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Abstract We consider single machine batching and scheduling problem in which the processing time of each
job is known, but the setup time is a random variable from the distribution with an unknown parameter.
Batch sizes are determined sequentially, that is, the size and jobs of the first batch are determined by using
the prior knowledge and observed the value of a setup time, then the size and jobs of the second batch are
determined by using the value of the first setup time, and so on. Since this problem is a sequential decision
problem, it is formulated by dynamic programming and several properties are obtained.
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1. Introduction

Batching and scheduling problem considered in this paper is the problem to decide both the
batch size and the sequence of jobs to be processed sequentially so as to minimize the sum
of the total completion times of all the jobs. In this kind of problem, the length of setup
time is the important factor to influence the optimal solution. The setup time of this paper
is a random variable with an unknown parameter and the Bayesian learning mechanism is
included.

There are several cases that the setup time is a random variable, for example, the time
of the material handling to bring the raw materials from the warehouse to the workstation
is not constant but a random variable if they were brought by a worker. In this case, the
distribution function usually has several parameters whose values are known if the material
handling is always done by the same worker. If a new worker begins to work in this
workstation and he brings the raw material from the warehouse to the workstation, the
values of several parameters are unknown. In this case, we can update the values of the
unknown parameters by gathering the information about the time of each material handling
and using the Bayesian learning method.

Batching and scheduling problem has been studied in these twenty years mainly in the
deterministic case where both the setup time and the processing times are known and the
problems are static in the sense that sizes of all the batches are determined at once. This kind
of problem is discussed in Santos and Magazine [9], where the jobs are said to be in batch
availability. Dobson, Karmarker and Rummel [4] called this as batch flow problem. Naddef
and Santos [7] considered one-pass batching algorithm to construct the optimal solution.
Coffman, Yannakakis, Magazine and Santos [2] found the property that sequencing of jobs
in increasing order of processing time is optimal.

Dynamic programming is useful in several kinds of batching and scheduling problem,
for example, Baker [1], Coffman, Yannakakis, Magazine, and Santos [2], Wagelmans and
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Gerodimos [11], Ng, Cheng and Kovalyov [8]. In this paper, we formulate the model by
using Bayesian dynamic programming.

In the case that the setup time is a constant, the optimal batch sizes and sequence of
jobs are predetermined. If the setup time is short or long, the optimal batch size is small
or large, respectively. In this paper, we assume that the setup time is not constant but the
random variable whose distribution has at least one unknown parameter with some prior
information. After observing the setup time of the first batch, we will determine the second
batch size by using the expected setup time updated by the Bayesian learning mechanism.

Some number of jobs are selected as a batch and processed. After observing the value
of a setup time, we will obtain the posterior information by using the value and the prior
information. Now, this posterior information is used as a new prior information and a new
batch size at the next stage is decided. This process is repeated until all the jobs have been
processed. In this process, a Bayesian learning mechanism is included and the problem is
now the sequential decision problem with learning. The special case, where all the processing
times are the same and the setup time is distributed in the gamma distribution with one
unknown parameter, was discussed in Hamada [5].

In Section 3, the problem is formulated by dynamic programming and after deriving some
properties, more simple recursive equations are obtained. Some properties for this recursive
equations and the optimal strategy are derived in Section 4. The optimal strategy for the
special case of sequence of processing times is also derived in Section 5. The properties of
that case of sequence of processing times are discussed in Section 6.

2. Model

Consider the case that several size of boards have to be cut by a cutting machine. For
example, there are n boards, 1, 2, · · · , n, of the same length 2l with width w1, w2, · · · , wn,
respectively, in a warehouse and we bring some of them from the warehouse to the work-
station where we cut them to get the board with length l. If the several width of board
had to be cut by the cutting machine with the same cutting speed, the time to cut each
board would be in proportion to its width. Let pi for i = 1, 2, · · · , n be the time to cut the
board i. If the boards i and j are cut without any interval time, the total time to cut them
is pi + pj. Let X be the time to bring boards from warehouse to the workstation. Even if
we bring two or more boards simultaneously, the time to bring them is X. The total time
to bring boards i and j from the warehouse to the workstation and cut them continuously
is X + pi + pj. This is the motivation of our model discussed in this paper.

The Bayesian sequential single machine batching and scheduling problem considered in
this paper is described as follows: There are n jobs, 1, 2, · · · , n, which is processed by a single
machine. Let Ω = {1, 2, · · · , n}, the set of all the jobs to be considered and to be available
at time 0. The processing time of job i (i = 1, 2, · · · , n) is pi, which is a known value and
satisfies p1 ≥ p2 ≥ · · · ≥ pn. Let Λn = {(p1, p2, · · · , pn)|1 ≥ p1 ≥ p2 ≥ · · · ≥ pn > 0}.
Several number of jobs are selected as a batch and these selected jobs are processed one by
one sequentially. Let B1 be the set of all the jobs in the first batch. After completing all
the jobs in the batch, some jobs are selected from Ω \ B1 as the jobs of the second batch
B2 and processed, where Ω \ B1 is the set of jobs which are included in Ω, but not in B1.
Jobs of the third batch B3 is selected from (Ω \B1) \ B2 and processed. We continue to
make the batch until the set of remaining jobs is empty. The completion time of each
job in a batch is the same as that of the last job in the batch. A setup time is necessary
before processing the first job in a batch. Therefore, the completion time of the k-th batch
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is the sum of the completion time of the last job of (k− 1)-th batch, the setup time of k-th
batch, and sum of all the processing times of jobs in the k-th batch. The setup time is not
a constant but a random variable whose distribution function is F (x|θ), but the true value
of the parameter θ is unknown and there is a conjugate prior distribution G(θ|u, v), where
(u, v) is the parameter vector with u > 0 and v > 0. Let (φ(u, v;X), ψ(u, v;X)) be the
parameter vector of the posterior distribution of θ after observing a setup time X when the
parameter vector of θ is (u, v) ∈ W , where W be the set of all the possible vector values of
(u, v). When the current set of the remaining jobs is S(⊂ Ω), several jobs are selected from
S as a batch and after observing the setup time X, all the jobs in the batch are processed
one by one, and after completing the last job in the batch, several jobs of the next batch
is selected by using the posterior distribution G(θ|φ(u, v;X), ψ(u, v;X)) which is derived
from both G(θ|u, v) and X by using the Bayes’ Theorem. The objective is to minimize the
expected sum of completion times of all the jobs of Ω.

Let
h(u, v) = EΘ[EX [X|Θ]|u, v],

where EX [·|Θ] is the expectation operation with the distribution F (x|θ) and EΘ[·|u, v] is
that with the distribution G(θ|u, v). Several distribution with an unknown parameter has
its own conjugate prior distribution (See, for example, DeGroot [3]), that is, the posterior
distribution is the same kind as the prior one except that values of the parameters are
revised.

Now, we make five assumptions, whose second, third, and forth are the assumptions A3,
A4, and A1, of Hamada and Ross [6], respectively.
Assumption 1. For any continuous and strictly increasing function f(x) of x,
EΘ[EX [f(X)|Θ]|u, v] is continuous and strictly increasing in u and continuous and strictly
decreasing in v.
Assumption 2. h(u, v) > 0.
Assumption 3. For any c > 0 and v > 0, the equation h(u, v) = c of u has a unique root
in the interval (0,∞).
Assumption 4. φ(u, v;x) is continuous in u, nondecreasing in u and x, and nonincreasing
in v, and ψ(u, v;x) is continuous in v, nonincreasing in u and x, and nondecreasing in v.
Assumption 5. E[h(φ(u, v;x), ψ(u, v;x))|u, v] = h(u, v).

As an immediate consequence of Assumption 1, we have some properties of h(u, v) as
follows:

Lemma 2.1 h(u, v) is continuous and strictly increasing in u and continuous and strictly
decreasing in v.

For example, consider the gamma distribution with an unknown parameter θ whose
density function is

f(x|θ, α) =

{
Γ(α)−1θαxα−1e−θx, if 0 < x,
0, otherwise,

where α is a known parameter. The unknown parameter θ has the gamma distribution
with the density function

g(θ|u, v) =

{
Γ(v)−1uvθv−1e−uθ, if 0 < u,
0, otherwise,

as the conjugate prior distribution. In this case, Assumption 1 is satisfied with Lemma 3.1
of Hamada [5], and

h(u, v) = αu(v − 1)−1,
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which satisfies Assumptions 2 and 3. After observing X = x, the posterior distribution is

g(θ|φ(u, v;x), ψ(u, v; x)) =

{
Γ(v + α)−1(u+ x)v+αθv+α−1e−(u+x)θ, if 0 < u,
0, otherwise,

that is,

φ(u, v; x) = u+ x

and

ψ(u, v;x) = v + α,

which satisfy Assumption 4. Assumption 5 is satisfied with

h(φ(u, v;x), ψ(u, v;x)) = α(u+ x)(v + α− 1)−1.

