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Abstract Not only the amount of product demanded, but also the price of the product have a strong
impact on a manufacturer’s revenue. In this paper we consider a continuous-time inventory model where
the spot price of the product stochastically fluctuates according to a Brownian motion. Should information
on the spot price be available, the manufacturer would wish to buy the product on the spot market when
profitable. The purpose of this paper is to find an optimal procurement policy so as to minimize total
expected discounted costs over an infinite planning horizon. We extend the Sulem (1986) model into one
in which the market price of the product follows a geometric Brownian motion. By applying this, we
obtain the optimal cost as a solution to a quasi-variational inequality, and show that there exists an optimal
procurement solution as an (s,S) policy. We clarify the dependence of the optimal (s,S) policy on the spot
price at the procurement epoch. These values of the (s,S) policy can be used and revised in the following
ordering cycles. Finally, some numerical examples are provided to investigate the analytical properties of
the expected cost function as well as of the optimal policy.

Keywords: Inventory, stochastic model, quasi-variational inequality

1. Introduction

Many manufacturers that use the spot market to procure parts and materials in their supply
chains are face fluctuating market prices. In this paper we consider a continuous-time
inventory model in which the spot price of the product fluctuates stochastically according
to a Brownian motion. The inventory level can be monitored on a continuous time basis.
Our objective is to determine the procurement policy as an (s,S) policy to reduce the risk
of the spot price. When the inventory level drops down to the reorder point, a pair of order
quantity and reorder points for the next cycle are determined based upon the observation
of the spot price.

Price uncertainty has been taken into account by several researchers in the context of
inventory policy. In a single-period model, Akella et al. [1] and Seifert et al. [14] develop a
model that determines a combination of the optimal order quantity to purchase via forward
contracts and the optimal quantity to purchase via spot markets in one a cycle period. The
Seifert et al model allows the use of spot markets for both buying and selling. In a multi-
period model, Goel and Gutierrez [9] consider the value of incorporating information about
spot and futures market prices in procurement decision making. They use the two factor
pricing model developed by Schwartz and Smith [13] to describe the stochastic evaluation
of the commodity prices. Mart́ınez-deAlbéniz and Simchi-Levi [11] address the dynamic
supply contract selection problem of a manufacturer who can procure by using long-term
and options contracts as well as the spot market.

On the other hand, there are many articles such as those of Bar-Ilan and Sulem [2],
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Bather [3], Benkherouf and Aggoun [4], Benkherouf [5], Bensoussan et al. [7], Sulem [15]
that are related to an (s,S) policy under continuous time review. Sulem [15] analyzes the
optimal ordering policy by applying impulse control to an inventory system with stochastic
demand followed by a diffusion process. Furthermore, Benkherouf [5] extends Sulem’s model
to the case of general storage with a shortage penalty cost function. We also extend the
Sulem model to the case in which the market price of the product follows geometric Brownian
motions, but with deterministic demand.

The remainder of this paper is organized as follows. In section 2 we present the model
formulation. It is shown in section 3 that the optimal cost can be derived as the solution
to a quasi-variational inequality, and we show in section 4 that there exists an optimal
procurement policy which is a type of an (s,S) policy. In section 5 we discuss the case of a
specific type of spot price, and clarify the impact of the spot price on the value function. In
Section 6, some numerical examples are provided to investigate the analytical properties of
the expected cost function as well as of the optimal policy. Section 7 concludes the paper.

2. Notation and Assumptions

The analysis is based on the following assumptions:
(i) Time is continuous and inventory is continuously reviewed.

(ii) Demand is g units per unit time in one cycle. Unsatisfied demand is backlogged.

(iii) A critical-level (s, S, y) policy is in place, which means that the inventory level x drops
to a reorder point s, then the inventory level increases up to S. And then the next s and
S are determined, based on the observation of the spot price y(t) at time t. Since s and
S are changing at the beginning of each cycle, we define s and S to be the reorder point
and order-up-to level for the last cycle, respectively. Therefore, S represents the initial
inventory level at the beginning of the next cycle (see Figure 1).

