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Abstract We are sometimes faced with the problem of searching for the actual failure time of a unit
when it has failed until time t0. This is called a backward time problem of how much time we go back
to search for the failure time from time t0, and is solved by using the reversed failure rate. This paper
proposes an extended model of multiple backward trials in which we find the actual failure time from time
t0. Another problem is that when an operating unit fails, we have to go back to the newest checking
time and reconstruct it as recovery techniques, which is called a backup policy. This paper takes up three
backup policies where the unit is checked at periodic, successive and random working times, and discusses
analytically their optimal policies. Finally, it would be important to keep a record of operational behavior
of a unit when its failure is detected, which is called traceability. This paper compares two models with
traceability and without traceability, and proposes three traceability models where the unit operates for a
finite interval, and is checked at periodic and successive times. Optimal policies for each model are discussed
by using backup techniques.
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1. Introduction

The first problem in reliability theory is to estimate when an objective unit will fail in the
near future. From such viewpoints, data concerning failures are collected as possible as
one can, and failure distributions and their parameters have been estimated statistically.
Using the fitted failure distributions, some reliability measures have been well designed, and
maintenance policies to prevent failures based on them have been discussed practically and
analytically in Barlow and Proschan [1], Nakagawa [7, 9], Osaki [15] and Pham [16].

The second problem is how to find a failure of the unit with certainty which can not be
detected immediately at failure. This leads to inspection policies where the unit is checked
at suitable times to detect its failure summarized in Barlow and Proschan [1, p. 107] and
Nakagawa [7, p. 20].

The third problem is how to know the actual failure time when we detect a failed
unit. This was applied to the problem of reweighing products using a scale in Sandoh
et al. [19, 20]. Another example is the backup policy for a database system in Naruse et

al. [14]. When a failure occurs in the operation of a database system, we execute the rollback
operation until the newest checkpoint, recover the data and files and reconstruct the system.
A variety of checkpoint schemes for some database systems has been actually carried out
and has been compared practically and analytically in Fukumoto et al. [4], Nakagawa et

al. [10], Nakagawa [9, p. 123] and Reuter [18]. Furthermore, some backup policies such as
incremental, cumulative, full and complete backups introducing in Velpuri and Adkoli [22]
as recovery techniques have been adopted for a database system, and their optimal policies
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have been extensively discussed in Nakamura et al. [13] and Qian et al. [17] by applying
cumulative damage models summarized in Nakagawa [8].

Our main purpose in this paper is to survey some backward models in Nakagawa and
Mizutani [12] and backup policies in Naruse et al. [14], and add some new interesting results
by using reliability theory: In Section 2, we consider the optimization problem of how
much time we go back to search for the actual failure time, which is called a backward

time. Introducing two costs of excess and shortage times, we derive analytically an optimal
backward time which minimizes the expected cost. It is of interest theoretically that the
reversed failure rate studied by Chandra and Roy [2] and Finkelstein [3] plays an important
role in analyzing the optimal policy. Furthermore, we extend the backward time to multiple
backward times: When we cannot find a failure time at one trial, we attempt the next trial.
Such trials are continued until failure detection. Successive backward times are derived by
using the inspection policy for a finite interval in Nakagawa and Mizutani [11].

In Section 3, we consider the backup policy where the unit goes back to the last checking
time when it fails, and formulate its three stochastic models: The unit is checked at periodic
times, at successive times and at random working times. Three models are analyzed by using
the methods of backup of Naruse et al. [14], inspection of Nakagawa [7, p. 201] and random
maintenance of Nakagawa [7, p. 245].

Finally, when the unit is detected to have failed, it would be much easier to know its
actual failure time if its operational behaviors have been on record. This is called the
traceability and is commonly used in food products and sales studies in Lees [6]. In Section
4, we compare two models with traceability and without traceability. Next, we propose
three traceability models where the unit operates for a finite time interval, and is checked
at periodic and successive times. Three models are analyzed and their optimal policies are
derived by using maintenance theory.

2. Backward Models

Suppose that the unit begins to operate at time 0 and has a failure time X with its proba-
bility distribution F (t) ≡ Pr{X ≤ t}, a density function f(t) ≡ dF (t)/dt and a mean time
µ ≡

∫
∞

0
F (t)dt < ∞, where Φ(t) ≡ 1 − Φ(t) for any function Φ(t). Then, the probability

that the unit failed during (t0 − x, t0] (0 ≤ x ≤ t0), given that it is detected to have failed
at time t0 (0 < t0 < ∞) is

H(x|t0) ≡ Pr{t0 − x ≤ X|X ≤ t0} =
F (t0) − F (t0 − x)

F (t0)
≤ 1 (1)

for F (t0) > 0, which is called the reversed failure rate. The properties of H(x|t0) were
investigated in Chandra and Roy [2] and Finkelstein [3].

