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Abstract A correlated multivariate shock model is considered where a system is subject to a sequence
of J different shocks triggered by a common renewal process. Let (Y (k))∞k=1 be a sequence of inde-
pendently and identically distributed (i.i.d.) nonnegative random variables associated with the renewal
process. For the magnitudes of the k-th shock denoted by a random vector X(k), it is assumed that
[X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence of i.i.d. random vectors with respect to k while X(k) and
Y (k) may be correlated. The system fails as soon as the historical maximum of the magnitudes of any
component of the random vector exceeds a prespecified level of that component. The Laplace transform of
the probability density function of the system lifetime is derived, and its mean and variance are obtained
explicitly. Furthermore, the probability of system failure due to the i-th component is obtained explicitly
for all i ∈ J = {1, · · · , J}. The model is applied for analyzing the browsing behavior of Internet users.

Keywords: Applied probability, multivariate shock models, system lifetime, consumer
browsing behavior

1. Introduction

A general shock model is studied by Shanthikumar and Sumita [3], where a system is sub-
ject to a sequence of random shocks generated by a renewal sequence. More specifically, the
model is characterized by correlated pairs of nonnegative random variables [Xj, Yj] (j =
1, 2, · · · ) where Xj is the magnitude of the jth shock and Yj describes the time interval
between two consecutive shocks. The variates [Xj, Yj] (j = 1, 2, · · · ) are i.i.d. pairwise,
while Xj and Yj may be correlated. The underlying system fails as soon as the magnitude
of a shock exceeds a prespecified level. The transform results, an exponential limit theorem
and properties of the associated renewal processes of the system failure times are obtained
with an application to a stochastic clearing system. The model is extended subsequently by
Sumita and Shanthikumar [4] to incorporate the system lifetime based on the cumulative
shock.

While the general shock model has widened the application areas much beyond the tra-
ditional Poisson shock model, it is still limited in that the model accepts only one type of
shocks. In some applications, it is important to deal with multiple types of shocks generated
by a common renewal sequence. In analyzing the browsing behavior of users of the Internet,
for example, it is common to find a user moving from one website to another in order to
gather information about a specific product of his/her interest. Assuming that dwell times
at different websites constitute a renewal sequence, the first type of shocks may correspond
to the values of information gathered from various websites concerning a product produced
by Company C1, while the second type of shocks may describe those concerning a similar
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product produced by Company C2. The Internet search would be terminated when the user
obtains enough information to decide which company’s product should be purchased. The
purpose of this paper is to extend the general shock model of Shanthikumar and Sumita [3]
so as to incorporate such multiple different random shocks generated from a common re-
newal sequence. A preliminary version of this study is reported at IWAP2008 by Sumita
and Zuo [5]. In this paper, however, the model analysis is elaborated further substantially.
In particular, analysis of the probability of system failure due to the i-th component is
totally new and numerical examples are also enriched. It may be worth noting that the
proposed model can be interpreted as a fatal shock model, where the fatal shock is defined
as the historical maximum of any component of a sequence of random vectors exceeding a
pre-specified level for the component.

The structure of this paper is as follows. The correlated multivariate shock model is
introduced in Section 2 and the system lifetime is analyzed in Section 3. In Section 4, the
probability of system failure due to component i is evaluated explicitly. An application to
analysis of the browsing behavior of users of the Internet is discussed in Section 5, and
numerical examples are also presented. Finally, in Section 6, some concluding remarks are
given.

2. Model Description

We consider a system where a sequence of J different types of shocks are triggered by a
common renewal process characterized by a sequence of i.i.d. nonnegative random variables
(Y (k))∞k=1. Let X(k) = [X1(k), · · · , XJ(k)] be the random vector describing the magnitudes
of J different shocks occurred at the k-th renewal epoch. Throughout the paper, we assume
that all random variables are absolutely continuous with X(k) ∈ RJ

+ and Y (k) ∈ R+, where
RJ

+ is the set of J dimensional nonnegative vectors and R+ denotes the set of nonnegative
real numbers. For notational convenience, we define J = {1, 2, , · · · , J} and its power
set B(J ) = {A : A ⊂ J}. In addition, while X(k) and Y (k) may be correlated, it is
assumed that [X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence of i.i.d. random vectors
with respect to k. The joint distribution function and the joint probability density function
of [X(k), Y (k)] are defined by

FX,Y (x, y) = P [X1(k) < x1, · · · , XJ(k) < xJ , Y (k) ≤ y], (2.1)

and

FX,Y (x, y) =

∫ xJ

0

· · ·
∫ x1

0

∫ y

0

fX,Y (v, w)dwdv. (2.2)

We note that the inequality associated with X(k) in FX,Y (x, y) is taken to be strict. Since
the historical maximum processes are of our main concern, equalities are attached to tail
probabilities for random variables directly involving X(k) as a general rule in this paper.
For notational convenience, the following functions are also introduced.