(iv) The set up cost is K and the unit cost is equal to the spot price y(·). The shortage cost
p and holding cost q are given by the function f :

f(x) =

{
−px for x < 0,

qx for x ≥ 0
(2.1)

where p and q satisfy the following conditions;

µy(t) > q, (2.2)

p + (µ − α)y(t) > 0. (2.3)

(v) The spot price at time t, y(t), follows a geometric Brownian motion, that is,

dy(t) = y(t)(µdt + σdw(t)) (2.4)

where w(t) follows a standard Brownian motion.
A procurement policy consists of a sequence V = {(θi, ξi), i = 1, 2, · · · } of i-th ordering

time θi and order quantity ξi. Let u(x, y) be the optimal total expected discounted cost
over an infinite planning horizon when an initial inventory level is given by x and the spot
price by y. Then u(x, y) can be written as

u(x, y) = inf
V

(
E

[∫ ∞

0

f(x(t))e−αtdt +
∑
i≥1

(K + y(θi)ξi)e
−αθi

∣∣∣∣x(0) = x, y(0) = y

])
(2.5)
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Figure 1: Inventory flow

where the inventory level x(t) is given by

dx(t) = −gdt +
∑
i≥1

ξiδ(t − θi) (2.6)

with x(0) = x and α being the discount rate. Here, we assume that α ≥ µ > 0. In equation
(2.6), δ(·) denotes the Dirac function, that is,

δ(z) =

{
1 for z = 0,

0 otherwise.
(2.7)

Here, we assume that u(x, y) is continuous and everywhere differentiable in x, and also that
it is twice differentiable in y. Although this assumption is not mathematically rigorous, the
theory of viscosity solutions [8] ensures that value function u is always characterized as a
generalized solution of the associated partial differential problem in some weak sense and is
uniquely determined.

Our objective is to find the optimal procurement policy (s,S) at which the minimum
value function u will be attained．

3. The QVI Problem and Optimal Procurement Policy

In this section, we deal with equation (2.5) as a Quasi-Variational Inequality (QVI) problem
(Bensoussan and Lions [6]).

First, if the procurement is not made at least during the small time interval (t, t + ε),
then we have following inequality:

u(x(t), y(t)) ≤
∫ t+ε

t

f(x(s))e−α(s−t)ds + u(x(t + ε), y(t + ε))e−αε. (3.1)

If expand the right-hand side of equation (3.1) up to the first order in ε, then we have

εf(x) + u(x, y) − gε
∂u

∂x
+ µyε

∂u

∂y
+

1

2
εσ2y2∂2u

∂y2
− αεu(x, y) + o(ε2). (3.2)
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Hence, letting ε trend to 0, equation (3.1) can be reduced to

1

2
σ2y2∂2u

∂y2
+ µy

∂u

∂y
− g

∂u

∂x
− αu ≥ −f(x). (3.3)

On the other hand, if the procurement is made at time t, the inventory level jumps from
x to an x+ ξ. We assume that the order quantity is delivered immediately, so the spot price
before the procurement is equal to the price after procurement. Thus, we obtain

u(x, y) ≤ K + inf
ξ≥0

(y(t)ξ + u(x + ξ, y(t))). (3.4)

Since we make a decision to minimize the expected total cost, at least one of inequalities
(3.3) and (3.4) must hold as an equality. Therefore, equation (2.5) is resolved by a solution
to the QVI problem:

min(Au + f,Mu − u) = 0, (3.5)

where

Au(x, y) :=
1

2
σ2y2∂2u

∂y2
+ µy

∂u

∂y
− g

∂u

∂x
− αu, (3.6)

Mu(x, y) := K + inf
ξ≥0

(y(t)ξ + u(x + ξ, y(t))). (3.7)

4. The Solution of the QVI Problem

In this section, we partially solve the QVI problem (3.5) from Sulem [15]. We divide the
inventory space into two regions; for no procurement,