2.1. Continuous time

Consider the optimization problem of how much time we go back to catch the actual failure
time: Suppose that when the unit is detected to have failed at time t0 (0 < t0 < ∞) and its
failure time is unknown, we go back time T (0 ≤ T ≤ t0) from time t0 to detect its failure
time, where T is called the planned backward time.

Next, introduce the following loss costs (Figure 1): Cost c1(x) is the excess cost for the
time x from a failure to the backward time, c2(x) is the shortage cost for the time x from
the backward time to a failure, and c3(T ) is the cost required for the backward time T .
Cost c3(T ) is irrelevant to the system condition although the failure has occurred, and is
the cost only related to the time interval T . Consequently, we need to introduce the other
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Figure 1: Excess cost and shortage cost of backward time T

two costs c1(x) and c2(x) which represent all corresponding costs for the backward models.
If c1(x) would be included in c3(T ), it might be assumed to be zero. One typical example of
the backward model is such as automobile companies recalled their cars for some defective
parts. The cost c3(T ) represents the cost for how many years to recall back, e.g., T = 3
means to recall the cars which were sold in recent 3 years. However, if the defective cars
happened only for the recent 2 years, the company might need to pay excess cost for the
extra parts ordered for the cars which are good. If the actual defective cars were sold for 4
years, cost c2(x) is used to described such situation.

Using the definition of H(x|t0) in (1), the total expected cost for the backward time T
is

C1(T |t0) =

∫ T

0

c1(T − x)dH(x|t0) +

∫ t0

T

c2(x − T )dH(x|t0) + c3(T )

=
1

F (t0)

[∫ t0

t0−T

c1(x − t0 + T )dF (x) +

∫ t0−T

0

c2(t0 − T − x)dF (x)

]
+ c3(T ). (2)

In particular, suppose that H(x|t0) = (x/t0)
β for β > 0 and 0 ≤ x ≤ t0, which is well-

known as a uniform distribution when β = 1 and a triangular distribution when β = 2. In
this case, the total expected cost is, from (2),

C1(T |t0) =
β

t0

[∫ T

0

c1(x)

(
T − x

t0

)β−1

dx +

∫ t0−T

0

c2(x)

(
T + x

t0

)β−1

dx

]
+ c3(T ). (3)

In case of β = 1,

C1(T |t0) =
1

t0

[∫ T

0

c1(x)dx +

∫ t0−T

0

c2(x)dx

]
+ c3(T ). (4)

It is assumed that ci(t) = cit (i = 1, 2, 3). Then, the total expected cost in (2) is

C1(T |t0) =
1

F (t0)

[
−c1

∫ t0

t0−T

F (x)dx + c2

∫ t0−T

0

F (x)dx

]
+ (c1 + c3)T. (5)
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Table 1: Optimal time T ∗ when c3/c1 = 0.5

c2/c1=1 c2/c1=2 c2/c1=5
t0 β β β

1 2 4 1 2 4 1 2 4
10 2.50 5.00 7.07 5.00 7.07 8.41 7.50 8.66 9.31
20 5.00 10.00 14.14 10.00 14.14 16.82 15.00 17.32 18.61
50 12.50 25.00 35.36 25.00 35.36 42.05 37.50 43.30 46.53
100 25.00 50.00 70.71 50.00 70.71 84.10 75.00 86.60 93.06
200 50.00 100.00 141.42 100.00 141.42 68.20 150.00 173.21 186.12
500 125.00 250.00 353.55 250.00 353.55 420.49 375.00 433.01 465.30

Figure 2: Process of multiple backward times

We find an optimal backward time T ∗ which minimizes C1(T |t0) for a specified t0 > 0.
Differentiating C1(T |t0) with respect to T and setting it equal to zero,

H(T |t0) =
F (t0) − F (t0 − T )

F (t0)
=

c2 − c3

c2 + c1

. (6)

Therefore, we have the following optimal policy:

(i) If c2 > c3 then there exists a unique T ∗ (0 < T ∗ < t0) which satisfies (6).
(ii) If c2 ≤ c3 then T ∗ = 0, i.e., we should not go back at all.

Condition of {c2 ≤ c3} means the trivial result that it is not necessary to search for the
failure time if the shortage cost is equal to or lower than that for backward.

In particular, when H(x|t0) = (x/t0)
β, an optimal time T ∗ is, for c2 > c3,

T ∗ =

(
c2 − c3

c2 + c1

)1/β

t0. (7)

Table 1 presents optimal times T ∗ for t0 = 10 ∼ 500, c2/c1 = 1, 2, 5 and β = 1, 2, 4
when c3/c1 = 0.5. For example, this indicates that when the failure is detected at time t0,
c2/c1 = 1 and β = 2 or c2/c1 = 2 and β = 1, we may go back its half interval. It can be
clearly seen that optimal T ∗ increase with t0, c2/c1 and β.

