtrees on a tree in this way [9].
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To see the upper bound O(n2), we use a result from the split decomposition theory [1, 8];
a partial cut is called a partial split in [8, Section 4]. Then one can easily see that a set of
partial cuts without crossing triple and irregularly crossing pair is weakly compatible in the
sense of [8, Section 4]. A general result [8, Theorem 4.13] says that for a weakly compatible
family of partial cuts A on an n-set T , the corresponding set of cut distances {δA,B | (A,B) ∈
A} is linearly independent in the vector space of symmetric functions with zero diagonals
{d ∈ RT×T | d(s, t) = d(t, s), d(s, s) = 0 (s, t ∈ T )}. Therefore |A| ≤ n(n − 1)/2 = O(n2).

Fractionality. Theorem 2.1 says the existence of an integral optimal multiflow in a class of
µ-weighted maximum multiflow problems. For a weight µ : T ×T → R+, the fractionality of
µ is defined to be the least positive integer k with property that the µ-weighted maximum
multiflow problem has a 1/k-integral optimal multiflow for every integer-capacitated network
(G, T, c). If such an integer does not exist, then the fractionality is defined to be infinity.
Recently, [11] proved a complete characterization of weights having finite fractionality, and
showed that if the fractionality is finite, then it is a divisor of 24 (the conjectured tight upper
bound is 4). So it is still interesting to identify a class of weights having small fractionality.
From the point of the view, Theorem 2.1 provides a new class of weights having fractionality
2. A distance among subtrees in a tree, considered in [9], is a natural example of such a
weight; it is exactly a nonnegative sum of cut distances for a laminar partial cut family. By
the extended split decomposition in [8, Section 4], we can determine, in strongly polynomial
time, whether a given weight µ is decomposed into a nonnegative sum of cut distances
for a lockable family of partial cuts, and we can also obtain an explicit decomposition if
decomposable.

A polynomial time algorithm. The splitting-off proof provides a strongly polynomial
time algorithm to find an integral multiflow locking A in a properly inner Eulerian network.
We sketch it. Once the existence of an integral solution is established, it is unnecessary
to reduce the degrees as in the proof of Theorem 2.1. So we may assume that the input
network (G, T, c) is complete and has no multiple edges and loops. Let n = |V G|. We
use a capacitated version of splitting-off. The maximum capacity of the splitting-off can be
computed, in strongly polynomial time, by a minimum (A,B)-cut algorithm for all (A,B) ∈
A. By applying splitting-off for all n2(n + 1)/2 forks (in some ordering), we can make the
network have no splittable fork. This is nontrivial; see [11, Section 7] and [13, Section 4]
for details. Then the multiflow consisting of all one-edge paths is obviously an integral
solution. By reversing the splitting-off operations, we obtain an integral multiflow locking
A in the original network (in an edge-node form if necessarily). So the whole complexity
is O(n3|A|ϕ(n)), where ϕ(n) denotes the complexity of a maximum flow algorithm for an
n-node network. An augmenting path approach, as in [2, 12, 15], would yield a more faster
algorithm, which is left to readers.
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