G = {x ∈ R : u(x, y) < Mu(x, y)} = {x ∈ R : x > s} (4.1)

then, we have

Au + f = 0. (4.2)

And its complement is given by

G = {x ∈ R : u(x, y) = Mu(x, y)} = {x ∈ R : x ≤ s} (4.3)

and for x ∈ G, we have

u(x, y) = K + inf
ξ≥0

(y(t)ξ + u(x + ξ, y(t))) (4.4)

= K + y(t)(S − x) + u(S, y(t)). (4.5)

Due to deterministic demand, we take the inventory level within the elapsed time from
the beginning of the cycle. Thus, we describe the spot price with yx when the inventory
level is x hereafter.

Since u is continuously differentiable in x, in inventory space G, we can get the boundary
conditions on u.
(i) Continuity of the derivative of u at the boundary point s:

lim
x↓s

∂u(x, y)

∂x
= −ys. (4.6)
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(ii) The infimum in equation (4.4) is attained at S:

lim
x↑S

∂u(x, y)

∂x
= −y, (4.7)

where y is the spot price at the beginning of the cycle.

(iii) u is continuous at s:

u(S, y) = u(s, y) − K − ys(S − s). (4.8)

(iv) The growth condition of u:

lim
x→∞

u(x, y)

f(x)
< +∞. (4.9)

To obtain the value function u, we solve the partial differential equation (4.2) with the
initial and boundary conditions (4.6)-(4.8). First, we set

u(x, y) = w(τ, z)ekz+lτ , z = log y, τ =
x − s

g
. (4.10)

Then, equation (4.2) can be rewritten as follows;(
l − µk + α +

1

2
k(1 − k)σ2

)
w +

∂w

∂τ

+

((
1

2
− k

)
σ2 − µ

)
∂w

∂z
− σ2

2

∂2w

∂z2
= f(gτ + s)e−(kz+lτ). (4.11)

By choosing k and l to satisfy

k = − 1

σ2

(
µ − 1

2
σ2

)
, l = − 1

2σ2

(
µ − 1

2
σ2

)2

− α, (4.12)

we can get the non-homogeneous heat equation

∂w

∂τ
− σ2

2

∂2w

∂z2
= f(gτ + s) exp

{
1

σ2

(
µ − 1

2
σ2

)
z +

(
1

2σ2

(
µ − 1

2
σ2

)2

+ α

)
τ

}
(4.13)

with

w(0, z) = e
1

σ2

“

µ−σ2

2

”

z{v(τS, z) + K + ez(S − s)} ≡ m(z), (4.14)

τS =
S − s

g
. (4.15)

The solution to the diffusion equation problem is given by

w(τ, z) = w1(τ, z) + w2(τ, z), (4.16)

where w1(τ, z) and w2(τ, z) are solutions to the following problems:

∂w1

∂τ
=

σ2

2

∂2w1

∂z2
, w1(0, z) = m(z), (4.17)

∂w2

∂τ
=

σ2

2

∂2w2

∂z2
+ h(τ, z), w2(0, z) = 0. (4.18)

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Inventory Model with Stochastic Prices 141

Here, we set the right hand side of equation (4.13) as h(τ, z). The solutions w1, w2 of
problems (4.17) and (4.18) are, respectively, given by

w1(τ, z) =
1√

2πσ2τ

∫ ∞

−∞
w1(0, ξ) exp

{
−(z − ξ)2

2σ2τ

}
dξ

=
1√
2π

en−(τ,z)

∫ ∞

−∞
v

(
τS, τ

(
µ − σ2

2

)
+ λσ

√
τ + z

)
e−

λ2

2 dλ

+Ken−(τ,z) + (S − s)en+(τ,z), (4.19)

and

w2(τ, z) =
1√

2πσ2

∫ τ

0

1√
τ − δ

∫ ∞

−∞
h(δ, ξ) exp

(
− (z − ξ)2

2σ2(τ − δ)

)
dξdδ

= en−(τ,z)