fY (y) =

∫ ∞

0

· · ·
∫ ∞

0

fX,Y (x, y)dx ; fX(x) =

∫ ∞

0

fX,Y (x, y)dy (2.3)

GX(x, y) =

∫ xJ

0

· · ·
∫ x1

0

fX,Y (v, y)dv (2.4)

GX(x, y) =

∫ ∞

xJ

· · ·
∫ ∞

x1

fX,Y (v, y)dv (2.5)
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GY (x, y) =

∫ y

0

fX,Y (x, τ)dτ ; GY (x, y) =

∫ ∞

y

fX,Y (x, τ)dτ. (2.6)

For simplicity, with x = [x1, · · · , xJ ], we write fX(x) = fX(x1, · · · , xJ), GX(x, y) =
GX(x1, · · · , xJ , y), etc, interchangeably.

The system fails as soon as the historical maximum of the magnitudes of any component
of the random vector exceeds a prespecified level of that component. More specifically, let
N(t) be the counting process associated with the renewal sequence (Y (k))∞k=1 and define the
historical maximum process M(t) by

M(t) = [M1(t), · · · ,MJ(t)] ; Mi(t) = max
0≤k≤N(t)

{Xi(k)}, (2.7)

where X(0) = 0 is employed for notational convenience. The system fails as soon as any
one of the historical maximum processes Mi(t), i ∈ J , exceeds its prespecified level zi .
If only Mi(t) exceeds zi, then the i-th component causes the system failure. If multiple
historical maximum processes exceed their prespecified levels simultaneously, the system
failure is assumed to be triggered by the component having the largest value of them. For
z = [z1, · · · , zJ ] > 0, the system lifetime Tz is then given by

Tz = inf{t : Mi(t) ≥ zi, for some i ∈ J }. (2.8)

Of interest is the distribution of Tz and the probability ρi(z) of the system failure being
caused by the i-th component. In what follows, we analyze Tz, deriving the transform results
and its mean and variance, as well as ρi(z) for all i ∈ J .

3. Analysis of Tz

Let the distribution functions of M(t) and Tz be defined by

V (z, t) = P [M(t) < z] ; Wz(t) = P [Tz ≤ t]. (3.1)

Laplace transforms with respect to t are denoted by a circumflex, i.e.,

V̂ (z, s) =

∫ ∞

0

e−stV (z, t)dt ; ŵz(s) =

∫ ∞

0

e−stdWz(t). (3.2)

One easily sees that there exists a dual relationship between M(t) and Tz specified by

V (z, t) = P [M(t) < z] = P [Tz > t] = W z(t), (3.3)

where W z(t) = 1 − Wz(t) is the survival function of Tz. In this section, we derive ŵz(s)
explicitly based on Equation (3.3).

We assume that the system starts anew at time t = 0. For k = 1, 2, · · · , the shock vector
X(k) at the k-th renewal epoch is correlated only to the time interval Y (k) since the (k−1)st
renewal epoch and does not affect the future events. The following theorem then holds.

Theorem 3.1. Let ϕ̂Y (s) and ĜX(z, s) be the Laplace transforms of fY (t) in Equation (2.3)

and ĜX(z, s) in Equation (2.6) respectively, i.e. ϕ̂Y (s)
def
=

∫ ∞
0

e−stfY (t)dt and ĜX(z, s)
def
=∫ ∞

0
e−stGX(z, t)dt. One then has

V̂ (z, s) =
1 − ϕ̂Y (s)

s{1 − ĜX(z, s)}
, Re(s) ≥ 0.
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Proof. Since V (z, t) is the probability that the maximum value of Xi(k) has not exceeded
the level zi for k = 1, 2, · · · , N(t) and i ∈ J , by conditioning on the first renewal time Y (1)
and using the regenerative property of the paired process [X(k), Y (k)] at Y (1), one sees
that

V (z, t) = F Y (t) +

∫ t

0

GX(z, y)V (z, t − y)dy. (3.4)

By taking the Laplace transform of both sides of Equation (3.4) with respect to t, it can be
seen that

V̂ (z, s) =
1 − ϕ̂Y (s)

s
+ ĜX(z, s)V̂ (z, s).

This equation can be solved for V̂ (z, s), completing the proof.

The system lifetime Tz has the dual relationship with M(t) given in Equation (3.3). The
Laplace transform ŵz(s) = E[e−sTz ] is then easily found from Theorem 3.1.

Theorem 3.2.

ŵz(s) =
ϕ̂Y (s) − ĜX(z, s)

1 − ĜX(z, s)
, Re(s) ≥ 0.

Proof. From Equation (3.3), one finds that V̂ (z, s) =
1−ŵz(s)

s
, so that ŵz(s) = 1 − sV̂ (z, s).

The theorem now follows from Theorem 3.1.