3. Formulation

Let pS be the vector of pi for i ∈ S, whose elements are sequenced in decreasing order.
Let (S; u, v; pS) be the state which denotes that the current set of jobs is S, the current
parameter vector of the prior distribution is (u, v) and the vector of the processing times is
pS. Let B denote any subset of S that is called a batch and |B| the number of elements
in B. Also, let V (S; u, v; pS) be the minimum expected sum of completion times for the
set S of remaining jobs when the current state is (S; u, v; pS) and the optimal strategy is
followed thereafter. Let V B(S;u, v; pS) be the minimum expected sum of completion times
for the set S of remaining jobs when the current state is (S; u, v; pS), all the jobs in B are
processed one by one sequentially, and the optimal strategy is followed thereafter. Then,
the recursive equations are derived as follows:

V (S;u, v; pS) = min
B⊂S

V B(S; u, v; pS), (3.1)

V (ϕ;u, v; pϕ) = 0 (3.2)

where

V B(S;u, v; pS) = |S|{EΘ[EX [X|Θ]|u, v] +
∑
i∈B

pi}

+ EΘ[EX [V (S \B;φ(u, v;X), ψ(u, v;X); pS\B)|Θ]|u, v]. (3.3)

The first term on the right hand side of (3) means that all the jobs in the first batch have
the same release time, EΘ[EX [X|Θ]|u, v] +

∑
i∈B pi, as the one machine batching problem

considered in Shallcross [10]

Let

E[f(X)|u, v] = EΘ[EX [f(X)|Θ]|u, v]

for any function f(x). Then,

V B(S;u, v; pS) = |S|{h(u, v) +
∑
i∈B

pi}

+ E
[
V (S \B;φ(u, v;X), ψ(u, v;X); pS\B)|u, v

]
.
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Lemma 3.1 Let S and S ′ be two sets of n jobs which satisfy S \ {i} = S ′ \ {j} with i ̸= j.
Then, for any parameter vector (u, v), if pi > pj,

pi − pj ≤ V (S;u, v; pS)− V (S ′;u, v; pS′) ≤ n(pi − pj) (3.4)

and if pi < pj,

pj − pi ≤ V (S ′; u, v; pS′)− V (S;u, v; pS) ≤ n(pj − pi), (3.5)

and therefore

V (S; u, v; pS)


>
=
<

V (S ′; u, v; pS′) if pi


>
=
<

 pj.

Proof. Let π(S) and π(S ′) be the optimal policies for (S;u, v; pS) and (S ′;u, v; pS′), re-
spectively. Then, V (S;u, v; pS) = V π(S)(S;u, v; pS), V (S ′;u, v; pS′) = V π(S′)(S ′; u, v; pS′),
V (S; u, v; pS) ≤ V π(S′)(S; u, v; pS), and V (S ′; u, v; pS′) ≤ V π(S)(S ′;u, v; pS′), where
V π(S′)(S;u, v; pS) is the expected total completion time for the state (S; u, v; pS) when the
policy π(S ′) is applied by regarding pi as pj and also V π(S)(S ′;u, v; pS′) is the expected total
completion time for the state (S ′;u, v; pS′) when the policy π(S) is applied by regarding pj

as pi. Then, if pi > pj,

V (S; u, v; pS)− V (S ′;u, v; pS′) ≥ V π(S)(S;u, v; pS)− V π(S)(S ′; u, v; pS′).

Let job i is in the kth batch in S. Also, let |S|, |B1|, |B2|,· · · ,|Bk−1| be the numbers of jobs
in S,B1, B2, · · · , Bk−1, respectively. As job j is in the kth batch in S ′ if job i is in the kth
batch in S. Since we use the same policy to the state (S;u, v; pS) and (S ′;u, v; pS′),

V π(S)(S;u, v; pS)− V π(S)(S ′; u, v; pS′) = (|S| − |B1| − |B2| − · · · − |Bk−1|)(pi − pj)

≥ pi − pj,

which means V (S;u, v; pS) > V (S ′;u, v; pS′) if pi > pj. Also, we have

V (S;u, v; pS)− V (S ′;u, v; pS′) ≤ V π(S′)(S; u, v; pS)− V π(S′)(S ′; u, v; pS′)

≤ n(pi − pj).

By the same way, if pi < pj, (3.5) is derived by interchanging S and S ′ and also i and j. In
the case of pi = pj, we have S = S ′ and V (S;u, v; pS) = V (S ′; u, v; pS′). This completes the
proof. �

In Lemma 1 of Coffman, Yannakakis, Magazine and Santos [2] gave that the job sequence
in increasing order is an optimal sequence for the batching and scheduling problem. The
following lemma gives the properties of the jobs for a batch.

Lemma 3.2 For the state (S;u, v; pS), if the optimal batch is B with batch size |B| = k,
jobs in B are the smallest k jobs in S.

Proof. Let S = {1, 2, · · · , n} and p1 ≥ p2 ≥ · · · ≥ pn. If there is a job i ∈ B such that
pi > pj for n − k + 1 ≤ j ≤ n, then there is the job l in S \ B such that pi > pl and
n− k+ 1 ≤ l ≤ n. Let B′ = B ∪ {l} \ {i}, then i ∈ B, l /∈ B, i /∈ B′, l ∈ B′, and |B′| = |B|.
Now, we have both

V B(S; u, v; pS) = |S|

{
E[X|u, v] +

∑
j∈B

pj}

}
+ E[V (S \B;φ(u, v;X), ψ(u, v;X)); pS\B)|u, v]
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and

V B′
(S;u, v; pS) = |S|

{
E[X|u, v] +

∑
i∈B′

pi}

}
+ E[V (S \B′;φ(u, v;X), ψ(u, v;X)); pS\B′)|u, v],

from which

V B(S;u, v; pS)− V B′
(S;u, v; pS)

= |S|(pi − pl)

+ E[V (S \B;φ(u, v;X), ψ(u, v;X)); pS\B)− V (S \B′;φ(u, v;X), ψ(u, v;X)); pS\B′)|u, v].

As (S \B) \ {l} = (S \B′) \ {i} and pi > pl, Lemma 2 means

V (S \B′;φ(u, v;X), ψ(u, v;X); pS\B′)− V (S \B;φ(u, v;X), ψ(u, v;X); pS\B)

≤ (|S| − |B|)(pi − pl)

that is

V (S \B;φ(u, v;X), ψ(u, v;X); pS\B)− V (S \B′;φ(u, v;X), ψ(u, v;X); pS\B′)

≥ (|S| − |B|)(pl − pi),

from which V B(S;u, v; pS) > V B′
(S;u, v; pS). This contradicts the assertion that B is the

optimal batch for (S;u, v; pS). �
From this lemma, if the size of the optimal batch B1 for the state (S; u, v; pS) with S =

{1, 2, · · · , n} is m, the set of jobs in B1 are composed of jobs n−m+1, n−m+2, · · · , n, and
the second batch is decided for the state ({1, 2, · · · , n−m};φ(u, v;X), ψ(u, v;X); p{1,2,··· ,n−m}).
From this property, it is sufficient to consider the state (n; u, v; pn) in place of (S;u, v; pS)
for S = {1, 2, · · · , n} and pn = (p1, p2, · · · , pn). Let Vn(u, v; pn) be the minimum expected
sum of completion times for the state (n;u, v; pn). Also, let V k

n (u, v; pn) be the minimum
expected sum of completion times for the state (n;u, v; pn) when the smallest k jobs are
processed as a batch and are followed by the optimal batching and scheduling of the re-
maining n − k jobs. Then, the recursive equations (3.1), (3.2) and (3.3) are rewritten as
follows:

Vn(u, v; pn) = min
1≤k≤n

V k
n (u, v; pn), (3.6)

V0(u, v; p0) = 0, (3.7)

and

V k
n (u, v; pn) = nh(u, v) + n

n∑
j=n−k+1

pj + E[Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)|u, v]. (3.8)

Therefore,

V1(u, v; p1) = h(u, v) + p1, (3.9)

and

V2(u, v; p2) =

{
V 1

2 (u, v; p2), if 0 < u < r2,1(v; p2),
V 2

2 (u, v; p2), if r2,1(v; p2) ≤ u,
(3.10)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



