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Abstract In the literature, the study of preventive maintenance policies has been largely focused on ergodic
analysis where the expected economic performance measure per unit time would be optimized in a long run.
When the planning horizon τ is not large, however, the optimal preventive maintenance policy in [0, τ ]
could be significantly different from that under ergodicity. In this paper, the classical semi-Markov model
of Makabe [6] is first examined thoroughly at ergodicity, yielding many new results. Then, through the
dynamic analysis of the semi-Markov model, the asymptotic expansion of the expected reward in [0, τ ] is
obtained explicitly in an affine form. The optimal preventive maintenance policies in [0, τ ] are then compared
with the ergodic counterparts, thereby demonstrating danger of exclusive reliance on ergodic analysis when
τ is not sufficiently large.
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1. Introduction

The study of preventive maintenance policies in manufacturing dates back to late 1950’s
stemmed from the original work by Morse [9] and Barlow and Hunter [3]. In these papers,
the preventive maintenance (PM) takes place for overhauling the system as soon as the
system lifetime exceeds a prespecified time T and the system is renewed upon completion
of PM. If the system fails before T , the corrective maintenance (CM) takes place, bringing
the system back to the fresh state upon completion. The former focused on analysis of the
optimal PM policy maximizing the expected profit per unit time at ergodicity where two
different variable costs per unit time for PM and CM are involved, while the latter was
concerned with the optimal PM policy which maximizes the availability of the system at
ergodicity.

Since then, the study has been expanded in several different directions. Makabe [6]
generalized the original model of Morse [9] by additionally incorporating the fixed costs for
both PM and CM. It was shown that if the optimal PM policy T ∗ exists and the system
lifetime has an increasing hazard function ηL(x) with lim

x→∞
ηL(x) = ∞, then T ∗ is unique and

can be computed numerically. Nakagawa [10] proposed a periodic checking model where the
system is inspected periodically, making the system anew with probability q and resulting
in no effect with probability p upon completion. The inspection model was combined with
the original PM model subsequently by Nakagawa and Yasui [11] where a PM takes place
after every K inspections. This line of research has been further developed by Vaurio
[14, 15]. More recently, Bad́ıa, Berrade and Campos [1, 2] discussed certain models in which
failures could be detected through testing which might give an erroneous result. An optimal
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maintenance policy would then be how to conduct such testings so as to minimize the cost
per unit time for an infinite time span.

All of the above papers are restricted to ergodic analysis. A rare exception dealing with
finite horizon optimization is an age reduction approach proposed by Dedopoulos and Smeers
[5] which was subsequently generalized by Samrout, Châtelet, Kouta and Chebbo [12]. The
thrust of the age reduction model can be found in that PM activities do not necessarily
result in bringing the system back to the fresh state but make the system younger to the
extent determined by the level of PM quality. The optimal PM policy problem is then to
determine when to implement PM activities at what quality. While these papers addressed
themselves to find the optimal PM policy within a finite planning horizon, all system failures
were assumed to be minimal, enabling one to restart the system instantaneously with the
same system state at the time of failure. Because of this limitation, the ergodic analysis is
totally irrelevant to the age reduction model.

To the best knowledge of the authors, there has been no research available in the lit-
erature concerning how to assess the danger of exclusive reliance on ergodic analysis for a
class of PM policies, where the results of ergodic analysis for one model should be compared
with the results of dynamic analysis for the same model. The purpose of this paper is to fill
this gap by analyzing the classical semi-Markov model of Makabe [6] dynamically as well
as at ergodicity. The underlying semi-Markov model is first examined thoroughly at ergod-
icity, yielding many new results. Then, through the dynamic analysis of the semi-Markov
model, the asymptotic expansion of the expected reward in [0, τ ] is obtained explicitly in an
affine form. The optimal preventive maintenance policies in [0, τ ] are then compared with
the ergodic counterparts, thereby demonstrating the danger of exclusive reliance on ergodic
analysis when τ is not sufficiently large.

The structure of this paper is as follows. The classical semi-Markov model of Makabe
[6] is introduced in Section 2. Dynamic analysis of the model is discussed in Section 3 by
examining the trivariate process [N(t), X(t), Z(t)] where, at time t, N(t) describes the state
of the semi-Markov process, X(t) represents the time spent in the current state since the
last transition into it, and Z(t) expresses the cumulative reward. The asymptotic expansion
of E[Z(t)] as t → ∞ is obtained explicitly in an affine form. Section 4 is dedicated to
ergodic analysis, yielding many new results. In particular, sufficient conditions are given
for the existence of the ergodic optimal PM policy in terms of hazard rate properties of
system lifetimes. In Section 5, non-ergodic optimal PM policy is introduced based on the
asymptotic expansion of E[Z(t)] obtained in Section 3. Numerical results are presented
for demonstrating the danger of exclusive reliance on ergodic analysis when the planning
horizon is not sufficiently large. Finally, some concluding remarks are given in Section 6.

2. Model Description

We consider a production system generating the profit of p per unit time while it is
working. The system lifetime XL, which is the time until failure since its fresh start, is
assumed to be an absolutely continuous positive random variable with p.d.f. (probability
density function) aL(x). The associated distribution function, the survival function, and
the hazard rate function are denoted by

⎧⎪⎪⎨
⎪⎪⎩

AL(x) = P [XL ≤ x] =
∫ x

0
aL(y)dy ;

ĀL(x) = P [XL > x] =
∫ ∞

x
aL(y)dy = 1 − AL(x) ;

ηL(x) =
aL(x)

ĀL(x)
= − d

dx
log ĀL(x) .

(2.1)
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If the system fails before T , CM takes place where the CM time (or the repair time) XR

is assumed to be an absolutely continuous positive random variable with p.d.f. aR(x). We
define AR(x), ĀR(x) and ηR(x) similarly to (2.1). CM requires the fixed cost cR for each
CM and the variable cost vR per unit time under CM.