By differentiating ŵz(s) at s = 0, the mean and the variance of Tz can be obtained.

Corollary 3.2.1.

a) E[Tz] =
E[Y ]

1 − FX(z)

b) V ar[Tz] =
E[Y 2]

1 − FX(z)
+

E[Y ]

(1 − FX(z))2

{
2FX(z)E[Y |X < z] − E[Y ]

}

The Laplace transform ŵz(s) = E[e−sTz ] has the following real-domain form.

wz(t) = fY (t) +
∞∑

k=1

fY (t) ∗ G
(k)
X (z, t) −

∞∑
k=1

G
(k)
X (z, t), (3.5)

where G
(k+1)
X (z, t) =

∫ t

0
GX(z, t−τ)G

(k)
X (z, τ)dτ and the asterisk denotes similar convolution

in t.
As the threshold levels zi for i ∈ J tend to approach ∞, the system failure becomes a

rare event. Accordingly, it may be expected that Tz/E[Tz] converges in distribution to the
exponential variate E of mean one. This type of exponential limit theorems is originated
from Keilson [1,2] involving rare events in regenerative processes. Since the historical max-
imum is monotonically non-decreasing in time t, Keilson’s theorem does not seem to be
directly applicable here. However, Shanthikumar and Sumita [3] find the structural similar-
ity between rare events in regenerative processes and those in historical maximum processes,
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proving a generalized version of the original theorem by Keilson [1, 2].
The limit theorem of [3] involves a sequence of non-negative random vectors V (k) =

[X(k), Y (k)] where X(k) and Y (k) may be correlated but V (k)’s are i.i.d. Then the state
space N = R2

+ = {(x, y) : x ≥ 0, y ≥ 0} is decomposed into G(z) and B(z) with G(z) 6= ∅,
B(z) 6= ∅, G(z) ∩ B(z) = ∅ and G(z) ∪ B(z) = N , and the following experiment is consid-
ered. If V (k) ∈ G(z), the experiment continues and V (k + 1) is chosen. The experiment
stops when a random vector falls in the region B(z). The system failure time Sz is then
defined as the sum of y-coordinates of all random vectors up to the stopping point. It is
shown in Shanthikumar and Sumita [3] that, if pz = P [V ∈ B(z)] → 0 as z → ∞, then
Sz/E[Sz] → E as z → ∞. In this paper, one has V (k) = [X(k), Y (k)], i.e. the first process
becomes multivariate. This requires to redefine N , G(z), B(z) and pz. However, the system
failure time remains to be expressed as the sum of y-coordinates of all random vectors up
to the stopping point in the random experiment. Since pz = P [V (k) ∈ B(z)] → 0 if zi → ∞
for all i ∈ J , the following theorem can be shown along the line of the proof of Theorem
1.A4 in [3].

Theorem 3.3. Let E be the exponential random variate of mean one and suppose 0 <

FX,Y (x, y) < 1 for 0 < x < ∞, 0 < y < ∞, and E[Y ] < ∞. Then Tz/E[Tz]
d→ E as

z → ∞.
It is trivial that the almost sure dominance of Tz2

over Tz1
is present whenever 0 ≤ z1 ≤

z2. We formally state this result.

Theorem 3.4.

0 ≤ z1 ≤ z2 ⇒ Tz1
≤a.s. Tz2

4. Probability of System Failure Caused by the i-th Component

Given a threshold vector z, we next turn our attention to evaluate the probability ρi(z)
of system failure caused by the i-th component for i ∈ J . For this purpose, let τk be the
k-th renewal epoch for k = 1, 2, · · · and define ηJ (z, t, k) to describe the event that the
system failure is avoided at the k-th renewal epoch with the marginal probability density
of t at t = τk. Since [X(k), Y (k)] constitute a sequence of i.i.d. random vectors, ηJ (z, t, 1)
represents the avoidance of system failure at any single renewal epoch. It can be seen that

ηJ (z, t)
def
= ηJ (z, t, 1) =

d

dt
FX,Y (z, t)

=

∫ zJ

0

· · ·
∫ z1

0

fX,Y (x, t)dx1 · · · dxJ . (4.1)

For k ≥ 2, one sees that

ηJ (z, t, k)
def
=

d

dt
P [Xi(m) < zi for all i ∈ J and m = 1, · · · , k, τk ≤ t]

=

∫ t

0

ηJ (z, τ, k − 1)ηJ (z, t − τ)dτ. (4.2)

By taking Laplace transforms of Equations (4.1) and (4.2) with respect to t, one finds by
induction that

η̂J (z, s, k) =

∫ ∞

0

e−stηJ (z, t, k)dt = {η̂J (z, s)}k, k = 1, 2, · · · , (4.3)
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where

η̂J (z, s) =

∫ ∞

0

e−stηJ (z, t)dt. (4.4)