A Bayesian Sequential Single Machine Batching and Scheduling Problem 85

where
V 1

2 (u, v; p2) = 3h(u, v) + 2p2 + p1, (3.11)

V 2
2 (u, v; p2) = 2h(u, v) + 2p2 + 2p1, (3.12)

and r2,1(v; p2) is the unique root of the equation of u, h(u, v) = p1. Also,

V3(u, v; p3) =


V 1

3 (u, v; p3), if 0 < u < r3,1(v; p3),
V 2

3 (u, v; p3), if r3,1(v; p3) ≤ u < r3,2(v; p3),
V 3

3 (u, v; p3), if r3,2(v; p3) ≤ u,
(3.13)

where
V 1

3 (u, v; p3) = 3h(u, v) + 3p3 + E[V2(φ(u, v;X), ψ(u, v;X); p2)|u, v], (3.14)

V 2
3 (u, v; p3) = 4h(u, v) + 3p3 + 3p2 + p1, (3.15)

and
V 3

3 (u, v; p3) = 3h(u, v) + 3p3 + 3p2 + 3p1. (3.16)

Also, r3,1(v; p3) is the unique root of the equation of u,

E[V2(φ(u, v;X), ψ(u, v;X); p2)|u, v] = h(u, v) + 3p2 + p1,

and r3,2(v; p3) is the unique root of the equation of u, h(u, v) = 2p1.

4. Several Properties of Vk
n(u, v; pn)

V k
n (u, v; pn) satisfies several properties. Now we have the following Lemma.

Lemma 4.1 (i) For n ≥ 2 and 1 ≤ k ≤ n, V k
n (u, v; pn) is continuous and strictly monotone

increasing in u and also continuous and strictly monotone decreasing in v and (ii) for n ≥ 1,
Vn(u, v; pn) is continuous and strictly monotone increasing in u and also continuous and
strictly monotone decreasing in v.

The proof of this lemma is done by using (3.8), Assumption 1, and induction on n.
From (3.8) and

V k−m
n−m (u, v; pn−m) = (n−m)h(u, v)

+ (n−m)
n−m∑

j=n−k+1

pj + E[Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)|u, v],

which is derived from (3.8) by replacing n and k by n−m and k−m, respectively, we have

Bn,k,m(pn): V k
n (u, v; pn)− V k−m

n−m (u, v; pn−m) = mh(u, v) +m

n−m∑
j=n−k+1

pj + n
n∑

j=n−m+1

pj.

for p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ m < k ≤ n and (u, v) ∈ W . From Bn,k,1(pn), we have

V k
n (u, v; pn) = V k−1

n−1 (u, v; pn−1) + h(u, v) +
n−1∑

j=n−k+1

pj + npn (4.1)

for 2 ≤ k ≤ n.
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Lemma 4.2 For n ≥ 2, p1 ≥ p2 ≥ · · · ≥ pn > 0 and (u, v) ∈ W ,

Cn,k,l(pn): V k
n (u, v; pn)− V k+1

n (u, v; pn) = V k−l
n−l (u, v; pn−1)− V k+1−l

n−l (u, v; pn−1)− lpn−k,

hold for 1 ≤ l < k ≤ n− 1 and

Dn,k(pn): V k
n (u, v; pn)−V k+1

n (u, v; pn) = −npn−k

+E[Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)− Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1)|u, v]

holds for 1 ≤ k ≤ n− 1.

Proof. Replacing k in (4.1) by k + 1,

V k+1
n (u, v; pn) = V k

n−1(u, v; pn−1) + h(u, v) +
n−1∑

j=n−k

pj + npn.

Also, subtracting this equation from (4.1), we have

V k
n (u, v; pn)− V k+1

n (u, v; pn) = V k−1
n−1 (u, v; pn−1)− V k

n−1(u, v; pn−1)− pn−k,

which means that Cn,k,1(pn) holds. Also,

V k−1
n−1 (u, v; pn−1)− V k

n−1(u, v; pn−1) = V k−2
n−2 (u, v; pn−2)− V k−1

n−2 (u, v; pn−2)− pn−k,

...

V 2
n−k+2(u, v; pn−k+2)− V 3

n−k+2(u, v; pn−k+2) = V 1
n−k+1(u, v; pn−k+1)− V 2

n−k+1(u, v; pn−k+1)

− pn−k.

Adding first l of these k − 1 equations side by side, we have

V k
n (u, v; pn)− V k+1

n (u, v; pn) = V k−l
n−l (u, v; pn−l)− V k+1−l

n−l (u, v; pn−l)− lpn−k.

and Cn,k,l(pn) holds for 2 ≤ l < k ≤ n− 1. Also, for 1 ≤ k ≤ n− 1, we have from (3.8)

V k
n (u, v; pn)− V k+1

n (u, v; pn)

= n

{
h(u, v) +

n∑
j=n−k+1

pj

}
+ E[Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)|u, v]

− n

{
h(u, v) +

n∑
j=n−k

pj

}
− E[Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1)|u, v]

= −npn−k

+ E[Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)− Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1)|u, v],

and Dn,k(pn) is derived. �

From this lemma, we have

V 1
2 (u, v; p2)− V 2

2 (u, v; p2) = h(u, v)− p1, (4.2)
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V 1
3 (u, v; p3)− V 2

3 (u, v; p3)

= E[V2(φ(u, v;X), ψ(u, v;X); p2)− V1(φ(u, v;X), ψ(u, v;X); p1)|u, v]− 3p2, (4.3)

V 2
3 (u, v; p3)− V 3

3 (u, v; p3) = h(u, v)− 2p1, (4.4)

V 1
4 (u, v; p4)− V 2

4 (u, v; p4)

= E[V3(φ(u, v;X), ψ(u, v;X); p3)− V2(φ(u, v;X), ψ(u, v;X); p2)|u, v]− 4p3, (4.5)

V 2
4 (u, v; p4)− V 3

4 (u, v; p4) = V 1
3 (u, v; p3)− V 2

3 (u, v; p3)− p2

= E[V2(φ(u, v;X), ψ(u, v;X); p2)− V1(φ(u, v;X), ψ(u, v;X); p1)|u, v]− 4p2, (4.6)

and

V 3
4 (u, v; p4)− V 4

4 (u, v; p4) = V 2
3 (u, v; p3)− V 3

3 (u, v; p3)− p1

= h(u, v)− 3p1. (4.7)

Lemma 4.3 For p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ k ≤ n− 1 and (u, v) ∈ W ,

En,k(pn): V k
n (u, v; pn)− V k

n−1(u, v; pn−1) = h(u, v) +
n−1∑

j=n−k+1

pj + npn − (n− 1)pn−k

+E
[
Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)− Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1)|u, v

]
.

Proof. En,k(pn) is obtained from (3.8) and

V k
n−1(u, v; pn−1) = (n− 1)h(u, v) + (n− 1)

n−1∑
j=n−k

pj

+ E
[
Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1) | u, v

]
which is the immediate consequence of replacing n in (3.8) by n− 1. �

Lemma 4.4 For n ≥ 2, p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ k ≤ n− 1 and any (u, v)∈W ,

h(u, v) +
n∑

j=1

pj ≤ Vn(u, v; pn)− Vn−1(u, v; pn−1) ≤ nh(u, v) +
n∑

j=1

pj. (4.8)

Proof. The proof is in almost the same way as that of Lemma 3.6 of Hamada [5]. �

Lemma 4.5 For n ≥ 2, p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ k ≤ n− 1 and any (u, v)∈W ,

−npn−k +h(u, v)+
n−k∑
j=1

pj ≤ V k
n (u, v; pn)−V k+1

n (u, v; pn) ≤ −npn−k +(n−k)h(u, v)+
n−k∑
j=1

pj.

Proof. These inequalities are the immediate consequence of Dn,k(pn) and Lemma 7. �
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Lemma 4.6 For n ≥ 2, p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ k ≤ n− 1 and any (u, v)∈W ,

(i) −np1+h(u, v)+
1∑

j=1

pj ≤ −np2+h(u, v)+
2∑

j=1

pj ≤ · · · ≤ −npn−1+h(u, v)+
n−1∑
j=1

pj.

(ii) −np1+h(u, v)+
1∑

j=1

pj ≤ −np2+2h(u, v)+
2∑

j=1

pj ≤ · · · ≤ −npn−1+(n−1)h(u, v)+
n−1∑
j=1

pj.