Throughout the paper, we define PM to mean that the system is overhauled when the
system lifetime exceeds a prespecified level T . The PM time XM , which is the time under
overhaul, is also assumed to be an absolutely continuous positive random variable with
aM(x), AM(x), ĀM(x) and ηM(x) defined similarly to (2.1). The cost structure of PM is
in parallel with that of CM, having the fixed cost cM for each PM and the variable cost
vM per unit time under PM. We assume that all random variables involved are mutually
independent.

It is natural to assume that CM upon failure is “more costly” than PM, where the
term “more costly” is interpreted in the following manner. Let the moments of the random
variables XL, XR and XM for k = 1, 2, · · · be denoted by

μL:k
def
=

∫ ∞

0

xkaL(x)dx ; (2.2)

μR:k
def
=

∫ ∞

0

xkaR(x)dx ; (2.3)

μM :k
def
=

∫ ∞

0

xkaM(x)dx . (2.4)

The expected total cost ĈR for each CM and the expected total cost ĈM for each PM are
then given by

ĈR
def
= cR + vRμR:1 ; ĈM

def
= cM + vMμM :1 . (2.5)

We assume that the expected CM time is larger than the expected PM time and CM upon
failure is “more costly” than PM in that the expected total cost per unit time under CM is
larger than that under PM. More specifically, throughout the paper, it is assumed that

μR:1 > μM :1 and udiff =
ĈR

μR:1

− ĈM

μM :1

> 0 . (2.6)

As we will see, it is also useful to introduce lR and lM representing the expected actual
total cost plus the expected opportunity cost for each CM and each PM respectively, and
their difference. Formally, we define

lR
def
= ĈR + pμR:1 ; lM

def
= ĈM + pμM :1 ; ldiff

def
= lR − lM . (2.7)

Concerning ldiff , the following proposition holds.

Proposition 2.1 Under the assumption (2.6), one has ldiff > 0 .

Proof. We note that

ldiff

μR:1μM :1
=

ĈR

μR:1μM :1
+

p

μM :1
− ĈM

μR:1μM :1
− p

μR:1
.
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Since μR:1 > μM :1 > 0, by replacing μR:1 by μM :1 in the denominators of the third and the
fourth terms on the right hand side of the above equation, one finds that

ldiff

μR:1μM :1
>

ĈR

μR:1μM :1
− ĈM

μ2
M :1

=
1

μM :1
udiff ,

and the proposition follows since udiff > 0. �

Let {N(t) : t ≥ 0} be a stochastic process defined on N = {0, 1, 2} describing the state
of the system at time t, where

N(t) =

⎧⎨
⎩

0 if the system is under CM at time t ;
1 if the system is working at time t ;
2 if the system is under PM at time t .

(2.8)

The dwell time of the system in state 1, denoted by XW , is then given by

XW = min{XL, T}. (2.9)

For the time being, we assume that T is also an absolutely continuous positive random
variable, having aT (x), AT (x), ĀT (x) and ηT (x) defined similarly to (2.1). The case of T
being constant can be treated by choosing an appropriate sequence of absolutely continuous
distributions which would converge in distribution to the desired constant as we will see.
For XW , we define aW (x), AW (x), ĀW (x) and ηW (x) similarly to (2.1). From (2.9), it can
be readily seen that,

⎧⎨
⎩

ĀW (x) = ĀL(x)ĀT (x) ;
ηW (x) = ηL(x) + ηT (x) ;
aW (x) = ĀW (x) {ηL(x) + ηT (x)} .

(2.10)

It then follows that {N(t) : t ≥ 0} is a semi-Markov process on N governed by the matrix
p.d.f. a(x) given by

a(x) =

⎡
⎣ 0 aR(x) 0

ĀW (x)ηL(x) 0 ĀW (x)ηT (x)
0 aM(x) 0

⎤
⎦

=

⎡
⎣ 0 aR(x) 0

ĀT (x)aL(x) 0 ĀL(x)aT (x)
0 aM (x) 0

⎤
⎦ . (2.11)

The state transition diagram of {N(t) : t ≥ 0} is depicted in Figure 1, where X(t) is the
age process of the semi-Markov process describing the elapsed time at time t since the last
transition into the current state.
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Figure 1: The state transition diagram of N(t)

It should be noted that N(t) itself is not Markov, but the bivariate process [N(t), X(t)]
is Markov. Throughout the paper, we assume that the system is fresh and working at time
t = 0 with X(0) = 0.

Let Mij(t) be the number of transitions from state i to state j in the time interval [0, t).
Then the reward process Z(t) is defined by

Z(t)
def
=

∫ t

0

ρ(N(τ))dτ +
∑
i∈N

∑
j∈N

Mij(t)∑
m=1

Dij:m (2.12)

where ρ : N → R is the reward rate function and Dij:m is the cost of the m-th transition
from state i to state j for m = 1, 2, · · · , Mij(t). In our model, the reward process Z(t) grows
continuously with rate ρ(i) when N(t) = i, where

ρ(i) =

⎧⎪⎨
⎪⎩
−vR if i = 0 ;

p if i = 1 ;

−vM if i = 2 .

(2.13)

The transition cost Dij:m is specified by

Dij:m =

⎧⎪⎨
⎪⎩
−cR if i = 1, j = 0 ;

−cM if i = 1, j = 2 ;

0 else .

(2.14)

A sample path of Z(t) is depicted in Figure 2.