2.2. Multiple times

Consider the multiple backward times Tj (j = 1, 2, . . . ) (Figure 2), where Sj ≡
∑j

i=1 Ti,S0 ≡
0 and SN ≡ t0: If we cannot find the actual failure time until time Sj−1 from time t0 by the
backward operation, we execute again the next backward with time Tj. If we can find the
failure time, i.e., the system fails in (t0 −Sj, t0 −Sj−1], then the process ends. Finally, if we
cannot find the failure time until SN−1, we make the final backward with TN = t0 − SN−1,
and can find it certainly.

It is assumed that c1 +c2Tj is the cost for the jth backward. Then, because the expected
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cost when the failure time is detected at the jth backward is

1

F (t0)
(c1j + c2Sj)[F (t0 − Sj−1) − F (t0 − Sj)],

the total expected cost is

C2(T) =
1

F (t0)

N∑

j=1

(c1j + c2Sj)[F (t0 − Sj−1) − F (t0 − Sj)]. (8)

We find optimal times Tj (j = 1, 2, . . . , N) which minimize C2(T) for a given t0 > 0.
Differentiating C2(T) with respect to Sj and setting it equal to zero,

Sj+1 − Sj =
F (t0 − Sj−1) − F (t0 − Sj)

f(t0 − Sj)
−

c1

c2

(j = 1, 2, . . . , N − 1). (9)

Setting that xj ≡ t0 − Sj,

xj − xj+1 =
F (xj−1) − F (xj)

f(xj)
−

c1

c2

(j = 1, 2, . . . , N − 1), (10)

where xN ≡ 0 and x0 ≡ t0. Then, the total expected cost is

C2(x) =
1

F (t0)

N∑

j=1

[c1j + c2(t0 − xj)] [F (xj−1) − F (xj)]. (11)

We compute optimal 0 = xN < xN−1 < · · · < x1 < t0 which satisfy (10) for a given
N (N = 1, 2, . . . ). Next, comparing C2(x) in (11) for all N ≥ 1, we can get an optimal
backward number N∗, x∗

j and T ∗

j = x∗

j−1 − x∗

j = S∗

j − S∗

j−1. For example, when N = 1,

x1 = 0, T1 = t0,

C2(0) = c1 + c2t0.

When N = 2, from (10) and (11),

x1 =
F (t0) − F (x1)

f(x1)
−

c1

c2

,

C2(x1) = c1 + c2(t0 − x1) +
F (x1)

F (t0)
(c1 + c2x1).

When N = 3, we solve the simultaneous equations

x1 − x2 =
F (t0) − F (x1)

f(x1)
−

c1

c2

,

x2 =
F (x1) − F (x2)

f(x2)
−

c1

c2

,

and compute the total expected cost

C2(x1, x2) = c1 + c2(t0 − x1) +
1

F (t0)
{F (x1)[c1 + c2(x1 − x2)] + F (x2)(c1 + c2x2)}.
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Table 2: Maximum number Ñ

c2/(λc1)
λt0 1 2 5 10
0.1 1 1 1 1
0.2 1 1 1 2
0.5 1 1 2 3
1.0 1 2 3 4
1.5 2 2 4 5
2.0 2 3 4 6

We compute similar computations for N = 4, 5, . . . .
In particular, when F (t) = 1 − e−λt, (9) is

λTj+1 = 1 − e−λTj −
λc1

c2

(j = 1, 2, . . . , N − 1), (12)

and from (11),

C2(T) =
e−λt0

1 − e−λt0

N∑

j=1

(
jc1 + c2

j∑

i=1

Ti

)
eλ

Pj

i=1
Ti(1 − e−λTj) (N = 1, 2, . . . ). (13)

Because λTj > 1 − e−λTj , (12) becomes

Tj − Tj+1 >
c1

c2

(j = 1, 2, . . . , N − 1).

Solving Tj in terms of TN ,

Tj − TN >
(N − j)c1

c2

.

Noting that
∑N

j=1 Tj = t0,

t0
N

> TN +
N − 1

2

c1

c2

, i.e., TN <
t0
N

−
N − 1

2

c1

c2

. (14)

For TN > 0,

t0
N

>
N − 1

2

c1

c2

, i.e.,
N(N − 1)

2
=

N−1∑

j=1

j <
t0c2

c1

. (15)

Therefore, the summation of j from 1 to N∗ − 1 has to be less than (λt0)c2/(λc1). Table 2

presents the maximum number Ñ which satisfies (15) for different λt0 and c2/(λc1). Table 3

presents the backward times λSj for j = 1, . . . , Ñ and c2/(λc1) = 5, 10 when λt0 = 1.