Proof. These inequalities are derived from h(u, v) > 0, p1 ≥ p2 ≥ · · · ≥ pn−1 > 0, and the
trivial inequalities

∑1
j=1 pj <

∑2
j=1 pj < · · · <

∑n−1
j=1 pj. �

Theorem 4.1 For n ≥ 2, p1 ≥ p2 ≥ · · · ≥ pn > 0, 1 ≤ k ≤ n− 1 and any (u, v)∈W ,
(i) if (n− 1)p1 < h(u, v), then Vn(u, v; pn) = V n

n (u, v; pn).
(ii) if h(u, v) < pn−1 − (n− 1)−1

∑n−2
j=1 pj, then Vn(u, v; pn) = V 1

n (u, v; pn).

Proof. If (n − 1)p1 < h(u, v), then 0 < −np1 + h(u, v) +
∑1

j=1 pj, and we have from
Lemmas 8 and 9

V n
n (u, v; pn) ≤ V n−1

n (u, v; pn) ≤ · · · ≤ V 2
n (u, v; pn) ≤ V 1

n (u, v; pn),

that is,
Vn(u, v; pn) = V n

n (u, v; pn).

Also, if h(u, v) < pn−1 − (n − 1)−1
∑n−2

j=1 pj, then −npn−1 + (n − 1)h(u, v) +
∑n−1

j=1 pj < 0,
and we have from (ii) of Lemma 9 that

V 1
n (u, v; pn) ≤ V 2

n (u, v; pn) ≤ · · · ≤ V n−1
n (u, v; pn) ≤ V n

n (u, v; pn),

that is
Vn(u, v; pn) = V 1

n (u, v; pn),

which completes the proof. �

From this theorem, if h(u, v) < pn−1 − (n − 1)−1
∑n−2

j=1 pj, the optimal batch size is 1.
Also, if (n− 1)p1 < h(u, v), then the optimal batch size is n. Since h(u, v) > 0, we consider
the case that the inequality (n− 1)pn−1 ≥

∑n−2
j=1 pj holds.

For the state (n;u, v; pn), the optimal batch size is l which satisfies

V l
n(u, v; pn) = min

1≤k≤n
V k

n (u, v; pn).

The optimal strategy for the state (n; u, v; pn) is given as follows:
Algorithm.

Step 1. Let k = 1, m = n and C = 0, where C be the total completion time for the all
the jobs completed up to now.

Step 2. If Vm(u, v; pm) = V l
m(u, v; pm), then let Bk = {m,m − 1, · · · ,m − l + 1} and

C ←− C +m(x+ pm + pm−1 + · · ·+ pm−l+1), where x is the observed value of the random
setup time X.

Step 3. If l = m, stop. Otherwise, let m←− m−l, u←− φ(u, v; x), and v ←− ψ(u, v; x).
Step 4. k ←− k + 1 and go to Step 2.
In Step 2, the jobs, m,m−1, · · · ,m−l+1, are processed as a batch and their contribution

to the total completion time is m(x+ pm + pm−1 + · · ·+ pm−l+1). By using this algorithm,
we obtain the optimal batches, B1, B2, · · · , Bk, and the total completion time C for the
optimal strategy.
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5. Special class of sequence of processing times

In this section, we consider the case that
∑n−k−1

j=1 pj ≤ (n − k)pn−k holds for every k with
1 ≤ k ≤ n − 2. Furthermore, we restrict our attention to the special class of vector
pn = (p1, p2, · · · , pn) of processing times which satisfies

−kpn−k + (k + 1)pn−k−1 − p1 ≥ 0

for 1 ≤ k ≤ n− 2. Let

An =

 (p1, p2, · · · , pn)

∣∣∣∣∣∣ p1 ≥ p2 ≥ · · · ≥ pn > 0, − kpn−k + (k + 1)pn−k−1 − p1 ≥ 0

for 1 ≤ k ≤ n− 2 and
n−l−1∑
j=1

pj ≤ (n− l)pn−l for 1 ≤ l ≤ n− 2

}

for n ≥ 3.
For example, if n = 10, let p1 = 1, p2 = 0.990, p3 = 0.988, p4 = 0.986, p5 = 0.983,

p6 = 0.978, p7 = 0.970, p8 = 0.955, and p9 = 0.910. Then, (p1, p2, · · · , p10) satisfies
p8 ≥ (p9 + p1)/2, p7 ≥ (2p8 + p1)/3, p6 ≥ (3p7 + p1)/4, p5 ≥ (4p6 + p1)/5, p4 ≥ (5p5 + p1)/6,
p3 ≥ (6p4+p1)/7, p2 ≥ (7p3+p1)/8, p1 ≥ p2, p2 > p1/2, p3 > (p1+p2)/3, p4 > (p1+p2+p3)/4,
p5 > (p1 + p2 + · · · + p4)/5, p6 > (p1 + p2 + · · · + p5)/6, p7 > (p1 + p2 + · · · + p6)/7,
p8 > (p1 + p2 + · · · + p7)/8, p9 > (p1 + p2 + · · · + p8)/9, and p1 ≥ p2 ≥ · · · ≥ p10 > 0.
Therefore, (p1, p2, · · · , p10) ∈ A10.

Now, let

(T2): V2(u, v; p2) =

{
V 1

2 (u, v; p2), if 0 < u < r2,1(v; p1),
V 2

2 (u, v; p2), if r2,1(v; p1) ≤ u,

(U2): V2(u, v; p2)− V1(u, v; p1) =

{
V 1

2 (u, v; p2)− V1(u, v; p1), if 0 < u < r2,1(v,p1),
V 2

2 (u, v; p2)− V1(u, v; p1), if r2,1(v,p1) ≤ u,
and
(U3): V3(u, v; p3)− V2(u, v; p2)

=


V 1

3 (u, v; p3)− V 1
2 (u, v; p2), if 0 < u < r3,1(v; p2),

V 2
3 (u, v; p3)− V 1

2 (u, v; p2), if r3,1(v; p2) ≤ u < r2,1(v; p1),
V 2

3 (u, v; p3)− V 2
2 (u, v; p2), if r2,1(v; p1) ≤ u < r3,2(v; p2),

V 3
3 (u, v; p3)− V 2

2 (u, v; p2), if r3,2(v; p2) ≤ u,
and furthermore we define (Pn), (Qn), and (Wn) for n ≥ 2, (Rn), (Sn), and (Tn) for n ≥ 3,
(Un) for n ≥ 4, and (Vn) for n ≥ 1, as follows:

(Pn): For 1 ≤ k ≤ n− 1, V k
n (u, v; pn)− V k+1

n (u, v; pn) is continuous and strictly monotone
increasing in u and continuous and strictly monotone decreasing in v.

(Qn): For 1 ≤ k ≤ n − 1, the equation V k
n (u, v; pn) − V k+1

n (u, v; pn) = 0 of u has a unique
root rn,k(v; pn−1) such that V k

n (u, v; pn) − V k+1
n (u, v; pn) < 0 if 0 < u < rn,k(v; pn−1) and

V k
n (u, v; pn)−V k+1

n (u, v; pn) > 0 if rn,k(v; pn−1) < u. Also, rn,k(v; pn−1) is strictly increasing
in v.

(Rn): For 2 ≤ k ≤ n− 1, rn−1,k−1(v; pn−2) < rn,k(v; pn−1).

(Sn): For 1 ≤ k ≤ n− 2, rn,k(v; pn−1) ≤ rn−1,k(v; pn−2).
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(Tn): Vn(u, v; pn) =


V 1

n (u, v; pn), if 0 < u < rn,1(v; pn−1),
V k

n (u, v; pn), if rn,k−1(v; pn−1) ≤ u < rn,k(v; pn−1)
(2 ≤ k ≤ n− 1),

V n
n (u, v; pn), if rn,n−1(v; pn−1) ≤ u.

(Un): Vn(u, v; pn)− Vn−1(u, v; pn−1)

=



V 1
n (u, v; pn)− V 1

n−1(u, v; pn−1), if 0 < u < rn,1(v; pn−1),
V 2

n (u, v; pn)− V 1
n−1(u, v; pn−1), if rn,1(v; pn−1) ≤ u < rn−1,1(v; pn−2),

V k
n (u, v; pn)− V k

n−1(u, v; pn−1), if rn−1,k−1(v; pn−2) ≤ u < rn,k(v; pn−1),
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1), if rn,k(v; pn−1) ≤ u < rn−1,k(v; pn−2),

(2 ≤ k ≤ n− 2)
V n−1

n (u, v; pn)− V n−1
n−1 (u, v; pn−1), if rn−1,n−2(v; pn−2) ≤ u < rn,n−1(v; pn−1),

V n
n (u, v; pn)− V n−1

n−1 (u, v; pn−1), if rn,n−1(v; pn−1) ≤ u.