Z(t)

t

+p +p

+p−vM
−vR

−cM
−cR

N(t)

t
0

1

2

Figure 2: A sample path of Z(t)
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3. Dynamic Analysis of [N(t), X(t), Z(t)]

The purpose of this section is to analyze the trivariate process [N(t), X(t), Z(t)] defined
on N ×R+ ×R, yielding the matrix trivariate Laplace transform with respect to t, x and z
explicitly. Here, R+ is the set of nonnegative real numbers and R is the set of real numbers.
For i, j ∈ N , we first define

Fij(x, z, t)
def
= P[N(t) = j, X(t) ≤ x, Z(t) ≤ z|N(0) = i, X(0) = 0] . (3.1)

Let δ(t) be the delta function defined as the unit operator for convolution, i.e. g(t) =∫ ∞
0

δ(t − x)g(x)dx for an arbitrary function g(t) integrable on [0,∞). Exploiting the delta
function whenever necessary, the generalized joint p.d.f. can be written as

fij(x, z, t)
def
=

∂2

∂x∂z
Fij(x, z, t) . (3.2)

In matrix form, the corresponding trivariate Laplace transform with respect to t, x and z
is denoted by

ˆ̂
ϕ̂(v, w, s)

def
=

∫ ∞

0

dt e−st

∫ ∞

−∞

∫ ∞

0

e−vx−wzF (dx, dz, t) , (3.3)

where Re(s) > 0, Re(v) > 0 and w = eiθ (θ ∈ R).
For a(x) given in (2.11), we define

α(s) =

∫ ∞

0

e−sxa(x)dx =

⎡
⎣ 0 αR(s) 0

α10(s) 0 α12(s)
0 αM(s) 0

⎤
⎦ , (3.4)

where

αR(s)
def
=

∫ ∞

0

e−staR(t)dt ; (3.5)

αM(s)
def
=

∫ ∞

0

e−staM(t)dt ; (3.6)

α10(s)
def
=

∫ ∞

0

e−staL(t)ĀT (t)dt ; (3.7)

α12(s)
def
=

∫ ∞

0

e−staT (t)ĀL(t)dt . (3.8)

Let g(z) be the generalized matrix function describing the fixed costs cR and cM associated

with transitions of N(t) from 1 to 0 and those from 1 to 2 respectively. Namely, g(z) can

be written as

g(z) =

⎡
⎣ δ(z) δ(z) δ(z)

δ(z + cR) δ(z) δ(z + cM)
δ(z) δ(z) δ(z)

⎤
⎦ (3.9)

with the matrix Laplace transform γ(w) =
∫ ∞
−∞ e−wzg(z)dz given by

γ(w) =

⎡
⎣ 1 1 1

ecRw 1 ecMw

1 1 1

⎤
⎦ . (3.10)
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A continuous reward process defined on a semi-Markov process has been studied exten-

sively in the literature, yielding the trivariate matrix Laplace transform
ˆ̂
ϕ̂(v, w, s) of (3.3) ,

see e.g. Theorem 2.1 of Sumita and Masuda [13]. This result is extended to incorporate a
reward process with jumps by Masuda [7, 8]. More specifically, the next theorem holds true
where the following notation is employed. For convenience we write ρ(j) = ρj.

α∗∗(w, s) = [αij(ρjw + s)γij(w)] ; (3.11)

ˆ̂
β

D
(w, s) =

[
δ{i=j}

1 − αj(ρjw + s)

ρjw + s

]
; (3.12)

ˆ̂χ
α∗∗

(w, s) =
[
I − α∗∗(w, s)

]−1
. (3.13)

Theorem 3.1 (Theorem 2.8.1 of Masuda [7])
For the trivariate stochastic process [N(t), X(t), Z(t)] with X(0) = 0 and Z(0) = 0, let
ˆ̂
ϕ̂(v, w, s) be defined as in (3.3). One then has

ˆ̂
ϕ̂(v, w, s) = ˆ̂χ

α∗∗
(w, s)

ˆ̂
β

D
(w, v + s) .

Of particular interest is the bivariate stochastic process [N(t), Z(t)] characterized by

ˆ̂ϕ
Z
(w, s)

def
=

ˆ̂
ϕ̂(0, w, s) = ˆ̂χ

α∗∗
(w, s)

ˆ̂
β

D
(w, s) . (3.14)

In what follows, we exploit the specific structure of α(s) given in (3.4) so as to evaluate
ˆ̂ϕ

Z
(w, s) explicitly. This in turn enables one to obtain

ζZ(s)
def
=

∫ ∞

0

e−stE[Z(t)]dt = −pT (0)
∂

∂w
ˆ̂ϕ

Z
(w, s)

∣∣∣∣
w=0

1 , (3.15)

where pT (0) is the initial state probability vector of N(t). A preliminary lemma is needed.
It is easy to confirm this lemma and proof is omitted.

Lemma 3.2 Let A be defined as

A
def
=

⎡
⎣ 0 b 0

a 0 d
0 c 0

⎤
⎦ .

If |ab + cd| < 1, then
[
I − A

]−1
exists and is given by

[
I − A

]−1
=

1

1 − (ab + cd)

⎡
⎣ 1 − cd b bd

a 1 d
ac c 1 − ab

⎤
⎦ .

From (3.4), (3.10) and (3.11), one sees that

α∗∗(w, s) =

⎡
⎣ 0 αR(s − vRw) 0

ecRwα10(s + pw) 0 ecM wα12(s + pw)
0 αM(s − vMw) 0

⎤
⎦ . (3.16)
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For Re(s) > 0 and w = eiθ with θ ∈ R, it can be readily seen that

|ecRwα10(s + pw)αR(s − vRw) + αM(s − vMw)ecMwα12(s + pw)| < 1 .

Hence from (3.14) and Lemma 3.2, the next theorem holds true.

Theorem 3.3

ˆ̂ϕ
Z
(w, s) =

1

1 − q(w, s)
ˆ̂ε(w, s)

ˆ̂
β

D
(w, s) ,

where
ˆ̂
β

D
(w, s) is as in (3.12) and

q(w, s) = b0(w, s)b10(w, s) + b12(w, s)b2(w, s)

with

b0(w, s) = αR(s − vRw) ;

b10(w, s) = ecRwα10(s + pw) ;

b12(w, s) = ecMwα12(s + pw) ;

b2(w, s) = αM(s − vMw) ;

and

ˆ̂ε(w, s) =

⎡
⎣ 1 − b12(w, s)b2(w, s) b0(w, s) b0(w, s)b2(w, s)

b10(w, s) q(w, s) b12(w, s)
b10(w, s)b12(w, s) b2(w, s) 1 − b10(w, s)b0(w, s)

⎤
⎦ .