∫ τ

0

f(gδ + s)eαδdδ, (4.20)

where

n±(τ, z) =
1

2σ2

(
µ ± σ2

2

)(
τ

(
µ ± σ2

2

)
+ 2z

)
. (4.21)

Therefore, from equations (4.10), (4.16), (4.19) and (4.20), u(x, y) can be rewritten as
follows;

u(x, y) = e−ατx

[
1√
2π

∫ ∞

−∞
u(S, yxe

τx

“

µ−σ2

2

”

+λσ
√

τx)e−
λ2

2 dλ

+K + (S − s)yxe
µτx +

∫ τx

0

f(gδ + s)eαδdδ

]
. (4.22)

The last term of equation (4.22), it can be rewritten as

D(x) ≡
∫ τx

0

f(gδ + s)eαδdδ

=

{
p
α

(
s − g

α

)
+ q

α

(
x − g

α

)
eατx + g

α2 (p + q)e−
α
g

s for x ≥ 0,

− p
α

{(
x − g

α

)
eατx − s + g

α

}
for x < 0,

(4.23)

and D(s) = 0. Therefore, we have

u(x, y) = e−ατx [E[u(S, yxe
τx(µ−σ2

2
)+σ

√
τxX)] + K + (S − s)yxe

µτx + D(x)]

= e−ατx [u(S, y) + K + (S − s)yxe
µτx + D(x)] (4.24)

where X is a standard normal random variable.
Lemma 1. The optimal cost function u(x, y) is given by

u(x, y) =
g

α

(
q

g
S + y

)
eα(τS−τx) +

{
yxe

(µ−α)τx −
(
1 − µ

α

)
yeµτS−ατx

}
(S − s) + L(x)

(4.25)

where

L(x) =

{
q
α

{(
x − g

α

)
−

(
S − g

α

)
eα(τS−τx)

}
for x ≥ 0,

− p
α

(
x − g

α

)
− q

α

(
S − g

α

)
eα(τS−τx) − g

α2 (p + q)e−
α
g

x for x < 0.
(4.26)
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Proof. By equations (4.7) and (4.24), we have

u(S, y) =
g

α

(
q

g
S + y

)
eατS −

(
1 − µ

α

)
(S − s)yeµτS − K − D(S). (4.27)

Thus, equations (4.24) and (4.27) lead to equation (4.25).

Remark 1. Note that equation (4.25) can be reduced to the deterministic-demand case of
Sulem’s model when we assume µ = σ = 0, y = y and S = S. In this case, the optimal cost
ũ(x) can be reduced to be

ũ(x) =

{
(q + αy)g

α2
e

αS
g − qg

α2

}
e−

αx
g +

r

α
x +

rg

α2

(
e−

αx
g − 1

)
(4.28)

where

r =

{
−p for x < 0,

q for x ≥ 0.
(4.29)

Proposition 1. If yx ≥
(
1 − µ

α

)
yeµ(τS−τx), then u(x, y) ≥ ũ(x) for all x and y.

Proof. Subtracting equation (4.28) from equation (4.25), we get

u(x, y) − ũ(x) =
{

yxe
(µ−α)τx −

(
1 − µ

α

)
yeµτS−ατx

}
(S − s) (4.30)

for all x. Hence, we have u(x, y) ≥ ũ(x) for yx ≥
(
1 − µ

α

)
yeµ(τS−τx).

Lemma 2. If µ satisfies

α +
1

τS

log

(
1 − q

µyx

)
< µ ≤ α, (4.31)

and there exists an optimal order point s for any y, then s is strictly negative.