(Vn): Vn(u, v; pn)−Vn−1(u, v; pn−1) is continuous and strictly increasing in u and continuous
and strictly decreasing in v.

(Wn): Vn(u, v; pn)− Vn−1(u, v; pn−1) ≥ Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

+npn − (n− 2)pn−1 − p1.

Now we have

Lemma 5.1 (V1), (P2), (Q2), (U2), (V2), and (W2) hold.

Proof. (V1), (P2), (Q2), (U2), (V2), and (W2) are derived from (7), (9), (10), (11) and
Assumption 1. �

Theorem 5.1 For n ≥ 3, if pn ∈ An, then (Pn), (Qn), (Rn), (Sn), (Tn), (Un), (Vn), and
(Wn) hold.

Proof. For n = 3,

V 1
3 (u, v; p3)− V 2

3 (u, v; p3) = −h(u, v)− 3p2 − p1 + E[V2(φ(u, v;X), ψ(u, v;X); p2)|u, v]
= E[V2(φ(u, v;X), ψ(u, v;X); p2)− h(φ(u, v;X), ψ(u, v;X))|u, v]
− 3p2 − p1.

Since V 1
2 (u, v; p2)−h(u, v) = 2h(u, v)+2p2+p1 and V 2

2 (u, v; p2)−h(u, v) = h(u, v)+2p2+2p1,
V2(u, v; p2) − h(u, v) is strictly increasing in u and strictly decreasing in v. This means
from Assumption 1 that V 1

3 (u, v; p3)− V 2
3 (u, v; p3) is strictly monotone increasing in u and

strictly monotone decreasing in v. Also, from (4.4) and Lemma 1, V 2
3 (u, v; p3)−V 3

3 (u, v; p3)
is strictly monotone increasing in u and strictly monotone decreasing in v. This completes
the proof of (P3). Since 2h(u, v) + 2p2 + p1 ≤ V2(u, v; p2) ≤ 3h(u, v) + 2p2 + p1, we have
h(u, v) − p2 ≤ V 1

3 (u, v; p3) − V 2
3 (u, v; p3) ≤ 2h(u, v) − p2. For 1 ≤ k ≤ 2, from (P3),

Assumption 3, and Lemma 1, the equation V k
3 (u, v; pn) − V k+1

3 (u, v; pn) = 0 of u has a
unique root r3,k(v; p2) such that V k

3 (u, v; p3)− V k+1
3 (u, v; p3) < 0 if 0 < u < r3,k(v; p2) and

V k
3 (u, v; p3) − V k+1

3 (u, v; p3) > 0 if r3,k(v; p2) < u. Also, r3,k(v; p2) is strictly increasing in
v, which means (Q3) holds. From (4.2) and (4.4), we have r2,1(v; p1) < r3,2(v; p1) and (R3)
holds. From h(u, v)− p2 ≤ V 1

3 (u, v; p3)− V 2
3 (u, v; p3), p1 ≥ p2, and (4.2), (S3) holds. From

(R3) and (S3), we have r3,1(v; p2) < r3,2(v; p2), that is, (T3) holds. (U3) is derived from
(T2), (T3), (R3) and (S3). (V3) is derived from (3.14), (3.15), (3.16), (3.11), (3.12), Lemma
4 and Assumptions 1 and 4. Since V 1

3 (u, v; p3)−V 1
2 (u, v; p2) ≥ 2h(u, v)+3p3, V

2
3 (u, v; p3)−
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V 1
2 (u, v; p2) = h(u, v) + 3p3 + p2, V

2
3 (u, v; p3)− V 2

2 (u, v; p2) = 2h(u, v) + 3p3 + p2 − p1, and
V 3

3 (u, v; pn)−V 2
2 (u, v; p2) = h(u, v)+3p3+p2+p1, V

1
2 (u, v; p2)−V1(u, v; p1) = 2h(u, v)+2p2

and V 2
2 (u, v; p2)− V1(u, v; p1) = h(u, v) + 2p2 − p1, (W3) is derived from (U3).

For n ≥ 4, (Pn) is derived from Dn,k(pn) and (Vn−k) for 1 ≤ k ≤ n−1 and Assumptions
1 and 4. (Qn) is derived from (Pn), Lemma 8 and pn = (p1, p2, · · · , pn) ∈ An. (Rn)
is derived from Cn,k,1(pn) and the definitions of rn,k(v; pn−1) and rn−1,k−1(v; pn−2). Since
(Wn−k) holds for 1 ≤ k ≤ n− 2, we have

Vn−k(u, v; pn−k)− Vn−k−1(u, v; pn−k−1)

≥ Vn−k−1(u, v; pn−k−1)− Vn−k−2(u, v; pn−k−2) + (n− k)pn−k − (n− k − 2)pn−k−1 − p1

for 1 ≤ k ≤ n− 2, that is,

E[Vn−k(u, v; pn−k)− Vn−k−1(u, v; pn−k−1)|u, v]
≥ E[Vn−k−1(u, v; pn−k−1)− Vn−k−2(u, v; pn−k−2)|u, v]
+ (n− k)pn−k − (n− k − 2)pn−k−1 − p1

for 1 ≤ k ≤ n− 2, which are equivalent to

− npn−k + E[Vn−k(u, v; pn−k)− Vn−k−1(u, v; pn−k−1)|u, v]
≥ −(n− 1)pn−k−1 + E[Vn−k−1(u, v; pn−k−1)− Vn−k−2(u, v; pn−k−2)|u, v]
+ {−kpn−k + (k + 1)pn−k−1 − p1}

for 1 ≤ k ≤ n− 2, respectively. From these inequalities and pn ∈ An, we have

− npn−k + E[Vn−k(u, v; pn−k)− Vn−k−1(u, v; pn−k−1)|u, v]
≥ −(n− 1)pn−k−1 + E[Vn−k−1(u, v; pn−k−1)− Vn−k−2(u, v; pn−k−2)|u, v]

for 1 ≤ k ≤ n− 2, and from Dn,k(pn) and Dn−1,k(pn−1), these are equivalent to

V k
n (u, v; pn)− V k+1

n (u, v; pn) ≥ V k
n−1(u, v; pn−1)− V k+1

n−1 (u, v; pn−1)

for 1 ≤ k ≤ n− 2, respectively. From these inequalities and the definitions of rn,k(v; pn−1)
and rn−1,k(v; pn−2), (Sn) is derived. (Tn) is the immediate consequence of (Rn), (Sn), (Qn)
and also (Un) is that of (Rn), (Sn), (Tn) and (Tn−1). (Vn) is derived from En,k(pn) for
1 ≤ k ≤ n − 1, Lemma 4 and Assumptions 1 and 4. To prove (Wn), we have from (Un)
and (Un−1)

Vn(u, v; pn)− Vn−1(u, v; pn−1)

=



V 1
n (u, v; pn)− V 1

n−1(u, v; pn−1), if 0 < u < rn,1(v; pn−1),
V 2

n (u, v; pn)− V 1
n−1(u, v; pn−1), if rn,1(v; pn−1) ≤ u < rn−1,1(v; pn−2),

V k
n (u, v; pn)− V k

n−1(u, v; pn−1), if rn−1,k−1(v; pn−2) ≤ u < rn,k(v; pn−1),
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1), if rn,k(v; pn−1) ≤ u < rn−1,k(v; pn−2),

(2 ≤ k ≤ n− 2)
V n−1

n (u, v; pn)− V n−1
n−1 (u, v; pn−1), if rn−1,n−2(v; pn−2) ≤ u < rn,n−1(v; pn−1),

V n
n (u, v; pn)− V n−1

n−1 (u, v; pn−1), if rn,n−1(v; pn−1) ≤ u,

and
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)
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=



V 1
n−1(u, v; pn−1)− V 1

n−2(u, v; pn−2), if 0 < u < rn−1,1(v; pn−2),
V 2

n−1(u, v; pn−1)− V 1
n−2(u, v; pn−2), if rn−1,1(v; pn−2) ≤ u < rn−2,1(v; pn−3),

V k
n−1(u, v; pn−1)− V k

n−2(u, v; pn−2), if rn−2,k−1(v; pn−3) ≤ u < rn−1,k(v; pn−2),
V k+1

n−1 (u, v; pn−1)− V k
n−2(u, v; pn−2), if rn−1,k(v; pn−2) ≤ u < rn−2,k(v; pn−3),

(2 ≤ k ≤ n− 3)
V n−1

n−1 (u, v; pn−1)− V n−2
n−2 (u, v; pn−2), if rn−2,n−2(v; pn−3) ≤ u < rn−1,n−2(v; pn−2),

V n−1
n−1 (u, v; pn−1)− V n−2

n−2 (u, v; pn−2), if rn−1,n−2(v; pn−2) ≤ u.
(i) If 0 < u < rn,1(v; pn−1),{

Vn(u, v; pn)− Vn−1(u, v; pn−1)
}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V 1

n (u, v; pn)− V 1
n−1(u, v; pn−1)

}
−

{
V 1

n−1(u, v; pn−1)− V 1
n−2(u, v; pn−2)

}
.