In order to determine the optimal PM triggering time as a constant, we consider a
sequence of distribution functions (AT :j(t))

∞
j=1 satisfying AT :j(t) → U(t − T ) as j → ∞

where U(x) = 1 if x ≥ 0 and U(x) = 0 else. It is clear that Theorem 3.3 still holds true at
the limit. In this case, one has aT (t) = δ(t − T ) and ĀT (t) = 1 − U(t − T ) so that, from
(3.7) and (3.8),

α10(s) =

∫ T

0

e−staL(t)dt ; α12(s) = e−sT ĀL(T ) . (3.17)

We define

μ10:k
def
= (−1)k

(
d

ds

)k

α10(s)

∣∣∣∣
s=0

;

μ12:k
def
= (−1)k

(
d

ds

)k

α12(s)

∣∣∣∣
s=0

;

μ1:k
def
= μ10:k + μ12:k .

Employing (3.17) in Theorem 3.3, differentiating ˆ̂ϕ
Z
(w, s) with respect to w at w = 0,

and then exploiting the Taylor expansion of the resulting equation at s = 0, the following
asymptotic expansion of E[Z(t)] can be obtained. Proof is rather lengthy and is given in
Appendix.
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Theorem 3.4

E[Z(t)] = C1(T )t + C2(T ) + o(t) as t → ∞ ,

where

G(T ) =

∫ T

0

ĀL(x)dx + μR:1AL(T ) + μM :1ĀL(T ) ; (3.18)

C1(T ) =
p
∫ T

0
ĀL(x)dx −

{
ĈRAL(T ) + ĈM ĀL(T )

}
G(T )

; (3.19)

C2(T ) =
C1(T )C21(T ) + C22(T )

G(T )
; (3.20)

C21(T ) = −1

2

{
μL:2 + μR:2AL(T ) + μM :2ĀL(T )

}

+

∫ ∞

T

xaL(x)dx − μR:1

∫ T

0

xaL(x)dx − μM :1TĀL(T ) ; (3.21)

C22(T ) = 3p

{
1

2
μL:2 +

∫ T

0

xaL(x)dx − μL:1

}

+ĈR

∫ T

0

xaL(x)dx +
1

2

{
vRμR:2 − vMμM :2 − (ĈR − ĈM)T

}
ĀL(T ) . (3.22)

It should be noted that C1(T ) characterizes the ergodic behavior of the reward rate per
unit time, while C2(T ) dictates the speed of its convergence to ergodicity. In the subsequent
two sections, we study C1(T ) theoretically and C1(T ) + {C2(T )/τ} numerically so as to
explore the ergodic optimal PM policy T ∗ which maximizes the former and the non-ergodic
optimal PM policy T ∗∗(τ) which achieves the maximum of the latter, where τ denotes the
planning horizon. It will be shown that T ∗ could be significantly different from T ∗∗(τ),
thereby demonstrating danger of exclusive reliance on ergodic analysis.

4. Ergodic Optimal PM Policy T ∗

From Theorem 3.4, it can be readily seen that

C1(T ) = lim
t→∞

E[Z(t)]

t
. (4.1)

In other words, given a PM policy T > 0, C1(T ) is the reward rate per unit time at
ergodicity. In this section, we first establish the probabilistic interpretation of C1(T ). The
conditions for the existence of the ergodic optimal PM policy T ∗ are then investigated in
terms of distributional properties of the system lifetime XL discussed below, where

T ∗ = argmax
T≥0

{C1(T )} . (4.2)

The hazard rate function ηL(x) of the system lifetime XL given in (2.1) has the following
probabilistic interpretation:

P[XL ≤ x + Δ|XL > x] = ηL(x)Δ + o(Δ) , (4.3)
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where limΔ→0 o(Δ)/Δ = 0. Namely, for sufficiently small Δ > 0, ηL(x)Δ provides the linear
approximation of the probability that the system fails in the next Δ time units given that
it has survived until time x. Based on the above probabilistic interpretation of ηL(x), we
consider three classes of lifetime distributions of importance in reliability theory. XL is said
to belong to IFR (Increasing Failure Rate) if ηL(x) is non-decreasing in x. This means that,
the longer the system survives, the more likely the system is to fail soon. The class DFR
(Decreasing Failure Rate) is characterized by ηL(x) non-increasing in x, where the longer
the system survives, the less likely the system is to fail. XL is exponentially distributed if
and only if ηL(x) is constant. This class is denoted by EXP.

As can be seen from Figure 1, the point (1,0) is a regenerative point of the bivariate
process [N(t), X(t)]. The regenerative cycle time Xcycle(T ) is given by

Xcycle(T )
def
=

{
T + XM if XL ≥ T
XL + XR if XL < T

. (4.4)

The following proposition then holds.

Proposition 4.1
(a) Let H̄cycle(x, T ) = P[Xcycle(T ) > x]. Then

H̄cycle(x, T ) =

∫ T

0

ĀR(x − y)aL(y)dy +

∫ ∞

T

ĀM(x − T )aL(y)dy .

(b) Let G(T ) be as in (3.18). Then

E[Xcycle(T )] = G(T ) .

Proof. Using the law of total probability and then employing Bayes’ rule, the survival
function of the cycle time can be evaluated as

P[Xcycle(T ) > x] = P[Xcycle(T ) > x, XL ≤ T ] + P[Xcycle(T ) > x, XL > T ]

=

∫ ∞

0

P[XL + XR > x, XL ≤ T |XL = y]aL(y)dy

+

∫ ∞

0

P[T + XM > x, XL > T |XL = y]aL(y)dy

=

∫ T

0

ĀR(x − y)aL(y)dy +

∫ ∞

T

ĀM (x − T )aL(y)dy .

This then leads to

E[Xcycle(T )] =

∫ ∞

0

P[Xcycle(T ) > x]dx

=

∫ T

0

dy aL(y)

∫ ∞

0

ĀR(x − y)dx +

∫ ∞

T

dy aL(y)

∫ ∞

0

ĀM(x − T )dx

=

∫ T

0

dy aL(y)

{∫ 0

−y

ĀR(z1)dz1 + μR:1

}
+ ĀL(T )

{∫ 0

−T

ĀM(z2)dz2 + μM :1

}
.