Let Fi(J ) be the family of subsets of J containing i, that is,

Fi(J )
def
= {A : i ∈ A,A ⊂ J}, (4.5)

and define ηi:A,J\A(z, t, k) to be the probability that the system failure is triggered by the

i-th component and all the components in A ∈ Fi(J ) exceed the corresponding threshold
levels at the k-th renewal epoch while Xj(k) for j ∈ J \A remains below zj, with the
marginal probability density of t at t = τk. More specifically, we define, for k ≥ 2,

ηi:A,J\A(z, t, k)

def
=

d

dt
P [Xi(m) < zi for all i ∈ J and m = 1, · · · , k − 1, and (4.6)

Xj(k) > zj for j ∈ A,Xj(k) < zj for j ∈ J \A,Xi(k) = max
j∈A

{Xj(k)}, τk ≤ t].

For k = 1, the first half of the conditions in the above probability would be ignored, i.e

ηi:A,J\A(z, t, 1) (4.7)

def
=

d

dt
P [Xj(1) > zj for j ∈ A,Xj(1) < zj for j ∈ J \A,Xi(1) = max

j∈A
{Xj(1)}, τ1 ≤ t].

As before, since [X(k), Y (k)] are i.i.d. random vectors, ηi:A,J\A(z, t, 1) represents a system

failure at any single renewal epoch with the probability density of the renewal lifetime being

at t. It can be seen that, with ηi:A,J\A(z, t)
def
= ηi:A,J\A(z, t, 1), and for k ≥ 2,

ηi:A,J\A(z, t, k) =

∫ t

0

ηJ (z, τ, k − 1)ηi:A,J\A(z, t − τ)dτ. (4.8)

Adding ηi:A,J\A(z, t, k) over A ∈ Fi(J ), one obtains the probability that the system failure

is triggered by the i-th component at the k-th renewal epoch with the marginal probability
density of t at t = τk . We define

ξi(z, t)
def
= ξi(z, t, 1)

def
=

∑
A∈Fi(J )

ηi:A,J\A(z, t), (4.9)

and

ξi(z, t, k)
def
=

∑
A∈Fi(J )

ηi:A,J\A(z, t, k). (4.10)

It then follows from Equations (4.8) through (4.10) that, for k ≥ 2,

ξi(z, t, k) =

∫ t

0

ηJ (z, τ, k − 1)ξi(z, t − τ)dτ. (4.11)
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Let the Laplace transform of ξi(z, t) with respect to t be defined by

ξ̂i(z, s)
def
=

∫ ∞

0

e−stξi(z, t)dt. (4.12)

From Equations (4.3) and (4.11), one then has, for k ≥ 2,

ξ̂i(z, s, k)
def
=

∫ ∞

0

e−stξi(z, t, k)dt = {η̂J (z, s)}k−1ξ̂i(z, s). (4.13)

We note that this Laplace transform result is valid even for k = 1, yielding the definition
ξ̂i(z, s, 1) = ξ̂i(z, s). The corresponding Laplace transform generating function can then be
obtained as

ˆ̂
ξi(z, s, u)

def
=

∞∑
k=1

ξ̂i(z, s, k)uk =
u · ξ̂i(z, s)

1 − u · η̂J (z, s)
. (4.14)

We are now in a position to state the main theorem of this section.

Theorem 4.1. Given a threshold level vector z, let ρi(z) be the probability that the system
failure is eventually caused by the i-th component. Then one has

ρi(z) =

∫ ∞
0

ξi(z, t)dt

1 −
∫ ∞
0

ηJ (z, t)dt
. (4.15)

Proof. Since ρi(z) =
ˆ̂
ξi(z, 0, 1), the theorem follows immediately from Equation (4.14).

Remark 4.2. In e-commerce, the probability ρi(z) that Product i is chosen to be purchased
over Product j, j ∈ J \ {i}, represents the strength of Product i against other competitive
products. If the brand power of Product i is strong, customers would not require much
information about Product i. This means that a smaller value of zi is likely to convince
customers to purchase. Given zi, if the website of Product i is well organized, it is likely to
enable customers to reach zi sooner. Consequently, one may expect that ρi(z) increases as
zi decreases or Xi increases stochastically. It is non-trivial to prove this conjecture based on
Theorem 4.1. However, we will demonstrate this conjecture through numerical examples.

In Theorem 4.1, the denominator of ρi(z) can be computed rather easily from Equation
(4.1). As can be seen from Equation (4.15), the numerator, however, requires the summation
over A ∈ Fi(J ) which grows exponentially as a function of J . Accordingly, it is not easy to
compute the numerator when J is large. If the threshold level of each component is identical,
i.e. z = z1 where 1 is the vector having all components equal to 1, the computation of the
numerator can be simplified significantly. Namely, one has

ξi(z1, t) =
d

dt
P [Xi(1) = max

j∈J
{Xj(1)} > z, τ1 ≤ t]

=

∫ ∞

z

dxi

∫ xi1\i

0\i
fX,Y (x, t)dx, (4.16)
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where a\i def
= [a1, · · · , ai−1, ai+1, · · · , aJ ]T .