For example, when c2/(λc1) = 10, Ñ = 4 > N∗ = 3 and the optimal backward times are

λT ∗

1 = 0.526, λT ∗

2 = 0.308, λT ∗

3 = 0.166. When c2/(λc1) = 5, Ñ = 3 = N∗, and the optimal
backward times are λT ∗

1 = 0.665, λT ∗

2 = 0.286, λT ∗

3 = 0.049. This shows that the maximum

number Ñ can be easily computed from (15) and would be very useful for obtaining optimal
backward number N∗ and backward times T ∗

j (j = 1, 2, . . . , N∗).
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Table 3: Backward times λSj and expected cost C2(T)/c1 when λt0 = 1.0

c2/(λc1) = 10 c2/(λc1) = 5
N N

j 1 2 3 4 1 2 3
1 1.0 0.632 0.526 0.504 1.0 0.698 0.665
2 1.0 0.834 0.800 1.0 0.951
3 1.0 0.956 1.0
4 1.0

C2(T)/c1 11.00 9.60 9.34 9.90 6.00 5.53 5.51

Table 4: Expected cost Ĉ2(N)/c1 when c2/(λc1) = 10

N λt0 = 1 λt0 = 2
1 11.000 21.000
2 9.600 18.669
3 9.387 18.003
4 9.513 17.862
5 9.784 17.955

2.3. Approximation method

It is very troublesome to solve simultaneous equations in (10). We consider the following
approximate backward times using the approximation method of inspection policies in Kaio
and Osaki [5] and Nakagawa [7, p. 20]: It is assumed that the probability with which the
failure time is detected at the jth backward is constant, i.e.,

F (t0 − Sj−1) − F (t0 − Sj)

F (t0)
=

F (t0 − Sj) − F (t0 − Sj−1)

F (t0)
= p (j = 1, 2, . . . , N). (16)

Noting that S0 = 0 and SN = t0, we easily have

F (t0 − Sj) = F (t0) + jpF (t0) (j = 1, 2, . . . , N). (17)

Thus, Sj is given by the following function of N :

Sj = t0 − F
−1
[
F (t0) +

j

N
F (t0)

]
, (18)

where F
−1

is the inverse function of F . Substituting Sj into (8), we can obtain the total
expected cost which is a function of N , and hence, we can easily derive an approximate
optimal number N̂ .

For example, when F (t) = e−λt, from (17),

Sj =
1

λ
log

[
1 +

j

N
(eλt0 − 1)

]
(j = 1, 2, . . . , N), (19)

and the total expected cost is, from (8),

Ĉ2(N) =
1

N

N∑

j=1

{
jc1 +

c2

λ
log

[
1 +

j

N
(eλt0 − 1)

]}
(N = 1, 2, . . . ). (20)

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



108 M. Chen, S. Mizutani & T. Nakagawa

Figure 3: Process of checking intervals

Therefore, we compute Ĉ2(N) for N = 1, 2, . . . , and obtain an optimal N̂ which mini-

mizes Ĉ2(N). Lastly, substituting N̂ in (19), we can obtain Ŝj (j = 1, 2, . . . , N̂).

Table 4 presents Ĉ2(N)/c1 for N = 1, 2, . . . , 5 and λt0 = 1, 2 when c2/(λc1) = 10. When

λt0 = 1 and 2, we obtain optimal N̂ = 3, 4, respectively. In particular, when λt0 = 1,
N̂ = N∗, and in this case, approximate backward times are, from (19), λT̂1 = 0.453,

λT̂2 = 0.311, λT̂3 = 0.236, and the expected cost 9.387 is a little higher than 9.34 in
Table 3.

3. Backup Model

The inspection models assume that failures can be only detected at the checking times
using an inspection scheme in Barlow and Proschan [1, p. 107] and Nakagawa [7, p. 201].
We consider the case of a failure being detected in a database system, where a backup
operation is performed to the last check point and the database is rebuilt from that point in
Naruse et al. [14]. It is generally assumed in such models that any failure is always detected
instantly, however, there is a loss time or cost associated with the elapsed time of the backup
operation between the failure detection and the last check.

From the practical viewpoints of backup operation and database recovery, we take up
three backup models by applying the inspection models. When the failure is detected, we
execute the backup operation to the last check (Figure 3). The problem is to determine an
optimal schedule of checking times which minimizes the expected cost.

3.1. Periodic interval

It is assumed that the failure time of the unit has a probability distribution F (t) with a
finite mean µ and a density function f(t). The checking times are placed at periodic times
jT (j = 1, 2, . . . ) (0 < T ≤ ∞). Let c1 be the cost for each check. In addition, when the
failure is detected between jT and (j + 1)T , we execute the backup operation to the last
checking time jT , which incurs a loss cost c2(x) (Figure 3).

The total expected cost until the backup operation is done to the last check when the
unit has failed is, using the results of inspection policies in Barlow and Proschan [1, p. 108]
and Nakagawa [7, p. 203],

C1(T ) =
∞∑

j=0

∫ (j+1)T

jT

[c1j + c2(t − jT )]dF (t)

= [c1 − c2(T )]
∞∑

j=1

F (jT ) +
∞∑

j=0

∫ T

0

F (t + jT )dc2(t). (21)

When c2(t) = c2t, the total expected cost is

C1(T ) = (c1 − c2T )
∞∑

j=1

F (jT ) + c2µ. (22)
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Clearly,

C1(0) ≡ lim
T→0

C1(T ) = ∞, C1(∞) ≡ lim
T→∞

C1(T ) = c2µ.