Since ĀR(z1) = ĀM (z2) = 1 for z1 ≤ 0 and z2 ≤ 0, one has

E[Xcycle(T )] =

∫ T

0

y aL(y)dy + μR:1AL(T ) + TĀL(T ) + μM :1ĀL(T )

=

∫ T

0

ĀL(y)dy + μR:1AL(T ) + μM :1ĀL(T ) ,
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which is equal to G(T ) in (3.18), completing the proof. �

Let Xcycle:up(T ) be the system running time within a regenerative cycle. Then, as in
(4.4), one sees that

Xcycle:up(T )
def
=

{
T if XL ≥ T
XL if XL < T

. (4.5)

It then follows that

E[Xcycle:up(T )] =

∫ T

0

xaL(x)dx + TĀL(T ) .

Using integration by parts, this then leads to

E[Xcycle:up(T )] =

∫ T

0

ĀL(x)dx . (4.6)

The probabilistic interpretation of C1(T ) in (3.19) is now clear. The numerator consists of
the expected profit p×E[Xcycle:up(T )], the expected cost ĈR per CM with probability AL(T ),

and the expected cost ĈM per PM with probability ĀL(T ), representing the expected reward
within a regenerative cycle. Since the denominator is E[Xcycle(T )] from Proposition 4.1 (b),
C1(T ) is the expected reward rate per unit time within a regenerative cycle, which coincides
with the ergodic reward rate from (4.1) as it should be.

We next turn our attention to investigate the conditions under which the ergodic optimal
PM policy T ∗ as defined in (4.2) exists. For this purpose, we first note from (3.19) that

d

dT
C1(T ) =

ĀL(T )

{G(T )}2
ξ(T ) , (4.7)

where

ξ(T ) = lR − ldiff · ηL(T )E[Xcycle:up(T )] − ldiff ĀL(T ) − S · ηL(T ) (4.8)

and

S
def
= μR:1μM :1udiff , (4.9)

with udiff as defined in (2.6). It can be seen from (2.5), (2.7) and (4.8) that ξ(T ) = 0 at
T = T ∗ if and only if

lR
lM

− 1 = K(T ∗) ; (4.10)

K(T ) =
ηL(T )(μR:1 − μM :1) + 1

ηL(T ) {E[Xcycle:up(T )] + μM :1} − AL(T )
. (4.11)

In this regard, Makabe [6] has shown the following theorem. The set difference between two
sets A and B is denoted by A \ B = {x : x ∈ A and x �∈ B}.

Theorem 4.2 (Makabe [6])

1) If XL ∈ IFR\EXP (DFR\EXP), then K(T ) in (4.11) is decreasing (increasing).
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2) If the optimal PM policy T ∗ exists, and XL ∈ IFR\EXP and ηL(T ) → ∞ as T → ∞,
then T ∗ is unique and is decreasing in lR

lM
.

In this paper, we elaborate further concerning the ergodic optimal PM policy T ∗. In
particular, sufficient conditions are given explicitly for the existence of T ∗. Our first the-
orem characterizes the monotonicity properties of ξ(T ) in (4.8) in terms of the IFR\EXP,
DFR\EXP and EXP properties of the system lifetime XL.

Theorem 4.3 Let ξ(T ) be as in (4.8).

a) ξ(T ) is decreasing in T if and only if XL ∈ IFR\EXP.

b) ξ(T ) is increasing in T if and only if XL ∈ DFR\EXP.

c) ξ(T ) is constant if and only if XL ∈ EXP.

Proof. By differentiating ξ(T ) in (4.8) with respect to T , one finds that

d

dT
ξ(T ) = −

{
d

dT
ηL(T )

}
(ldiffE[Xcycle:up(T )] + S) .

Since ldiff > 0 from Proposition 2.1 and S > 0 from (4.9), it then follows that

XL ∈ IFR \ EXP ⇔ d

dT
ηL(T ) > 0 ⇔ d

dT
ξ(T ) < 0 ;

XL ∈ DFR \ EXP ⇔ d

dT
ηL(T ) < 0 ⇔ d

dT
ξ(T ) > 0 ;

XL ∈ EXP ⇔ d

dT
ηL(T ) = 0 ⇔ d

dT
ξ(T ) = 0 ,

completing the proof. �

Theorem 4.3 enables one to capture the functional behavior of d
dT

C1(T ) through (4.7),
which in turn leads to sufficient conditions for the existence of T ∗, as we see next. For this
purpose, the following identities play a key role.

{
ξ(0+) = lM − ηL(0+)S ;
ξ(+∞) = lR − ηL(+∞)(ldiffμL:1 + S) .

(4.12)

In what follows, T ∗ = +∞ means that the preventive maintenance should not be imple-

mented. We also note from (3.18) and (3.19) that C1(0) = − ĈM

μM:1
< 0. Accordingly, T ∗ = 0

if and only if C1(T ) < 0 for all T ≥ 0 and therefore the system should not be run at all for
this case.

Theorem 4.4 Let T ∗ be defined as in (4.2) and suppose XL ∈ IFR\EXP.

A) If ηL(+∞) < lR
ldiff μL:1+S

, then C1(T ) is increasing in T and T ∗ = +∞.

B) If ηL(0) < lM
S

and ηL(+∞) > lR
ldiff μL:1+S

, then T ∗ exists uniquely satisfying
d

dT
C1(T )

∣∣
T=T ∗ = 0.

C) If ηL(0) > lM
S

, then C1(T ) is decreasing in T and T ∗ = 0.

Proof. Theorem 4.3 states that, since XL ∈ IFR\EXP, ξ(T ) is decreasing in T . The
following three cases are then considered.
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Case A) ξ(T ) > 0 for T ≥ 0

Because of the monotonicity of ξ(T ), the above condition is equivalent to

ηL(∞) <
lR

ldiffμL:1 + S
.

Since the sign of d
dT

C1(T ) coincides with that of ξ(T ) from (4.7), one sees that C1(T ) is
increasing in T with T ∗ = +∞.

Case B) ξ(0) > 0 and ξ(+∞) < 0

The above conditions are satisfied if and only if

ηL(0) <
lM
S

and ηL(∞) >
lR

ldiffμL:1 + S
.