When J = {1, 2}, the summation over A ∈ Fi(J ) can be written explicitly, enabling one
to evaluate ρi(z1, z2). More specifically, one has

ξ1(z1, z2, t) = η1,2(z1, z2, t) + η1:1,2(z1, z2, t) (4.17)

ξ2(z1, z2, t) = η1,2(z1, z2, t) + η2:1,2(z1, z2, t) (4.18)

where

η1,2(z1, z2, t) =

∫ z2

0

∫ ∞

z1

fX,Y (x1, x2, t)dx1dx2 ; (4.19)

η1,2(z1, z2, t) =

∫ ∞

z2

∫ z1

0

fX,Y (x1, x2, t)dx1dx2 ; (4.20)

and

η1:1,2(z1, z2, t)
def
=

d

dt
P [X1(1) ≥ z1, X2(1) ≥ z2, X1(1) > X2(1), τ1 ≤ t] ; (4.21)

η2:1,2(z1, z2, t)
def
=

d

dt
P [X1(1) ≥ z1, X2(1) ≥ z2, X1(1) < X2(1), τ1 ≤ t]. (4.22)

When z1 > z2, Equations (4.21) and (4.22) are given by

η1:1,2(z1, z2, t) =

∫ ∞

z1

[∫ x1

z2

fX,Y (x1, x2, t)dx2

]
dx1 ; (4.23)

η2:1,2(z1, z2, t) =

∫ ∞

z1

[∫ x2

z1

fX,Y (x1, x2, t)dx1

]
dx2. (4.24)

For z1 ≤ z2, one has

η1:1,2(z1, z2, t) =

∫ ∞

z2

[∫ x1

z2

fX,Y (x1, x2, t)dx2

]
dx1 ; (4.25)

η2:1,2(z1, z2, t) =

∫ ∞

z2

[∫ x2

z1

fX,Y (x1, x2, t)dx1

]
dx2. (4.26)

The results in Equations (4.17) through (4.26) will be used for numerical examples to be
presented in the next section.

5. Application to Analysis of the Browsing Behavior of Users of the Internet

We suppose that a consumer visits various websites in order to gather information about
two products of the same type. Let X1(k) be the value of information about the product
P1 of Company C1 that the consumer gains from the k-th search with length of Y (k), and
X2(k) is defined similarly for the product P2 of Company C2. We assume that both X1(k)
and X2(k) consist of two parts: a part independent of Y (k) and another part proportional to
Y (k). The former parts for X1(k) and X2(k) are denoted by X̂1(k) and X̂2(k) respectively.
They may represent the amount of information about P1 and that about P2 that can be
gathered from websites, having information about both P1 and P2. The number of websites
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with P1 information only may not be necessarily the same as the number of websites with
P2 information. If the ratio between the two numbers is given as α1 : α2, the amount of
information about Pi gathered from such websites during search time Y (k) may be written
as αiY (k) for i ∈ {1, 2}. More formally, we define

X1(k) = X̂1(k) + α1Y (k) ; X2(k) = X̂2(k) + α2Y (k). (5.1)

It is assumed that X̂1(k), X̂2(k) and Y (k) constitute three independent renewal sequences
with respect to k, but X1(k) and X2(k) are not independent because of sharing the common
value of Y (k).

Let FX,Y (x1, x2, y) = P [X1(k) < x1, X2(k) < x2, Y (k) ≤ y], and let the distribution

functions of X̂1 and X̂2 be denoted by FX̂1
(x) and FX̂2

(x) respectively. From Equation
(5.1), by conditioning on Y , one finds that

FX,Y (x1, x2, y) =

∫ min{y,
x1
α1

,
x2
α2

}

0

FX̂1
(x1 − α1τ)FX̂2

(x2 − α2τ)fY (τ)dτ. (5.2)

From Equation (2.2), it then follows that

fX,Y (x1, x2, y) = fX̂1
(x1 − α1y)fX̂2

(x2 − α2y)fY (y) · I{0 ≤ y ≤ min{x1

α1

,
x2

α2

}}, (5.3)

where I{ST} = 1 if statement ST is true, I{ST} = 0 otherwise. We assume that X̂1(k),
X̂2(k) and Y (k) are exponentially distributed with respective probability density functions
given by

fX̂1
(x̂1) = µ1e

−µ1x̂1 ; fX̂2
(x̂2) = µ2e

−µ2x̂2 ; fY (y) = λe−λy. (5.4)

Suppose that the consumer will stop the search process whenever the desired information
for either product, specified by z1 or z2, is obtained. Let γ∗ and γ∗ be defined as