Proof. From equation (4.25), we have

∂u

∂y
= e(µ−α)τx(S − s),

∂2u

∂y2
= 0. (4.32)

Therefore, Au + f = 0 can be rewritten as

−µyxe
(µ−α)τx(S − s) + g

∂u

∂x
+ αu = f(x). (4.33)

Here, we assume that s ≥ 0 and we can obtain

∂u(S, y)

∂x
= −ys (4.34)

from the same type of reasoning that gave equation (4.7). It follows from equations (4.33)
and (4.34) that

αu(S, y) = qS + gys + µyse
(µ−α)τS(S − s) as x → S (4.35)

and from (4.6) that

αu(s, y) = qs + gys + µys(S − s) as x → s. (4.36)

Hence, s < S and α + 1
τS

log
(
1 − q

µys

)
< µ ≤ α yield the result that u(S, y) > u(s, y). This

is contrary to equation (4.8); that is, u(S, y) < u(s, y). Therefore, s is strictly negative.
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Next we explore the properties of u and demonstrate the existence of an optimal policy
based on Benkherouf [5]. Let us denote H(x, y) = u(x, y) + yxx. Then, equation (4.2) can
be rewritten as

g
∂H

∂x
+ αH = gyx + αyxx + f(x) + µyxe

(µ−α)τx(S − s). (4.37)

Lemma 3. Assume that equation (4.31) holds. Then, there exists a pair (s,S) such that s
and S satisfy equations (4.6)-(4.8).

Proof. It suffices to show that H(s, y) < K +H(S, y) for s → 0, and H(s, y) > K +H(S, y)
for s → −∞. For s → 0 in equations (4.35) and (4.36), we get

u(S, y) − u(s, y) =
S

α
(q + µys(e

S
g
(µ−α) − 1)) (4.38)

Hence, by assumption (4.31), we have u(S, y) > u(s, y) which implies that

H(s, y) = u(s, y) + sy < u(S, y) + Sy + K = H(S, y) + K. (4.39)

Next, we show that H(s, y) > K + H(S, y) for s → −∞. It follows from equation (4.25)
that

H(s, y) =
g

α2

(
(αy + q)e

α
g

S − (p + q)
)

e−
α
g

s − p

α

(
s − g

α

)
+ ysS −

(
1 − µ

α

)
yeµτS(S − s).

(4.40)

For µ ≤ α, applying l’Hospital’s rule to equation (4.40), we have

g

α2

(
(αy + q)e

α
g

S − (p + q)
)

e−
α
g

s − p

α

(
s − g

α

)
≈ − p

α

(
s − g

α

)
→ +∞ (4.41)

as s → −∞, and

−
(
1 − µ

α

)
yeµτS(S − s) ≈ − g

αµ
(µ − α)yeµτS =


+∞ for 0 < µ < α,

0 for µ = α,

− g
αµ

(µ − α)y for µ ≤ 0.

(4.42)

Thus, H(s, y) → +∞ as s → −∞ for µ ≤ α. Also, we have H(x, y) → +∞ as x → +∞.

Consequently, there exists an S such that ∂H(S,y)
∂x

= 0 and H(s, y) > K + H(S, y) as
s → −∞.

Lemma 4. If (s,S) is the solution of a QVI problem (3.5), then we have ∂H(x, y)/∂x ≤ 0
if s ≤ x ≤ S, and ∂H(x, y)/∂x ≥ 0 if S ≤ x for any y.

Proof. First, we show that ∂H(x, y)/∂x ≤ 0 for s ≤ x ≤ S. Suppose that ∂H(x, y)/∂x > 0.
In terms of equation (4.8), we have H(S, y) < H(s, y), which is in contradiction with
∂H(x, y)/∂x > 0.

Next, we show that ∂H(x, y)/∂x ≥ 0 for S ≤ x. Assume that ∂H(x, y)/∂x ≤ 0 for S ≤ x.
From H(x, y) decreases for s ≤ x ≤ S and H(x, y) → +∞ as x → +∞, there exists a number
S < S̃, such that ∂H(S̃, y)/∂x = 0, ∂2H(S̃, y)/∂x2 ≥ 0 and H(S, y) > H(S̃, y). Therefore,
we have ∂H(x, y)/∂x ≥ 0 for S̃ ≤ x, and it is in contradiction with ∂H(x, y)/∂x ≤ 0 for
S ≤ x. This completes the proof.
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Theorem 1. Under assumptions (2.2), (2.3) and (4.31), the optimal policy (s,S) is a
unique solution to the QVI problem, and the value of (s,S) is given by the solution of the
following simultaneous equations:

g

α

(
p

g
s − ys

)
+

q

α

(
S − g

α

)
+

g

α

(
y +

q

α

)
eα(τS−τS) + K

+
{

yse
(µ−α)τS +

(
1 − µ

α

)
(ys − yeµτS−ατS)