Hence,

C1(∞) − C1(T ) = (c2T − c1)
∞∑

j=1

F (jT ).

Thus, there exits an optimal checking time T ∗ (c1/c2 < T ∗ ≤ ∞) which minimizes C1(T ) in
(22).

Furthermore, differentiating C1(T ) with respect to T and setting it equal to zero,

T −

∑
∞

j=1 F (jT )
∑

∞

j=1 jf(jT )
=

c1

c2

, (23)

which is a necessary condition for an optimum T ∗ to satisfy. In the case of F (t) = 1− e−λt,
(23) becomes

T −
1 − e−λT

λ
=

c1

c2

, (24)

whose left-hand side is strictly increasing from 0 to ∞. Thus, there exists a finite and unique
T ∗ (0 < T ∗ < ∞) which satisfies (24).

3.2. Sequential interval

Suppose that the checking times are placed at successive times Tj (j = 1, 2, . . . ), where
T0 ≡ 0. Then, by the similar method of obtaining (21), the total expected cost is

C2(T) =
∞∑

j=0

∫ Tj+1

Tj

[c1j + c2(t − Tj)]dF (t)

=
∞∑

j=1

[c1 − c2(Tj − Tj−1)]F (Tj) +
∞∑

j=0

∫ Tj+1−Tj

0

F (t + Tj)dc2(t). (25)

When c2(t) = c2t, the total expected cost is

C2(T) =
∞∑

j=1

[c1 − c2(Tj − Tj−1)]F (Tj) + c2µ. (26)

Differentiating C2(T) in (26) with respect to Tj and setting it equal to zero,

F (Tj+1) − F (Tj)

f(Tj)
= Tj − Tj−1 −

c1

c2

(j = 1, 2, . . . ). (27)

Thus, we can compute an optimal checking time T ∗

j , using Algorithm 1 of Barlow and
Proschan [1, p. 112]. Table 5 presents an optimal schedule {T ∗

j } which satisfies (27) when
F (t) = 1 − exp[−(t/500)2], c1/c2 = 5, 15, 25 and δj ≡ T ∗

j+1 − T ∗

j . The intervals δj between
checking times increase with c1/c2 and decrease slowly with its number j.
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Table 5: Optimal checking times T ∗

j and δj = T ∗

j+1 − T ∗

j when F (t) = 1 − exp[−(t/500)2]

c1/c2

j 5 15 25
T ∗

j δj T ∗

j δj T ∗

j δj

1 113.87 83.81 165.71 122.70 197.96 147.31
2 197.69 71.31 288.42 104.78 345.27 126.19
3 269.00 63.95 393.20 94.22 471.46 113.73
4 332.95 58.92 487.42 86.99 585.19 105.21
5 391.87 55.18 574.41 81.61 690.41 98.88
6 447.05 52.25 656.02 77.40 789.29 93.92
7 499.29 49.87 733.42 73.97 883.21 89.88
8 549.16 47.89 807.39 71.11 973.09 86.51
9 597.05 46.20 878.50 68.66 1059.59 83.62
10 643.26 947.16 1143.22

Figure 4: Process of checking times Yj

3.3. Random interval

Most computer and database systems in offices and industries execute successively tasks,
each of them has random working times. This section applies the backup operation to such
systems: Checks are placed at every end of Nth (N = 1, 2, . . . ) tasks. When the system
fails, we execute the backup operation to the last check.

Suppose that task j (j = 1, 2, . . . ) has a working time Yj with an identical distribution
G(t) ≡ Pr{Yj ≤ t} with a finite mean 1/θ, i.e., 1/θ =

∫
∞

0
G(t)dt < ∞. That is, tasks arrive

successively at a renewal process with inter-arrival times Yj, and the database system works
for them according to a general distribution G(t). Then, the probability that the system
works exactly for j tasks in [0, t] is G(j)(t) − G(j+1)(t), where G(j)(t) (j = 1, 2, . . . ) denotes
the j-fold Stieltjes convolution of G(t) with itself, i.e., G(j)(t) ≡

∫ t

0
G(j−1)(t − u)dG(u) and

G(0)(t) ≡ 1 for t ≥ 0. In addition, let M(t) be a renewal function of G(t), i.e., M(t) ≡∑
∞

j=1 G(j)(t). The system fails with time t according to a distribution F (t), irrespective of
the number of working tasks.