In this case, ξ(T ) crosses zero exactly once at T = T ∗. From (4.7), this then implies that
C1(T ) achieves the unique global maximum at T ∗.

Case C) ξ(T ) < 0 for T ≥ 0

Since ξ(T ) is decreasing, the above condition can be rewritten as

ηL(0) >
lM
S

.

Clearly, one has ξ(T ) < 0 for T ≥ 0 so that C1(T ) is strictly decreasing in T from
(4.7). Accordingly, C1(T ) achieves the unique global maximum at T ∗ = 0, completing
the proof.

�

When XL ∈ DFR\EXP, as summarized in the next theorem, either the preventive
maintenance should not be implemented or the system should not be run at all. This
theorem can be proven similarly to Theorem 4.4 and proof is omitted.

Theorem 4.5 Let T ∗ be defined as in (4.2) and suppose XL ∈ DFR\EXP.
A) If ηL(0) < lM

S
, then C1(T ) is increasing in T and T ∗ = +∞.

B) If ηL(0) > lM
S

and ηL(+∞) < lR
ldiff μL:1+S

, then T̃ exists uniquely satisfying
d

dT
C1(T )

∣∣
T=T̃

= 0. In this case, C1(T̃ ) is the global minimum of C1(T ). For the global

maximum point, T ∗ = +∞ if pμL:1−ĈR

μL:1+μR:1
≥ − ĈM

μM:1
, and T ∗ = 0 else.

C) If ηL(+∞) > lR
ldiffμL:1+S

, then C1(T ) is decreasing in T and T ∗ = 0.

For the case of XL ∈ EXP, one also sees that either the preventive maintenance should
not be implemented or the system should not be run at all. Since the underlying p.d.f. is
exponential, however, the conditions can be simplified. This theorem can be also proven
similarly to Theorem 4.4 and proof is omitted.

Theorem 4.6 Let T ∗ be defined as in (4.2) and suppose XL ∈ EXP with p.d.f. aL(x) =
θe−θx.

A) If θ ≤ lM
S

, then C1(T ) is increasing in T and T ∗ = +∞.

B) If θ > lM
S

, then C1(T ) is decreasing in T and T ∗ = 0.
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We now illustrate Theorems 4.3 and 4.4 of primary concern numerically. Let the ex-
ponential variate of mean 1/λ be denoted by E(λ). Throughout the rest of the paper, we
assume that the CM time XR and the PM time XM are given by XR = E(λR1) + E(λR2)
and XM = E(λM1) + E(λM2) where the underlying random variables are independent. The
corresponding p.d.f’s are given by

aR(x) =
λR1λR2

λR2 − λR1

(
e−λR1x − e−λR2x

)
; (4.13)

aM(x) =
λM1λM2

λM2 − λM1

(
e−λM1x − e−λM2x

)
. (4.14)

We also adopt the following parameter values.

⎧⎪⎨
⎪⎩

p = 25.0 ;

vR = 20.0 ; vM = 0.5 ;

cR = 10.0 ; cM = 5.0 .

(4.15)

In what follows, the lifetime distribution is varied so as to demonstrate Theorems 4.3 and
4.4. However, its mean is fixed at E[XL] = 16.6 throughout the rest of the paper.

Case 1 : IFR-1 for Theorem 4.4 A)

We suppose that the lifetime XL is the sum of two independent exponential variates, i.e,
XL = E(λL1) + E(λL2) so that XL ∈ IFR. The corresponding p.d.f. is then given by

aL(x) =
λL1λL2

λL2 − λL1

(
e−λL1x − e−λL2x

)
. (4.16)

For the parameters to specify XL, XR and XM , we set

⎧⎪⎨
⎪⎩

λL1 = 0.15 ; λL2 = 0.1 ;

λR1 = 0.8 ; λR2 = 0.5 ;

λM1 = 0.95 ; λM2 = 0.55 .

Accordingly, one has

ηL(∞) = 0.1 < 0.104 =
lR

ldiffμL:1 + S

so that the condition of Theorem 4.4 A) is satisfied. In this case, ξ(T ) is decreasing while
C1(T ) is increasing with T ∗ = +∞ as depicted in Figures 3 and 4.

Case 2 : IFR-2 for Theorem 4.4 B)

For demonstrating this case, we employ the Weibull distribution which is widely used in
reliability theory. More specifically, let aL(x) be given by

aL(x) = mλmxm−1e−λmxm

, m ≥ 1 , λ > 0 , (4.17)

with the hazard rate function

ηL(x) = mλmxm−1 , (4.18)
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so that XL ∈ IFR for m ≥ 1. The parameter values are set as follows:

⎧⎪⎨
⎪⎩

λ = 0.05509012454 ; m = 5 ;

λR1 = 0.6 ; λR2 = 0.1 ;

λM1 = 0.9 ; λM2 = 0.5 .

It can be seen that

ηL(0) = 0 < 0.143571429 =
lM
S

and

ηL(∞) = ∞ > 0.066459627 =
lR

ldiffμL:1 + S
,

and the conditions for Theorem 4.4 B) are satisfied. In this case, ξ(T ) is decreasing while
C1(T ) has the global maximum at T ∗ = 12.0 and C1(T

∗) = 18.9 as depicted in Figures 5
and 6.
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Case 3 : IFR-3 for Theorem 4.4 C)

In order to illustrate Theorem 4.4 C), we define the p.d.f. of XL as

aL(x)
def
=

1

λL1 − λL2

{
λL1(λL2 + c)e−(λL2+c)x − λL2(λL1 + c)e−(λL1+c)x

}
.

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Danger of Exclusive Reliance on Ergodic Analysis for PM 55

It should be noted that, under the conditions λL1 > λL2 > 0 and c > 0, one has

aL(x) =
λL1λL2e

−cx

λL1 − λL2

{(
1 +

c

λL2

)
e−λL2x −

(
1 +

c

λL1

)
e−λL1x

}

>
λL1λL2e

−cx

λL1 − λL2

{(
1 +

c

λL1

)
e−λL1x −

(
1 +

c

λL1

)
e−λL1x

}
= 0 ,

so that aL(x) is well defined and XL ∈ IFR. Let the parameters for XL, XR and XM be
given by

⎧⎪⎨
⎪⎩

λL1 = 0.02 ; λL2 = 0.01 ; c = 0.275 ;

λR1 = 0.4 ; λR2 = 0.3 ;

λM1 = 0.9 ; λM2 = 0.5 .