}
(S − s) = 0 (4.43)

g

α

(
q

g
S + y

)
eατS − q

α

(
S − g

α

)
− g

α

(
y +

q

α

)
eα(τS−τS) − D(S) − K

−
{

yse
(µ−α)τS + yeµτS

(
1 − µ

α

)
(1 − e−ατS)

}
(S − s) = 0 (4.44)

Proof. Equations (4.43) and (4.44) are derived from equations (4.6) and (4.8). First, we
show the QVI relations (3.5), that is, Au + f ≥ 0 for x ≤ s and u ≤ Mu for x ≥ s. For
x ≤ s, we obtain following equation by using equation (4.8);

u(x, y) = u(s, y) + yx(S − x) − ys(S − s). (4.45)

Then, Au + f ≥ 0 can be rewritten as

αu(s, y) − αys(S − s) ≤ f(x) + gyx − (α − µ)yx(S − x). (4.46)

Therefore, it is only necessary to show that C(x) ≥ 0 for x ≤ s, where

C(x) ≡ f(x) + gyx − (α − µ)yx(S − x) − αu(s, y) + αys(S − s). (4.47)

Taking the derivative of C(x), we have C ′(x) = −p − (µ − α)yx < 0 from condition (2.3).
This implies that C(x) is decreasing for x ≤ s. From Au + f = 0, we have

C(s) = f(s) + gys − (α − µ)ys(S − s) − αu(s, y) + αys(S − s) = 0. (4.48)

Thus, C(x) ≥ 0 for x ≤ s.
Next, we show that u ≤ Mu for x ≥ s. For s ≤ x ≤ S, we have

Mu(x, y) = K + yx(S − x) + u(S, y) (4.49)

which implies

Mu(x, y) − u(x, y) = −H(x, y) + K + yxS + u(S, y). (4.50)

Differentiating the above equation with respect to x, then we get

∂

∂x
[Mu(x, y) − u(x, y)] = −∂H(x, y)

∂x
. (4.51)

As x → s in equation (4.49), we have Mu = u. Also, we have Mu − u = K as x → S in

equation (4.50). Since ∂H(x,y)
∂x

≤ 0 for s ≤ x ≤ S, we obtain u ≤ Mu for s ≤ x ≤ S from
equation (4.51). Finally, for x ≥ S, we have Mu(x, y) = K + u(x, y). It clearly holds for
u ≤ Mu.
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Second, we show that (s,S) is a unique solution to the QVI problem. Suppose that
there are two solutions (s1,S1) and (s2,S2) with s1 < s2 and S2 < S1. This means that
∂H(s1,y)

∂x
= ∂H(s2,y)

∂x
= 0. Thus, there exists at least one x∗ ∈ (s1, s2) such that ∂2H(x∗,y)

∂x
= 0

and ∂H(x∗,y)
∂x

< 0.
For x∗ < s2, we have Au(x∗, y) + f(x∗) ≥ 0, that is,

αH(x∗, y) ≤ αyx∗x∗ + gyx∗ + µyx∗(S2 − x∗) − px∗. (4.52)

On the other hand, we get Au(x∗, y) + f(x∗) = 0 from s1 < x∗,

g
∂H(x∗, y)

∂x
+ αH(x∗, y) = gyx∗ + αyx∗x∗ − px∗ + µyx∗e(µ−α)τx∗ (S1 − s1). (4.53)

Thus, equations (4.52) and (4.53) lead to

∂H(x∗, y)

∂x
≥ µ

g
yx∗(e(µ−α)τx∗ (S1 − s1) − (S2 − x∗)). (4.54)

We can see that ∂H(x∗,y)
∂x

≥ 0 from equation (4.54), which is in contradiction with ∂H(x∗,y)
∂x

< 0.
Thus, we have the required result.