Suppose that the checking schedule of the system is done at the completion of successive
working times Yj (j = 1, 2, . . . ), i.e., at times Sj ≡

∑j
i=1 Yi (j = 1, 2, . . . ). Let c1 be the

cost required for each check. In addition, when the system fails between Sj−1 and Sj, we
carry out the backup operation to the last checking time Sj−1. This incurs a loss cost c2(x)
(Figure 4). Then, because the expected cost when the system fails in the working period of
task j is ∫

∞

0

{∫ t

0

[c1(j − 1) + c2(t − x)]G(t − x)dG(j−1)(x)

}
dF (t),
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the total expected cost is

C3(1) =
∞∑

j=1

∫
∞

0

{∫ t

0

[c1(j − 1) + c2(t − x)]G(t − x)dG(j−1)(x)

}
dF (t)

= c1

∫
∞

0

M(t)dF (t) +

∫
∞

0

[∫
∞

x

c2(t − x)]G(t − x)dF (t)

]
dM(x). (28)

Next, suppose that the system is checked only at every Nth (N = 1, 2, . . . ) working
time, i.e., at the completion of the jN working time. When N = 1, the system is checked
at every time of Sj (j = 1, 2 . . . ). When N = 2, i.e., the system is checked at times of S2,
S4, . . . , the total expected cost is

C3(2) =
∞∑

j=1

∫
∞

0

{∫ t

0

[c1(j − 1) + c2(t − x)]G
(2)

(t − x)dG(2(j−1))(x)

}
dF (t)

= c1

∫
∞

0

M (2)(t)dF (t) +

∫
∞

0

[
c2(t)G

(2)
(t) +

∫ t

0

c2(t − x)]G
(2)

(t − x)dM (2)(x)

]
dF (t).

(29)

Generally, when the system is checked at the jNth (j = 1, 2, . . . ) working time, the total
expected cost is

C3(N) = c1

∫
∞

0

M (N)(t)dF (t)

+

∫
∞

0

[
c2(t)G

(N)
(t) +

∫ t

0

c2(t − x)]G
(N)

(t − x)dM (N)(x)

]
dF (t) (N = 1, 2, . . . ),

(30)

where M (N)(t) ≡
∑

∞

j=1 G(jN)(t) (N = 1, 2, . . . ). When F (t) = 1− e−λt and G(t) = 1− e−θt,

G(N)(t) = 1 −
N−1∑

j=0

(θt)j

j!
e−θt,

∫
∞

0

e−stdG(N)(t) =

(
θ

s + θ

)N

,

∫
∞

0

e−stdM (N)(t) =
∞∑

j=1

[(
θ

s + θ

)N
]j

=

(
θ

s+θ

)N

1 −
(

θ
s+θ

)N .

Thus, when c2(t) = c2t, the total expected cost is, from (30),

C3(N) =
c1A

N

1 − AN
+

c2λ

θ(θ + λ)

1

1 − AN

N∑

j=1

jAj (N = 1, 2, . . . ), (31)

where A ≡ θ/(θ + λ).
From the inequality C3(N + 1) − C3(N) ≥ 0,

N∑

j=1

(1 − Aj) ≥
c1(θ + λ)

c2

, (32)
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Table 6: Values of
∑N

j=1(1 − Aj)

θ/λ
N 1 2 5 10 15 20 50 100
1 0.50 0.33 0.17 0.09 0.06 0.057 0.02 0.01
2 1.25 0.89 0.47 0.26 0.18 0.14 0.06 0.03
3 2.13 1.59 0.89 0.51 0.36 0.28 0.12 0.06
4 3.06 2.40 1.41 0.83 0.59 0.45 0.19 0.10
5 4.03 3.26 2.01 1.21 0.86 0.67 0.29 0.15
6 5.02 4.18 2.67 1.64 1.18 0.92 0.40 0.20
7 6.01 5.12 3.40 2.13 1.55 1.21 0.53 0.27
8 7.00 6.08 4.16 2.67 1.95 1.54 0.67 0.35
9 8.00 7.05 4.97 3.24 2.39 1.89 0.84 0.43
10 9.00 8.03 5.81 3.86 2.87 2.28 1.02 0.53

whose left-hand side increases strictly from λ/(θ + λ) to ∞. Therefore, there exists a
finite and unique minimum N∗ (1 ≤ N∗ < ∞) which satisfies (32). In particular, when
λ/(θ + λ)2 ≥ c1/c2 then N∗ = 1.

Table 6 presents the values of
∑N

j=1 Aj for θ/λ and N . For example, when θ/λ = 10,
A = 10/11 = 0.91 and if 0.09 < c1(θ+λ)/c2 ≤ 0.26, then N∗ = 1, and if 0.26 < c1(θ+λ)/c2 ≤
0.51, then N∗ = 2, and so on.

4. Traceability Model

We apply the techniques of backward and backup to the traceability problem used commonly
in food products and sales studied in Lees [6]: In this section, we propose four reliability
models considering traceability and discuss optimal maintenance policies. Furthermore, we
compare each model with and without traceability. Throughout this section, it is assumed
that an operating unit has a failure distribution F (t) with a finite mean µ < ∞ and F (t) ≡
1 − F (t).