(ii) If rn,1(v; pn−1) ≤ u < rn−1,1(v; pn−2),{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V 2

n (u, v; pn)− V 1
n−1(u, v; pn−1)

}
−

{
V 1

n−1(u, v; pn−1)− V 1
n−2(u, v; pn−2)

}
.

(iii) If rn−1,k−1(v; pn−2) ≤ u < min{rn,k(v; pn−1), rn−2,k−1(v; pn−3)} for 2 ≤ k ≤ n− 2,{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V k

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k−1
n−2 (u, v; pn−2)

}
.

If min{rn,k(v; pn−1), rn−2,k−1(v; pn−3)} ≤ u < max{rn,k(v; pn−1), rn−2,k−1(v; pn−3)} for
2 ≤ k ≤ n − 2, two cases (iv) rn,k(v; pn−1) < rn−2,k−1(v; pn−3) and (v) rn−2,k−1(v; pn−3) <
rn,k(v; pn−1) have to be considered and the case rn,k(v; pn−1) = rn−2,k−1(v; pn−3) need not
be considered.
(iv) If rn,k(v; pn−1) ≤ u < rn−2,k−1(v; pn−3),{

Vn(u, v; pn)− Vn−1(u, v; pn−1)
}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k−1
n−2 (u, v; pn−2)

}
.

(v) If rn−2,k−1(v; pn−3) ≤ u < rn,k(v; pn−1),{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V k

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k
n−2(u, v; pn−2)

}
.

(vi) If max{rn,k(v; pn−1), rn−2,k−1(v; pn−3)} ≤ u < rn−1,k(v; pn−2),{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k
n−2(u, v; pn−2)

}
.

(vii) If rn−1,n−2(v; pn−2) ≤ u < rn,n−1(v; pn−1),{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V n−1

n (u, v; pn)− V n−1
n−1 (u, v; pn−1)

}
−

{
V n−1

n−1 (u, v; pn−1)− V n−2
n−2 (u, v; pn−2)

}
.

(viii) If rn,n−1(v; pn−1) ≤ u,{
Vn(u, v; pn)− Vn−1(u, v; pn−1)

}
−

{
Vn−1(u, v; pn−1)− Vn−2(u, v; pn−2)

}
=

{
V n

n (u, v; pn)− V n−1
n−1 (u, v; pn−1)

}
−

{
V n−1

n−1 (u, v; pn−1)− V n−2
n−2 (u, v; pn−2)

}
.
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In the cases of (i) and (v), by using En,k(pn), En−1,k(pn−1) and (Wn−k), we have{
V k

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k
n−2(u, v; pn−2)

}
= npn − (n− 2)pn−1 − npn−k + (n− 2)pn−k−1

+ E
[{
Vn−k(φ(u, v;X), ψ(u, v;X); pn−k)− Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1

}
−

{
Vn−k−1(φ(u, v;X), ψ(u, v;X); pn−k−1)

}
−

{
Vn−k−2(φ(u, v;X), ψ(u, v;X); pn−k−2

}
|u, v

]
≥ npn − (n− 2)pn−1 − npn−k + (n− 2)pn−k−1 + (n− k)pn−k − (n− k − 2)pn−k−1 − p1

= npn − (n− 2)pn−1 − p1 + k(pn−k−1 − pn−k)

≥ npn − (n− 2)pn−1 − p1.

In the cases of (ii) and (vi), by using En,k+1(pn), En−1,k(pn−1) and p1 ≥ pn−k−1, we have{
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k
n−2(u, v; pn−2)

}
≥

{
V k+1

n (u, v; pn)− V k+1
n−1 (u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k
n−2(u, v; pn−2)

}
= npn − (n− 2)pn−1 − pn−k−1

≥ npn − (n− 2)pn−1 − p1.

(15) is useful for (iii), (iv), (vii) and (viii). In the cases of (iii) and (vii),{
V k

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k−1
n−2 (u, v; pn−2)

}
≥

{
V k

n (u, v; pn)− V k−1
n−1 (u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k−1
n−2 (u, v; pn−2)

}
= npn − (n− 2)pn−1

≥ npn − (n− 2)pn−1 − p1.

In the cases of (iv) and (viii),{
V k+1

n (u, v; pn)− V k
n−1(u, v; pn−1)

}
−

{
V k

n−1(u, v; pn−1)− V k−1
n−2 (u, v; pn−2)

}
≥ npn − (n− 2)pn−1

> npn − (n− 2)pn−1 − p1.

Therefore, (Wn) is derived. �

Theorem 5.2 For n ≥ 3, if pn ∈ An, then there exist rn,k(v; pn−1) (k = 1, 2, · · · , n − 1)
which satisfy rn,1(v; pn−1) < rn,2(v; pn−1) < · · · < rn,n−1(v; pn−1) and the optimal strategy is
to perform job n as a batch if 0 < u < rn,1(v; pn−1), to perform jobs n, n− 1, · · · , n− k + 1
as a batch if rn,k−1(v; pn−1) ≤ u < rn,k(v; pn−1) for 2 ≤ k ≤ n − 1, and to perform jobs
n, n− 1, · · · , 1 as a batch if rn,n−1(v; pn−1) ≤ u.

Proof. This theorem is the immediate consequence of Theorem 2. �

Example 1. Let X be the random variable from the exponential distribution with an
unknown mean θ−1 and the conjugate prior distribution of θ be the gamma distribution
whose density function is given by

g(θ|u, v) =

{
Γ(v)−1uvθv−1e−uθ, if θ > 0,
0, otherwise.

Then,
h(u, v) = u(v − 1)−1,
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and

V k
n (u, v,pn) = nu(v − 1)−1 + n

n∑
j=n−k+1

pj + E
[
Vn−k(u+X, v + 1,pn−k)|u, v

]
for n = 1, 2, 3, · · · and k = 1, 2, · · · , n with V0(u, v,p0) = 0. In this case,

V1(u, v,p1) = u(v − 1)−1 + p1,

V 1
2 (u, v,p2) = 3u(v − 1)−1 + 2p2 + p1,

and
V 2

2 (u, v,p2) = 2u(v − 1)−1 + 2p2 + 2p1,

that is,

V2(u, v,p2) =

{
3u(v − 1)−1 + 2p2 + p1, if 0 < u < r2,1(v; p1)
2u(v − 1)−1 + 2p2 + 2p1, if r2,1(v; p1) ≤ u,

where
r2,1(v; p1) = p1(v − 1).

For n = 3, we have

V 1
3 (u, v,p3) =

{
6u(v − 1)−1 + 3p3 + 2p2 + p1 +H3,1(v; p1)u

v, if 0 < u < r2,1(v + 1; p1),
5u(v − 1)−1 + 3p3 + 2p2 + 2p1, if r2,1(v + 1; p1) ≤ u,

V 2
3 (u, v,p3) = 4u(v − 1)−1 + 3p3 + 3p2 + p1,

and
V 3

3 (u, v,p3) = 3u(v − 1)−1 + 3p3 + 3p2 + 3p1,

where
H3,1(v; p1) = −(v − 1)−1 {r2,1(v + 1; p1)}

−v+1 + p1 {r2,1(v + 1; p1)}
−v .

As the inequalities r3,1(v; p2) ≤ r2,1(v+1; p1) < r3,2(v; p2) are obtained from (S3) and (Q3),

V3(u, v,p3) =


6u(v − 1)−1 + 3p3 + 2p2 + p1 +H3,1(v; p1)u

v, if 0 < u < r3,1(v; p2),
4u(v − 1)−1 + 3p3 + 3p2 + p1, if r3,1(v; p2) ≤ u < r3,2(v; p2),
3u(v − 1)−1 + 3p3 + 3p2 + 3p1 if r3,2(v; p2) ≤ u,

where
r3,2(v; p2) = 2p1(v − 1)

and r3,1(v; p2) is the unique root of the equation of u;

6u(v − 1)−1 + 3p3 + 2p2 + p1 +H3,1(v; p1)u
v = 4u(v − 1)−1 + 3p3 + 3p2 + p1

that is,

−p2 + 2u(v − 1)−1 +
[
−(v − 1)−1 {r2,1(v + 1; p1)}

−v+1 + p1 {r2,1(v + 1; p1)}
−v]uv = 0.