Remark 2. When the drift of the spot price µ is equal to the discount rate α, then the
simultaneous equation (4.43)-(4.44) becomes the simple form:

s =
1

αys − p

[
g

(
y +

q

α

)
eα(τS−τS) − g

(
ys +

q

α

)
+ (q + αys)S + αK

]
(4.55)

g

α

(
q

g
S + y

)
eατS − q

α

(
S − g

α

)
− g

α

(
y +

q

α

)
eα(τS−τS) − D(S) − K − ys(S − s) = 0

(4.56)

5. Specific Spot Price Types

Since equations (4.43) and (4.44) depend on the spot price ys at the end of the cycle, we
assume that the price is equal to the expectation of the spot price at the end of the cycle
in order to estimate the total cost at the beginning of cycle. Thus, we assign

yx = yeµ(τS−τx) (5.1)

to equation (4.25).
Then, the value function u is as follows;

u(x) =
g

α

(
q

g
S + y

)
eα(τS−τx) +

µ

α
yeµτS−ατx(S − s) + L(x) (5.2)

where L(x) is given by equation (4.26).
Proposition 2. u(x) is increasing in y and µ.

Proof. From equation (5.2), we get

∂u

∂y
=

g

α
eα(τS−τx)

{
1 +

µ

g
e(µ−α)τS(S − s)

}
> 0, (5.3)

∂u

∂µ
=

1

α
yeµτS−ατx(S − s)

(
1 + µ

S − s

g

)
> 0. (5.4)

Hence, the proposition is established.
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We recalculate equations (4.43) and (4.44) to implement numerical computing. Then we
have

p

g
s +

q

g

(
S − g

α

)
+

α

g
K − yeµτS +

(
y +

q

α

)
eα(τS−τS)

y

g

{
α(1 + (eµτS − 1)(eµτS−ατS + 1)) + µeµτS−ατS

}
(S − s) = 0, (5.5)

−
(
y +

q

α

)
(1 − e−ατS)eατS +

p

g

(
s − g

α

)
+

q

g

(
S − g

α

)
+

1

α
(p + q)e−

α
g

s +
α

g
K

y

g

{
α(1 + (eµτS − 1)(eµτS−ατS + 1)) − µeµτS(1 − e−ατS)

}
(S − s) = 0. (5.6)

6. Numerical Examples

In this section we present a numerical example of optimal procurement policy using equa-
tions (5.5) and (5.6), and illustrate its value function. We assume that g = 0.2, p = 0.2,
q = 0.04, K = 0.14, α = 0.02, µ = 0.015, σ = 0.12, y = 3.0 and S = 0.586. Then, we have
S = 0.231, s = −0.17. Figure 2 shows the optimal cost function u and ũ that the optimal
cost for the spot price model is higher than Sulem’s result for the fluctuation of the spot
price. By proposition 1, we know that the property holds. Figure 3 expresses the relation-
ship between the optimal policy and the drift parameter. Moreover, Figure 4 illustrates the
optimal policy with respect to the initial spot price. We can see that the reorder point s
increases and S decreases for µ in Figure 3. Comparing Figure 3 with Figure 4, we find that
the order quantity is highly sensitive to the drift parameter of the spot price.

- 5 0 5 10 15 20 25 30

20

30

40

50

u

ũ

x

Optimal Total Cost

Figure 2: Optimal cost function for spot prices and Sulem’s model
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Figure 3: The optimal procurement policy with respect to µ
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Figure 4: The optimal procurement policy with respect to y

7. Concluding Remarks and Further Research

In this paper, we showed the existence of an optimal policy for the inventory model that
permits manufacturers to procure products from the spot market. We obtained the optimal
cost function as a solution of a quasi-variational inequality, and showed that there exists an
optimal procurement policy which is described by the form of an (s,S) policy. For future
research, we may extend the inventory model of procurement from spot market into a model
where demand also follows a diffusion process and incorporates supply contracts like options
or futures.
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