It can be seen that

ηL(0) = 0.275 > 0.274 =
lM
S

,

and the condition for Theorem 4.4 C) is satisfied. In this case, both C1(T ) and ξ(T ) are
decreasing with T ∗ = 0 so that the system should not be run at all. Figures 7 and 8 illustrate
these observations.
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Concerning Theorems 4.5 and 4.6 for DFR and EXP lifetime distributions respectively,
the ergodic optimal policy T ∗ is either 0 or ∞. Hence, we will not exhibit the numerical
examples here.

5. Non-ergodic Optimal PM Policy T ∗∗(τ) and Danger of Exclusive Reliance on
Ergodic Analysis

In this section, we discuss the non-ergodic optimal PM policy T ∗∗(τ) defined by

T ∗∗(τ) = argmax
T≥0

{
C1(T ) +

C2(T )

τ

}
, (5.1)

where τ denotes the planning horizon. Given τ > 0, we are interested in exploring differences
between the optimal ergodic PM policy T ∗ defined in (4.2) and the optimal non-ergodic PM
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policy T ∗∗(τ) in (5.1). For this purpose, the expected cumulative reward over the planning
horizon τ for each optimal policy is introduced as

Eerg[τ, T ∗] def
= C1(T

∗)τ ; (5.2)

Enon-erg[τ, T ∗∗(τ)]
def
= C1(T

∗∗(τ))τ + C2(T
∗∗(τ)) . (5.3)

We now demonstrate the danger of exclusive reliance on ergodic analysis using Case 2
of Section 4, where the lifetime XL has the Weibull distribution as specified in (4.17). For
this case, we recall that T ∗ = 12.0 and C1(T

∗) = 18.9 so that Eerg[τ, T ∗] is linear in τ
with slope of 18.9. Figure 9 depicts T ∗∗(τ) as a function of τ , and both Eerg[τ, T ∗] and
Enon-erg[τ, T ∗∗(τ)] are exhibited in Figure 10.

As far as the non-ergodic analysis is concerned, we observe that Enon-erg[τ, T ∗∗(τ)] < 0
for 0 ≤ τ ≤ 7.3. Accordingly, the system should not be run at all within this range and
T ∗∗(τ) = 0. For 7.3 < τ ≤ 13.5, one has T ∗∗(τ) = τ . This means that no preventive
maintenance is required when the planning horizon is within this range. For τ > 13.5,
the non-ergodic optimal PM policy T ∗∗(τ) emerges with T ∗∗(τ) < τ , which monotonically
decreases to the limit T ∗ = 12.0 as τ → ∞. One has, for example, T ∗∗(13.6) = 13.5 while
T ∗∗(50.0) = 12.3. It should be noted that the ergodic analysis ignores the fact that the
optimal PM policy could be quite different when the planning horizon τ is not sufficiently
large. Figure 11 exhibits the ratio of Eerg[τ, T ∗]/Enon-erg[τ, T ∗∗(τ)] for 7.4 ≤ τ ≤ 8.4,
where the largest value exceeds 205.7, demonstrating the danger of exclusive reliance on
ergodic analysis.
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As one of the referees pointed out, it may be more realistic to consider a mixture of
random variables for the underlying lifetime distribution since the model environment often
changes. In this regard, we consider the case that the lifetime XL has the mixture of four
independent exponential random variables given by

aL(x) =
4∑

i=1

piθie
−θix , θi, pi > 0 ,

4∑
i=1

pi = 1 , θi �= θj for i �= j . (5.4)

In this case, XL ∈ DFR so that, from Theorem 4.5, the ergodic analysis concludes that
either T ∗ = +∞ and no PM is required or T ∗ = 0 and the system should not be run at all.

For the parameters to specify XL, XR and XM , we set

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = 0.1 ; θ2 = 0.05 ;

θ3 = 0.04 ; θ4 = 0.03 ;

p1 = 0.5 ; p2 = 0.25 ;

p3 = 0.2 ; p4 = 0.05 ;

λR1 = 0.4 ; λR2 = 0.3 ;

λM1 = 0.9 ; λM2 = 0.5 .

Accordingly, one has

ηL(0) = 0.072 < 0.237 =
lM
S

so that the condition of Theorem 4.5 A) is satisfied and T ∗ = +∞.
We observe that Enon-erg[τ, T ∗∗(τ)] < 0 for 0 ≤ τ ≤ 44.9 and the system should not be

run at all in this range with T ∗∗(τ) = 0. For τ > 44.9, one has T ∗∗(τ) = τ . This implies that
the non-ergodic optimal PM policy is similar to the ergodic optimal PM policy in that no
preventive maintenance is required. This is so because XL ∈ DFR and the system becomes
more reliable as its age becomes longer. However, it still remains that the ergodic analysis
overestimates the system performance significantly, as can be seen in Figure 14. In this
sense, the danger of exclusive reliance on ergodic analysis exists even for XL ∈DFR.
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6. Conclusion

In this paper, the danger of exclusive reliance on ergodic analysis in devising optimal
PM policies is addressed. The classical semi-Markov model of Makabe [6] is first examined
thoroughly at ergodicity, yielding many new results. In particular, sufficient conditions are
given for the existence of the ergodic optimal PM policy in terms of hazard rate proper-
ties of system lifetimes. Then, dynamic analysis of the model is discussed by examining
the trivariate process [N(t), X(t), Z(t)], where N(t) is the underlying semi-Markov process
describing the state of the production system, X(t) is the associated age process, i.e. the
elapsed time at time t since the last transition into the current state, and Z(t) is the reward
process with jumps defined on [N(t), X(t)]. The asymptotic expansion of E[Z(t)] as t → ∞
is obtained explicitly in an affine form, and non-ergodic optimal PM policy is introduced
based on the asymptotic expansion. Numerical results are presented for demonstrating the
danger of exclusive reliance on ergodic analysis when the planning horizon is not sufficiently
large.
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Appendix

Proof of Theorem 3.4

Let

∂

∂w
ˆ̂ϕ

Z
(w, s)

∣∣∣∣
w=0

def
=

⎡
⎣ μ̂1:00(s) μ̂1:01(s) μ̂1:02(s)

μ̂1:10(s) μ̂1:11(s) μ̂1:12(s)
μ̂1:20(s) μ̂1:21(s) μ̂1:22(s)

⎤
⎦ .