γ∗ def
= min{ z1

α1

,
z2

α2

} ; γ∗ def
= max{ z1

α1

,
z2

α2

}, (5.5)

and let A(s), B(s), C(s) and D(s) be given by

A(s) =
λe−µ1z1(1 − e−(s+λ−µ1α1)γ∗

)

s + λ − µ1α1

; B(s) =
λe−µ2z2(1 − e−(s+λ−µ2α2)γ∗

)

s + λ − µ2α2

C(s) =
λe−(µ1z1+µ2z2)(1 − e−(s+λ−µ1α1−µ2α2)γ∗

)

s + λ − µ1α1 − µ2α2

; D(s) =
λe−(s+λ)γ∗

s + λ
. (5.6)

Then from Theorem 3.2 and Equations (5.1) through (5.6), one has the following theorem.

Theorem 5.1. Let Tz be the web search completion time as defined in Equation (2.8). Then
its Laplace transform is given by

ŵz(s) =
{

1 +
s

s+λ

A(s) + B(s) − C(s) + D(s)

}−1

.
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Proof. From Equations (5.2) through (5.4), one has

fX,Y (x1, x2, y) = µ1e
−µ1(x1−α1y)µ2e

−µ2(x2−α2y)λe−λyI{0 ≤ y ≤ min(
x1

α1

,
x2

α2

)}.

For notational convenience, let

f̃X,Y (x1, x2, y)
def
= µ1e

−µ1(x1−α1y)µ2e
−µ2(x2−α2y)λe−λy. (5.7)

It can be seen that

GX,Y (z1, z2, y) =

∫ z2

0

{ ∫ z1

0

fX,Y (x1, x2, y)dx1

}
dx2

=

∫ z2

0

{ ∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ x1 ≤
α1

α2

x2 ≤ z1}dx1

+

∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ x1 ≤ z1 ≤
α1

α2

x2}dx1

+

∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ α1

α2

x2 ≤ x1 ≤ z1}dx1

}
dx2,

which leads to

GX,Y (z1, z2, y) =

∫ z2

0

[ ∫ α1
α2

x2

α1y

f̃X,Y (x1, x2, y)dx1I{α1y ≤ α1

α2

x2 ≤ z1}

+

∫ z1

α1y

f̃X,Y (x1, x2, y)dx1I{α1y ≤ z1 ≤
α1

α2

x2}

+

∫ z1

α1
α2

x2

f̃X,Y (x1, x2, y)dx1I{α1y ≤ α1

α2

x2 ≤ z1}

]
dx2.

Since the first term and the third term in the last part of the above equation can be combined
as a single integral from α1y to z1, one finds that

GX,Y (z1, z2, y)

=

∫ z2

0

[ ∫ z1

α1y

f̃X,Y (x1, x2, y)dx1

{
I{α1y ≤ z1 ≤

α1

α2

x2} + I{α1y ≤ α1

α2

x2 ≤ z1}

}]
dx2.

Substituting Equation (5.7) into the above equation, one has

GX,Y (z1, z2, y) = λe−(λ−µ1α1−µ2α2)y[e−µ1α1y − e−µ1z1 ]

×
∫ z2

0

µ2e
−µ2x2

{
I{α2y ≤ α2

α1

z1 ≤ x2} + I{α2y ≤ x2 ≤
α2

α1

z1}

}
dx2.

By repeating this procedure with respect to x2, one concludes that

GX,Y (z1, z2, y) =

{
e−(µ1z1+µ2z2)λe−(λ−µ1α1−µ2α2)y − e−µ1z1λe−(λ−µ1α1)y

−e−µ2z2λe−(λ−µ2α2)y + λe−λy

}
· I{0 ≤ y ≤ γ∗}, (5.8)

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Correlated Multivariate Shock Models 129

where γ∗ def
= min{ z1

α1
, z2

α2
} is as in Equation (5.5). By taking the Laplace transform of both

sides of Equation (5.8) with respect to y, it follows that

ĜX,Y (z1, z2, s)
def
=

∫ ∞

0

e−syGX,Y (z1, z2, y)dy

=
λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) − λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
)

− λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
) +

λ

s + λ
(1 − e−(s+λ)γ∗

).

Since

ϕY (s)
def
=

∫ ∞

0

e−syλe−λydy =
λ

s + λ
,

one sees that,

ϕY (s) − ĜX,Y (z1, z2, s)

=
λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
) +

λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
)

− λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) +

λ

s + λ
e−(s+λ)γ∗

,

and

1 − ĜX,Y (z1, z2, s)

=
λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
) +

λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
)

− λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) +

s + λe−(s+λ)γ∗

s + λ
.

With A(s), B(s), C(s) and D(s) as defined in Equation (5.6), it can be seen that

ŵz(s) =
ϕ̂Y (s) − ĜX(z, s)

1 − ĜX(z, s)
=

{
1 +

s
s+λ

A(s) + B(s) − C(s) + D(s)

}−1

,

completing the proof.