By using r2,1(v + 1; p1) = p1v with p1 = 1 in this equation of u, we have

−p2 + 2u(v − 1)−1 +
[
−(v − 1)−1v−v+1 + v−v

]
uv = 0
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that is
(u/v)v − 2v(u/v) + p2(v − 1) = 0.

This equation of u can be solved for p2 = 0.99, 0.98, · · · , 0.80 and v = 2, 3, · · · , 10 and the
values of r3,1(v; p2) are tabulated in Table 1. Furthermore, for n = 4,

V 1
4 (u, v,p4) =


10u(v − 1)−1 + 4p4 + 3p3 + 2p2 + p1 + {H4,1(v; p2) +H4,2(v; p2)}uv

−H3,1(v + 1; p1)vu
v+1, if 0 < u < r3,1(v + 1; p2),

8u(v − 1)−1 + 4p4 + 3p3 + 3p2 + p1 +H4,2(v; p2)u
v,

if r3,1(v + 1; p2) ≤ u < r3,2(v + 1; p2),
7u(v − 1)−1 + 4p4 + 3p3 + 3p2 + 3p1 if r3,2(v + 1; p2) ≤ u,

where

H4,1(v; p2) = −2(v − 1)−1 {r3,1(v + 1; p2)}
−v+1 + p2 {r3,1(v + 1; p2)}

−v

+H3,1(v + 1; p1)vr3,1(v + 1; p2)

H4,2(v; p2) = −(v − 1)−1 {r3,2(v + 1; p2)}
−v+1 + 2p1 {r3,2(v + 1; p2)}

−v .

Also,

V 2
4 (u, v,p4) =


7u(v − 1)−1 + 4p4 + 4p3 + 2p2 + p1 +H3,1(v; p1)u

v,
if 0 < u < r2,1(v + 1; p1)

6u(v − 1)−1 + 4p4 + 4p3 + 2p2 + 2p1, if r2,1(v + 1; p1) ≤ u,

V 3
4 (u, v,p4) = 5u(v − 1)−1 + 4p4 + 4p3 + 4p2 + p1,

and
V 4

4 (u, v,p4) = 4u(v − 1)−1 + 4p4 + 4p3 + 4p2 + 4p1.

(S4) means r4,1(v; p3) < r3,1(v; p2) and (Q3) means r3,1(v; p2) < r3,1(v + 1; p2), r4,1(v; p3) is
the unique root of the following equation of u;

10u(v − 1)−1 + 4p4 + 3p3 + 2p2 + p1 +H4,1(v; p2)u
v −H4,2(v; p2)u

v+1

= 7u(v − 1)−1 + 4p4 + 4p3 + 2p2 + p1 +H3,1(v; p1)u
v,

that is,

−p3 + 3u(v − 1)−1 + (H4,1(v; p2) +H3,1(v; p1))u
v −H4,2(v; p2)u

v+1 = 0.

Also, if u > r2,1(v + 1; p1) = p1v, then

V 2
4 (u, v,p4)− V 3

4 (u, v,p4) =
p1v

v − 1
− (2p2 − p1) > 0

and this means that r4,2(v; p3) is the unique root of the following equation of u;

7u(v − 1)−1 + 4p4 + 4p3 + 2p2 + p1 +H3,1(v; p1)u
v = 5u(v − 1)−1 + 4p4 + 4p3 + 4p2 + p1,

that is,
−2p2 + 2u(v − 1)−1 +H3,1(v; p1)u

v = 0

which means

−2p2 + 2u(v − 1)−1 +
[
−(v − 1)−1 {r2,1(v + 1; p1)}

−v+1 + p1 {r2,1(v + 1; p1)}
−v]uv = 0.
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Table 1: Values of r3,1(v, p1, p2) for p1 = 1.00, p2 = 0.99, 0.98, · · · , 0.90, and v = 2, 3, · · · , 10

(p1, p2) v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 v = 8 v = 9 v = 10
(1.00,0.99) 0.530 1.009 1.495 1.985 2.477 2.971 3.466 3.960 4.455
(1.00,0.98) 0.524 0.998 1.479 1.965 2.452 2.941 3.431 3.920 4.410
(1.00,0.97) 0.519 0.988 1.464 1.944 2.427 2.911 3.396 3.880 4.365
(1.00,0.96) 0.513 0.977 1.449 1.924 2.402 2.881 3.360 3.840 4.320
(1.00,0.95) 0.507 0.967 1.433 1.904 2.377 2.851 3.325 3.800 4.275
(1.00,0.94) 0.501 0.956 1.418 1.884 2.352 2.821 3.290 3.760 4.230
(1.00,0.93) 0.496 0.946 1.403 1.864 2.327 2.791 3.255 3.720 4.185
(1.00,0.92) 0.490 0.935 1.387 1.843 2.302 2.761 3.220 3.680 4.140
(1.00,0.91) 0.484 0.925 1.372 1.823 2.276 2.731 3.185 3.640 4.095
(1.00,0.90) 0.479 0.914 1.357 1.803 2.251 2.701 3.150 3.600 4.050

By using p1 = 1 and r2,1(v + 1; p1) = v, this equation is rewritten as follows:

(u/v)v − 2v(u/v) + 2p2(v − 1) = 0.

Furthermore, if v > 4/3, we have

r4,3(v; p3) = 3p1(v − 1) > r2,1(v + 1; p1).

The values of r4,1(v; p3) and r4,2(v; p3) are calculated and tabulated in Table 2 and Table
3, respectively.

6. Properties of An.

Now we consider the properties of An. Let p∗
n = (p∗1, p

∗
2, · · · , p∗n) satisfy

kp∗n−k ≤ (k + 1)p∗n−k−1 − p∗1 (1 ≤ k ≤ n− 2) (6.1)

and

(i+ 1)p∗i+1 ≥
i∑

j=1

p∗j (1 ≤ i ≤ n− 2). (6.2)

In (6.1), the value of p∗i for i = 2, 3, · · · , n−1 depends on p∗i−1 and p∗1. Especially, the value
of p∗2 depends on only the value of p∗1 and we have

(n− 2)p∗2 ≤ (n− 1)p∗1 − p∗1,

that is,
p∗2 ≤ p∗1.

As p∗1 ≥ p∗2 ≥ · · · ≥ p∗n−1, two cases, p∗2 = p∗1 and p∗2 ≤ p∗1, have to be considered. In both
cases, we restrict our attention to the case

(n− i)p∗i = (n− i+ 1)p∗i−1 − p∗1

for 3 ≤ i ≤ n− 1 under constraint (6.2).
In the case of p∗2 = p∗1, we have p∗3 = p∗1. Assume that p∗i−1 = p∗1 for 3 ≤ i ≤ n− 1, then

we have p∗i = p∗1. As p∗1 ≥ p∗2 ≥ · · · ≥ p∗n−1, we have, without loss of generality, p∗1 = 1, which
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Table 2: Values of r4,1(v, p1, p2, p3) for p1 = 1.00, p2 = 0.99, 0.98, · · · , 0.92, p3 = 2p2 −
1.0, 2p2 − 1.01, · · · , 2p2 − 1.04, and v = 2, 3, · · · , 10