Since we assume that the system starts from state 1, the initial probability vector is given
by pT (0) = [0, 1, 0]. From (3.15), one then has

∫ ∞

0

e−stE[Z(t)]dt = μ̂1:10(s) + μ̂1:11(s) + μ̂1:12(s) .

In order to find μ̂1:1j(s) for j = 0, 1, 2, we differentiate ˆ̂ϕ
Z
(w, s) in Theorem 3.3 with respect

to w and set w = 0, yielding

μ̂1:10(s) = − 1

{G(s)}2
{H(s)G(s) + H0(s)B(s)} ;

μ̂1:11(s) = − 1

{G(s)}2

{
k̃

′
(s)G(s) + k̃(s)B(s)

}
;

μ̂1:12(s) = − 1

{G(s)}2
{L(s)G(s) + L0(s)B(s)} ,
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where, with f
′
(x) = d

dx
f(x),

G(s) = 1 −
{
ã(s)b̃(s) + c̃(s)d̃(s)

}
;

B(s) = ã
′
(s)b̃(s) + ã(s)b̃

′
(s) + c̃

′
(s)d̃(s) + c̃(s)d̃

′
(s) ;

H(s) = ã
′
(s)h̃(s) + ã(s)h̃

′
(s) ; H0(s) = ã(s)h̃(s);

L(s) = d̃
′
(s)l̃(s) + d̃(s)l̃

′
(s) ; L0(s) = d̃(s)l̃(s) ;

ã(s) = α10(s) ; b̃(s) = αR(s) ;

c̃(s) = αM(s) ; d̃(s) = α12(s) ;

ã
′
(s) = cRα10(s) + p

d

ds
α10(s) ;

b̃
′
(s) = −vR

d

ds
αR(s) ;

c̃
′
(s) = −vM

d

ds
αM(s) ;

d̃
′
(s) = cMα12(s) + p

d

ds
α12(s);

h̃(s) =
1 − αR(s)

s
; k̃(s) =

1 − α1(s)

s
; l̃(s) =

1 − αM(s)

s
;

h̃
′
(s) =

vR

s

{(
d

ds
αR(s) +

1 − αR(s)

s

)}
;

k̃
′
(s) = −p

s

{(
d

ds
α1(s)

)
+

1 − α1(s)

s

}
;

l̃
′
(s) =

vM

s

{(
d

ds
αM(s) +

1 − αM(s)

s

)}
.

By exploiting the Taylor expansions of these functions at s = 0, one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã(s) = μ10:0 − μ10:1s + 1
2
μ10:2s

2 + o(s2) ;

b̃(s) = 1 − μR:1s + 1
2
μR:2s

2 + o(s2) ;
c̃(s) = 1 − μM :1s + 1

2
μM :2s

2 + o(s2) ;

d̃(s) = μ12:0 − μ12:1s + 1
2
μ12:2s

2 + o(s2) ;
ã

′
(s) = ǎ(0) − ǎ(1)s + 1

2
ǎ(2)s2 + o(s2) ;

b̃
′
(s) = vR

{
μR:1 − μR:2s + 1

2
μR:3s

2
}

+ o(s2) ;
c̃
′
(s) = vM

{
μM :1 − μM :2s + 1

2
μM :3s

2
}

+ o(s2) ;

d̃
′
(s) = ď(0) − ď(1)s + 1

2
ď(2)s2 + o(s2) ;

h̃(s) = μR:1 − 1
2
μR:2s + 1

6
μR:3s

2 + o(s2) ;

k̃(s) = μ1:1 − 1
2
μ1:2s + 1

6
μ1:3s

2 + o(s2) ;

l̃(s) = μM :1 − 1
2
μM :2s + 1

6
μM :3s

2 + o(s2) ;

h̃
′
(s) = −vR

{
1
2
μR:2 − 1

3
μR:3s + 1

12
μR:4s

2
}

+ o(s2) ;

k̃
′
(s) = −p

{
1
2
μ1:2 − 1

3
μ1:3s + 1

12
μ1:4s

2
}

+ o(s2) ;

l̃
′
(s) = −vM

{
1
2
μM :2 − 1

3
μM :3s + 1

12
μM :4s

2
}

+ o(s2) ,

(6.1)

where ⎧⎨
⎩

ǎ(0) = cRμ10:0 − pμ10:1 ;
ǎ(1) = cRμ10:1 + pμ10:2 ;
ǎ(2) = cRμ10:2 − pμ10:3 ,

⎧⎨
⎩

ď(0) = cMμ12:0 − pμ12:1 ;

ď(1) = cMμ12:1 + pμ12:2 ;

ď(2) = cMμ12:2 − pμ12:3 .
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Since {
aT (x) = δ(x − T );
ĀT (x) = 1 − U(x − T ),

U(x − T ) =

{
1 if x ≥ T ;
0 if x < T,

one can see that

μ10:0 = AL(T ) ; μ12:0 = ĀL(T ) ;

μ10:1 =

∫ T

0

ĀL(x)dx − TĀL(T ) ;

μ12:1 = TĀL(T ) ; μ1:1 = μ10:1 + μ12:1 .

From (6.1), it then leads to

∫ ∞

0

e−stE[Z(t)]dt =
1

s2
C1(T ) +

1

s
C2(T ) + o

(
1

s2

)
.

The theorem now follows by inverting the above equation into the real domain. �

Ushio Sumita
University of Tsukuba
1-1-1 Tennoudai Tsukuba
Ibaraki 305-8573, Japan
E-mail: sumita@sk.tsukuba.ac.jp

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.