4.1. Standard model

Suppose that the unit begins to operate at time 0 and fails at time t, and its failure is
detected at time T (0 < t ≤ T ). Then, we give the expected cost until failure detection as
follows: For the unit with traceability,

C1(T ) = c0(T ) + c1 +

∫ T

0

c2(T − t)dF (t)

= c0(T ) + c1 +

∫ T

0

F (T − t)dc2(t), (33)

and for the unit without traceability

C1(T ) = c1 +

∫ T

0

c3(T − t)dF (t)

= c1 +

∫ T

0

F (T − t)dc3(t), (34)

where c0(T ) is the tracing cost during (0, T ], c1 is the cost of one check, and c2(x) and
c3(x) are the loss cost of searching for the actual failure time of the unit with and without
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traceability, respectively, when the failure is detected at time T . It would be generally shown
in practical fields that c2(x) < c3(x), because it would be much easier to find the failure
time by following up the trace than no trace.

First, when ci(t) = cit (i = 0, 2, 3), the expected cost rate is given by

C̃1(T ) ≡
C1(T )

T
= c0 +

c1 + c2

∫ T

0
F (t)dt

T
. (35)

We find an optimal T ∗

1 which minimizes C̃1(T ). Clearly, because

lim
T→0

C̃1(T ) = ∞, lim
T→∞

C̃1(T ) = c0 + c2,

there exists a positive T ∗

1 (0 < T ∗

1 ≤ ∞). Differentiating C̃1(T ) with respect to T and
setting it equal to zero, ∫ T

0

tdF (t) =
c1

c2

. (36)

Therefore, if c2µ > c1, then there exists a finite and unique T ∗

1 (0 < T ∗

1 < ∞) which satisfies
(36).

Next, compare the expected cost C1(T ) in (33) and C1(T ) in (34) for c3 > c2. From the
inequality C1(T ) > C1(T ),

1

T

∫ T

0

F (t)dt >
c0

c3 − c2

, (37)

whose left-hand side is strictly increasing from 0 to 1. Thus, if c3 > c2 +c0, then there exists
a finite and unique T̃1 which satisfies

1

T

∫ T

0

F (t)dt =
c0

c3 − c2

. (38)

Therefore, if c3 > c2 + c0 and T > T̃1, then C1(T ) > C1(T ), i.e., we should trace the unit.
In particular, when the failure time is exponential, i.e., F (t) = 1 − e−λt, from (36), if

c2/λ > c1, then there exists a finite and unique T ∗

1 (0 < T ∗

1 < ∞) which satisfies

1 − (1 + λT )e−λT =
c1

c2/λ
. (39)

Furthermore, because 1 − e−a < a for a > 0,

T ∗

1 >

√
c1

c2λ
. (40)

Next, when c3 > c2 + c0, from (38), there exists a finite and unique T̃1 which satisfies

1 −
1 − e−λT

λT
=

c0

c3 − c2

. (41)

In this case, if T > T̃1, then we should trace the unit, and

λT̃1 >
2c0

c3 − c2

. (42)

Table 7 presents optimal time λT ∗

1 for (c2/λ)/c1 and boundary time λT̃1 for (c3−c2)/c0. For
example, when c2/(c1λ) = 5 and the failure is checked and detected at time λT ∗

1 = 0.8244,

if (c3 − c2)/c0 ≤ 3 then λT ∗

1 < λT̃1 = 0.8742, and hence, we should not trace the unit, and if

(c3 − c2)/c0 ≥ 4, we should do it. When (c3 − c2)/c0 = 10, if c2/(c1λ) ≤ 50 then λT ∗

1 > λT̃1

and we should trace the unit.
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Table 7: Optimal time λT ∗

1 and boundary time λT̃1

c2/λ
c1

λT ∗

1
c3−c2

c0
λT̃1

2 1.6783 2 1.5936
3 1.1888 3 0.8742
4 0.9613 4 0.6059
5 0.8244 5 0.4642
10 0.5318 6 0.3764
20 0.3554 7 0.3166
30 0.2835 8 0.2733
50 0.2147 9 0.2404
60 0.1947 10 0.2146

4.2. Finite interval model

The unit has to operate for a finite interval [0, T ]. Then, we give the expected cost for this
interval as follows: For the unit with traceability,

C2(T ) = c0(T ) +

∫ T

0

c2(T − t)dF (t), (43)

and for the unit without traceability,

C2(T ) =

∫ T

0

[c1(T ) + c3(T − t)]dF (t), (44)

where c1(T ) is the additional tracing cost during [0, T ] of the unit without traceability
when the failure is detected at time T . When ci(t) = cit (i = 0, 1, 2, 3), from the inequality
C2(T ) > C2(T ),

c1F (T ) +
c3 − c2

T

∫ T

0

F (t)dt > c0, (45)

whose left-hand side is strictly increasing from 0 to c1 + c3 − c2. Thus, if c1 + c3 > c2 + c0,
then there exists a finite and unique T̃2 which satisfies

c1F (T ) +
c3 − c2

T

∫ T

0

F (t)dt = c0. (46)

Therefore, if c1 + c3 > c2 + c0 and T > T̃2, then we should trace the unit for the interval
[0, T ].