(p1, p2, p3) v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 v = 8 v = 9 v = 10
(1.00,0.99,0.98) 0.325 0.641 0.963 1.289 1.617 1.946 2.275 2.604 2.933
(1.00,0.99,0.97) 0.322 0.634 0.953 1.276 1.601 1.927 2.253 2.578 2.904
(1.00,0.99,0.96) 0.319 0.628 0.944 1.264 1.585 1.908 2.230 2.552 2.874
(1.00,0.99,0.95) 0.315 0.622 0.935 1.251 1.569 1.888 2.208 2.526 2.845
(1.00,0.99,0.94) 0.312 0.616 0.925 1.239 1.554 1.869 2.185 2.500 2.815
(1.00,0.98,0.96) 0.319 0.628 0.944 1.263 1.584 1.907 2.229 2.552 2.874
(1.00,0.98,0.95) 0.315 0.622 0.934 1.250 1.569 1.888 2.207 2.526 2.844
(1.00,0.98,0.94) 0.312 0.615 0.925 1.238 1.553 1.869 2.184 2.500 2.815
(1.00,0.98,0.93) 0.309 0.609 0.915 1.225 1.537 1.849 2.162 2.474 2.785
(1.00,0.98,0.92) 0.305 0.603 0.906 1.213 1.521 1.830 2.139 2.448 2.756
(1.00,0.97,0.94) 0.312 0.615 0.924 1.237 1.552 1.868 2.184 2.499 2.814
(1.00,0.97,0.93) 0.309 0.609 0.915 1.225 1.536 1.849 2.161 2.473 2.785
(1.00,0.97,0.92) 0.305 0.602 0.906 1.212 1.521 1.829 2.138 2.447 2.755
(1.00,0.97,0.91) 0.302 0.596 0.896 1.200 1.505 1.810 2.116 2.421 2.726
(1.00,0.97,0.90) 0.299 0.590 0.887 1.187 1.489 1.791 2.093 2.395 2.696
(1.00,0.96,0.92) 0.305 0.602 0.905 1.212 1.520 1.829 2.138 2.447 2.755
(1.00,0.96,0.91) 0.302 0.596 0.896 1.199 1.504 1.810 2.115 2.421 2.726
(1.00,0.96,0.90) 0.299 0.590 0.886 1.186 1.488 1.790 2.093 2.394 2.696
(1.00,0.96,0.89) 0.295 0.583 0.877 1.174 1.472 1.771 2.070 2.368 2.666
(1.00,0.96,0.88) 0.292 0.577 0.867 1.161 1.456 1.752 2.047 2.342 2.637
(1.00,0.95,0.90) 0.299 0.589 0.886 1.186 1.487 1.790 2.092 2.394 2.696
(1.00,0.95,0.89) 0.295 0.583 0.876 1.173 1.472 1.771 2.069 2.368 2.666
(1.00,0.95,0.88) 0.292 0.577 0.867 1.161 1.456 1.751 2.047 2.342 2.636
(1.00,0.95,0.87) 0.289 0.570 0.858 1.148 1.440 1.732 2.024 2.316 2.607
(1.00,0.95,0.86) 0.285 0.564 0.848 1.135 1.424 1.712 2.001 2.289 2.577
(1.00,0.94,0.88) 0.292 0.576 0.867 1.160 1.455 1.751 2.046 2.341 2.636
(1.00,0.94,0.87) 0.289 0.570 0.857 1.147 1.439 1.731 2.023 2.315 2.607
(1.00,0.94,0.86) 0.285 0.564 0.848 1.135 1.423 1.712 2.001 2.289 2.577
(1.00,0.94,0.85) 0.282 0.557 0.838 1.122 1.407 1.693 1.978 2.263 2.547
(1.00,0.94,0.84) 0.279 0.551 0.829 1.109 1.391 1.673 1.955 2.236 2.518
(1.00,0.93,0.86) 0.285 0.563 0.847 1.134 1.423 1.711 2.000 2.289 2.577
(1.00,0.93,0.85) 0.282 0.557 0.838 1.122 1.407 1.692 1.977 2.262 2.547
(1.00,0.93,0.84) 0.279 0.551 0.828 1.109 1.391 1.673 1.955 2.236 2.517
(1.00,0.93,0.83) 0.275 0.544 0.819 1.096 1.375 1.653 1.932 2.210 2.488
(1.00,0.93,0.82) 0.272 0.538 0.809 1.083 1.359 1.634 1.909 2.184 2.458
(1.00,0.92,0.84) 0.279 0.551 0.828 1.108 1.390 1.672 1.954 2.236 2.517
(1.00,0.92,0.83) 0.275 0.544 0.819 1.096 1.374 1.653 1.931 2.210 2.487
(1.00,0.92,0.82) 0.272 0.538 0.809 1.083 1.358 1.633 1.909 2.183 2.458
(1.00,0.92,0.81) 0.269 0.532 0.800 1.070 1.342 1.614 1.886 2.157 2.428
(1.00,0.92,0.80) 0.266 0.525 0.790 1.058 1.326 1.594 1.863 2.131 2.398
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Table 3: Values of r4,2(v, p1, p2, p3) for p1 = 1.00, p2 = 0.99, 0.98, · · · , 0.90, and v =
2, 3, · · · , 10

(p1, p2) v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 v = 8 v = 9 v = 10
(1.00,0.99) 1.157 2.169 3.166 4.159 5.150 6.140 7.129 8.118 9.106
(1.00,0.98) 1.143 2.142 3.127 4.107 5.085 6.063 7.040 8.016 8.993
(1.00,0.97) 1.129 2.115 3.087 4.056 5.022 5.987 6.953 7.918 8.883
(1.00,0.96) 1.116 2.089 3.049 4.005 4.959 5.914 6.867 7.821 8.775
(1.00,0.95) 1.102 2.062 3.010 3.955 4.898 5.841 6.784 7.727 8.670
(1.00,0.94) 1.088 2.036 2.972 3.905 4.837 5.769 6.701 7.634 8.566
(1.00,0.93) 1.074 2.010 2.935 3.856 4.777 5.698 6.620 7.542 8.464
(1.00,0.92) 1.061 1.985 2.898 3.808 4.718 5.629 6.540 7.451 8.364
(1.00,0.91) 1.047 1.959 2.861 3.760 4.660 5.560 6.460 7.362 8.264
(1.00,0.90) 1.034 1.934 2.824 3.713 4.602 5.491 6.382 7.274 8.166

means that p∗1 = p∗2 = · · · = p∗n = 1, that is, (1, 1, · · · , 1) ∈ An. This is the undiscounted
case and the optimal strategy is obtained in Hamada [5] for the case of gamma distribution.

Now, we consider the case of p∗2 < p∗1 and

(n− i)p∗i = (n− i+ 1)p∗i−1 − p∗1

for 3 ≤ i ≤ n− 1 under constraint (6.2). As p∗1 = 1, let p∗2 = α for 0 < α < 1, then

p∗i =
(n− i+ 1)p∗i−1 − 1

n− i

for 3 ≤ i ≤ n − 1. The values of p∗2,· · · , p∗n−2 and p∗n−1 depend on α and n, and we use
p∗i,n(α) in place of p∗i for i = 2, 3, · · · , n− 1 and let p∗2,n(α) = α. Now we have

(n− j)p∗j,n(α) = (n− j + 1)p∗j−1,n(α)− 1

for 3 ≤ j ≤ n− 1. Then, add this equation side by side for 3 ≤ j ≤ i, we have

i∑
j=3

(n− j)p∗j,n(α) =
i∑

j=3

(n− j + 1)p∗j−1,n(α)− (i− 2)

for 3 ≤ i ≤ n− 1, that is,

(n− i)p∗i,n(α) = (n− 2)p∗2,n(α)− (i− 2),

which means that

p∗i,n(α) =
(n− 2)α− (i− 2)

n− i
(6.3)

for 3 ≤ i ≤ n− 1. Then,

p∗i,n(α)− p∗i,n−1(α) =
(i− 2)(1− α)

(n− i)(n− i− 1)
.

As i ≥ 3 and 0 < α < 1, p∗i,n(α) > p∗i,n−1(α) for 3 ≤ i ≤ n − 1, and by the same way, we
have

p∗i,n(α) > p∗i,n−1(α) > · · · > p∗i,i+1(α)
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Table 4: Values of n̄(α) for α = 0.99, 0.98, · · · , 0.60

α 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90
n̄(α) 101 51 35 26 21 18 16 14 13 11

α 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80
n̄(α) 11 10 9 9 8 8 7 7 7 6

α 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70
n̄(α) 6 6 6 6 5 5 5 5 5 5

α 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60
n̄(α) 5 5 5 4 4 4 4 4 4 4

and therefore

min
i+1≤k≤n

p∗i,k(α) = p∗i,i+1(α).

Since (6.3) holds for i = n− 1,

p∗n−1,n(α) = α− (n− 3)(1− α),

from which p∗n−1,n(α) > 0 means that α/(1− α) > n− 3, that is,

n < 3 +
α

1− α
.

Let n̄(α) be the largest n that satisfies n < 3 + α/(1 − α). Then, we have the following
theorem.

Theorem 6.1 For 0 < α < 1,
(i) n̄(α) ≥ 3 and

(ii) n̄(α) = m if
m− 3

m− 2
< α ≤ m− 2

m− 1
.

Proof. From the definition of n̄(α), n̄(α) ≥ 3 is trivial and we also have

m < 3 +
α

1− α
≤ m+ 1

that is

m− 3 <
α

1− α
≤ m− 2

from which

m− 3

m− 2
< α ≤ m− 2

m− 1
. �

Values of n̄(α) for α = 0.99, 0.98, · · · , 0.60 are tabulated in Table 4.
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