For this example, E[Tz] can be evaluated explicitly from Corollary 3.2.1, as depicted in
Figure 1. We note that the monotonicity of E[Tz] in z can be observed.

The probability of Product i being purchased can be derived directly from Equations
(4.16) through (4.25) and Theorem 4.1. Let γ∗, γ∗ and A(s), B(s), C(s) and D(s) be as in
Equations (5.5) and (5.6) respectively. One then has the following theorem. Proof is rather
mechanical and is omitted here.

Theorem 5.2. The probability of Product i being purchased can be evaluated through the
four cases below:
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Figure 1: Mean search time ( µ1 = 2.7, µ2 = 2.7, α1 = 0.2, α2 = 0.1, λ = 6 )

Case 1: z1 > z2, α1 > α2

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

}
I

{
z1

α1

≤ z2

α2

}

+
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+[e−(µ1z1+µ2z2) − µ1

µ1 + µ2

e−(µ1z1+µ2z1)]
λ[1 − e−(λ−µ1α1−µ2α2)γ∗

]

λ − µ1α1 − µ2α2

+
λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

− µ1

µ1 + µ2

· λ[e
−(λ−µ2α2+µ2α1)

z1
α1 − e

−(λ−µ2α2+µ2α1)
z2
α2 ]

λ − µ2α2 + µ2α1

I

{
z1

α1

≤ z2

α2

}

− λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α2 ]I

{
z2

α2

≤ z1

α1

}

−µ1λe−(µ1z1+µ2z2)

µ1 + µ2

· [e
−(λ−µ1α1−µ2α2)

z2
α2 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

I

{
z2

α2

≤ z1

α1

}

+e−λγ∗
+

λe−(λ−µ2α2+µ2α1)γ∗

λ − µ2α2 + µ2α1

}
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ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z2
α2 − e

−λ
z1
α1 ] − λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α1 ]

}

+
µ1λe−(µ1+µ2)z1

µ1 + µ2

· 1 − e
−(λ−µ1α1−µ2α2)

z1
α1

λ − µ1α1 − µ2α2

+
µ1λ

µ1 + µ2

· e
−(λ−µ2α2+µ2α1)

z1
α1

λ − µ2α2 + µ2α1

}

Case 2: z1 ≤ z2, α1 > α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

+
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+
λµ2α2

µ1α1 + µ2α2

·

{
e
−(µ1

α1
α2

z2+µ2z2)
[1 − e

(λ−µ1α1−µ2α2)
z2
α2 ]

λ − µ1α1 − µ2α2

+
1

λ
e
−λ

z2
α2

}}

ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z2
α2 − e

−λ
z1
α1 ] − λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α1 ]

}

+
λ[e−µ1z1 − µ2

µ1+µ2
e−(µ1+µ2)z1 ][1 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
λe−µ2z2 [e

−λ−µ2α2)
z1
α1 − e

−(λ−µ2α2)
z2
α1 ]

λ − µ2α2

− µ2

µ1 + µ2

· λe−(µ1+µ2)z2 [e
−(λ−µ1α1−µ2α2)

z1
α1 − e

−(λ−µ1α1−µ2α2)
z2
α1 ]

λ − µ1α1 − µ2α2

+
µ1

µ1 + µ2

· λe
−(λ−µ2α2+µ2α1)

z2
α1

λ − µ2α2 + µ2α1

}
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Case 3: z1 > z2, α1 ≤ α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

}

+
µ1λe−(µ1+µ2)z2

µ1 + µ2

· 1 − e
−(λ−µ1α1−µ2α2)

z2
α2

λ − µ1α1 − µ2α2

+
µ1λ

µ1 + µ2

· e
−(λ−µ2α2+µ2α1)

z1
α1

λ − µ2α2 + µ2α1

}

ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+[e−(µ1z1+µ2z2) − µ1

µ1 + µ2

e−(µ1z1+µ2z1)]
λ[1 − e−(λ−µ1α1−µ2α2)γ∗

]

λ − µ1α1 − µ2α2

+
λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α2 ]

−µ1λe−(µ1z1+µ2z2)

µ1 + µ2

· [e
−(λ−µ1α1−µ2α2)

z2
α2 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+e−λγ∗
+

λe−(λ−µ2α2+µ2α1)γ∗

λ − µ2α2 + µ2α1

}

Case 4: z1 ≤ z2, α1 ≤ α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z2
α2 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ1α1

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ1α1)
z1
α1 ]

}

+
λ[e−µ1z1 − µ2

µ1+µ2
e−(µ1+µ2)z1 ][1 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
λe−µ2z2 [e

−(λ−µ2α2)
z1
α1 − e

−(λ−µ2α2)
z2
α1 ]