4.3. Periodic model

Suppose that the unit is checked only at periodic times jT (j = 1, 2, . . . ) and the failure
is detected at the next check. Then, we give the expected cost until failure detection as
follows: For the unit with traceability,

C3(T ) =
∞∑

j=1

∫ jT

(j−1)T

[c0(jT ) + c1j + c2(jT − t)]dF (t), (47)

and for the unit without traceability

C3(T ) =
∞∑

j=1

∫ jT

(j−1)T

[c1j + c3(jT − t)]dF (t), (48)
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where c1 is the cost of one check, and c0(t), c2(t) and c3(t) are given in (33) and (34).
When ci(t) = cit (i = 0, 2, 3), the expected cost is, from (47),

C3(T ) = (c0T + c1 + c2T )
∞∑

j=0

F (jT ) − c2µ, (49)

and from (48),

C3(T ) = (c1 + c3T )
∞∑

j=0

F (jT ) − c3µ. (50)

We find an optimal T ∗

3 which minimizes C3(T ) in (49). Differentiating C3(T ) with respect
to T and setting it equal to zero,

∑
∞

j=0 F (jT )
∑

∞

j=1 jf(jT )
− T =

c1

c0 + c2

, (51)

where f(t) is a density function of F (t). Thus, T ∗

3 is given by a solution of (51).
Next, we compare C3(T ) in (49) and C3(T ) in (50) for c3 > c2 + c0. Then, from the

inequality C3(T ) − C3(T ) > 0,

T

µ

∞∑

j=0

F (jT ) >
c3 − c2

c3 − c2 − c0

. (52)

In particular, when F (t) = 1 − e−λt, from (51), an optimal T ∗

3 is given by a finite and
unique solution of the equation

eλT − (1 + λT ) =
λc1

c0 + c2

. (53)

Furthermore, from (52), if c3 > c2 + c0, T̃3 is given by a finite and unique solution of the
equation

1 −
1 − e−λT

λT
=

c0

c3 − c2

. (54)

In this case, if c3 > c2+c0 and T ∗

3 > T̃3, then we should trace the unit and make the periodic
inspection at times jT ∗

3 .

4.4. Sequential model

Suppose that the unit is checked at successive times Tj (j = 1, 2, . . . ), where T0 ≡ 0. By
the similar method of obtaining the expected costs C3(T ) and C3(T ) in Section 4.3, the
expected cost for the unit with traceability is

C4(T) =
∞∑

j=1

∫ Tj

Tj−1

[c0(Tj) + c1j + c2(Tj − t)]dF (t)

=
∞∑

j=0

[c0(Tj+1) − c0(Tj) + c1 + c2(Tj+1 − Tj)]F (Tj) +
∞∑

j=1

∫ Tj

Tj−1

F (t)dc2(Tj − t),

(55)
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and for the unit without traceability

C4(T) =
∞∑

j=1

∫ Tj

Tj−1

[c1j + c3(Tj − t)]dF (t)

=
∞∑

j=0

[c1 + c3(Tj+1 − Tj)]F (Tj) +
∞∑

j=1

∫ Tj

Tj−1

F (t)dc3(Tj − t). (56)

We find an optimal checking schedule which minimizes C4(T) in (55) when ci(t) = cit
(i = 0, 2). In this case, the expected cost is

C4(T) =
∞∑

j=0

[(c0 + c2)(Tj+1 − Tj) + c1]F (Tj) − c2µ. (57)

Differentiating C4(T) with respect to Tj and setting it equal to zero,

Tj+1 − Tj =
F (Tj) − F (Tj−1)

f(Tj)
−

c1

c0 + c2

. (58)

Similarly, differentiating C4(T) with respect to Tj and setting it equal to zero when c3(t) =
c3 t,

Tj+1 − Tj =
F (Tj) − F (Tj−1)

f(Tj)
−

c1

c3

. (59)

It is noted that both (58) and (59) correspond to the type of the equation in Barlow and
Proschan [1, p. 110] and Nakagawa [7, p. 203]. Thus, we can compute optimal times T ∗

j

for specified F (t) and cost ci (i = 0, 1, 2, 3), using Algorithm 1 of Barlow and Proschan
[1, p. 112], by a similar method in Section 3.2.

5. Conclusions

We have summarized a variety of the backward and backup models, and derived their
optimal maintenance policies using maintenance and reliability theory. Furthermore, we
have applied such models to the traceability problem used commonly in food products.
Such concept of traceability would be applied practically to more production systems to
lessen inferior goods and to recover them fast.

There exist many present situations in which we have to go back to some point and
restore a normal condition as soon as possible by some suitable maintenance, when failures
have occurred or been detected. There are a few papers treated with such backward models.
This survey paper would be more useful for studying theoretically these problems and for
applying practically to actual systems.
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