λ − µ2α2

− µ1

µ1 + µ2

· λe−(µ1+µ2)z1 [e
−(λ−µ1α1−µ2α2)

z1
α1 − e

−(λ−µ1α1−µ2α2)
z2
α1 ]

λ − µ1α1 − µ2α2

+
µ1

µ1 + µ2

· λe
−(λ−µ2α2+µ2α1)

z2
α1

λ − µ2α2 + µ2α1

}
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ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
[e

−λ
z1
α1 − e

−λ
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

− λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

+
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

− λµ1α1

µ1α1 + µ2α2

{
e
−(µ1

α1
α2

z2+µ2z2)
[1 − e

(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
1

λ
e
−λ

z2
α2

}}

We are now in a position to demonstrate numerical examples based on Theorem 5.2.
The basic set of the underlying parameter values is given in Table 1.

Table 1 : Basic set of parameter values
parameter λ z1 z2 α1 α2 µ1 µ2

value 6.0 3.2 3.2 0.2 0.1 2.7 2.7

Figure 2 depicts ρ1(z) and ρ2(z) as functions of µ2 and z2 where µ2 is varied from 0.5 to

2µ 2z

)(2 zρ )(1 zρ

Figure 2: µ1 = 2.7 z1 = 3.2

1z

2z

1µ
2µ

1212 , zz >< 　µµ

1212 , zz << 　µµ

1212 , zz >> 　µµ

1212 , zz <> 　µµ

)( ΙΙΙ　Region

)( ΙΙ　Region

)( Ι　Region

)( VRegion Ι　

Figure 3: Parameter range decomposition

5.0, and z2 is varied from 1.0 to 5.5. We recall that the exponential variate E1(µ1) of mean
µ−1

1 is stochastically larger than the exponential variate E2(µ2) of mean µ−1
2 if and only if

µ1 < µ2, i.e.

P [E1(µ1) > x] = e−µ1x > e−µ2x = P [E2(µ2) > x] ⇐⇒ µ1 < µ2.

Keeping this in mind, one can observe that the conjecture stated in Remark 4.2 holds true
in these numerical examples, that is, ρ2(z) increases as both z2 and µ2 decrease. In order to
see this point more clearly, we decompose the parameter range into four regions as shown in
Figure 3. The corresponding graphs of ρ1(z) and ρ2(z) are redrawn for each region, as given
in Figures 4 through 7. We note that ρ2(z) dominates ρ1(z) in Region (I) with µ2 < µ1,
z2 < z1, while this dominance is reversed in Region (II) with µ2 > µ1, z2 > z1, as expected.
In Region (III) with µ2 > µ1, z2 < z1, it can be seen that ρ2(z) is greater than ρ1(z) for
relatively large µ2 and small z2. This is so because the advantage of P2 in z2 smaller than
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z1 overwhelms the disadvantage of P2 in µ2 larger than µ1. However, this dominance is
reversed as both µ2 and z2 increase, resulting in crossing of the graphs of ρ1(z) and ρ2(z).
Similar behaviors of ρ1(z) and ρ2(z) can be observed in the opposite manner in Region (IV),
where µ2 < µ1 and z2 > z1.

Figure 4: Region (I)
µ2 < µ1 = 2.7, z2 < z1 = 3.2

Figure 5: Region (II)
µ2 > µ1 = 2.7, z2 > z1 = 3.2

Figure 6: Region (III)
µ2 > µ1 = 2.7, z2 < z1 = 3.2

Figure 7: Region (IV)
µ2 < µ1 = 2.7, z2 > z1 = 3.2

6. Concluding Remarks

In this paper, the general shock model of Shanthikumar and Sumita [3] is extended so as
to incorporate multiple types of shocks generated from a common renewal sequence. More
specifically, a correlated multivariate shock model is considered where a system is subject to
a sequence of J different shocks triggered by a common renewal process. Let (Y (k))∞k=1 be a
sequence of independently and identically distributed (i.i.d.) nonnegative random variables
associated with the renewal process. For the magnitudes of the k-th shock denoted by a
random vector X(k), it is assumed that [X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence
of i.i.d. random vectors with respect to k while X(k) and Y (k) may be correlated. The
system fails as soon as the historical maximum of the magnitudes of any component of the
random vector exceeds a prespecified level of that component. The Laplace transform of the
probability density function of the system lifetime is derived, and its mean and variance are
obtained explicitly. Furthermore, the probability of system failure due to the i-th component
is obtained explicitly for all i ∈ J = {1, · · · , J}. The model is applied for analyzing the
browsing behavior of Internet users.

The model proposed in this paper relies upon the information search completion time
determined by the historical maximum of the value of information gathered by a customer.
In some situations, however, the customer may make a decision based on the cumulative
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value of information gathered by time t. While such cumulative shock models with a single
type of shocks have been studied by Sumita and Shanthikumar [4], the multivariate version
has not been studied yet. This research is in progress and will be reported elsewhere.
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