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Abstract In Data Envelopment Analysis (DEA) many optimal weights (multipliers) for inputs and outputs
may become zeros. This means that corresponding inputs or outputs are neglected. To improve this
shortcoming the assurance region methods which have bounds on the ratios of weights have been proposed.
Deciding bounds depends on the data, and in some cases it requires judgments from experts. However, it
is generally a difficult task to put their judgments into the quantitative bounds. We propose new methods
by which the bounds are derived easily from limited information, i.e., partial ranking data. The methods
are applied to the evaluation of baseball players and chemical companies.
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1. Introduction

In Data Envelopment Analysis (DEA) many optimal weights (multipliers) for inputs and
outputs may become zeros because the evaluated Decision Making Units (DMU) can obtain
the efficiency score of 1 by neglecting inputs or outputs that are inferior to the inputs or
outputs of other DMUs (See Cooper [3]). This means that if inputs or outputs showing the
performances of DMUs are neglected, valuable information may consequently be lost.

To improve this shortcoming, the assurance region methods, which have bounds relating
to weights were proposed (For example, Allen [1], Beasley [2], Dyson and Thanassoukis [4],
Kornbluth [5], Roll et al.(1991) [6], Roll and Golany [7], Takamura and Tone [9], Ueda(2000)
[10], Ueda(2007) [11]). However, Allen [1] states, “No method is all-purpose and different
approaches may be appropriate in different contexts” and Dyson and Thanassoukis [4] states,
“There is no single correct process for determining numerical values of bounds”.

We agree with these opinions and several researchers have proposed various methods
of determining bounds. To determine bounds on weights, Dyson and Thanassoukis [4]
discusses the use of regression analysis, Ueda(2000) [10] and Ueda(2007) [11]discuss the
use of canonical correlation analysis, and to set upper and lower bounds on weights in the
“bounded” formulation, Roll et al.(1991) [6] and Roll and Golany [7] use weights which
were obtained from unbounded runs of DEA. Beasley [2] and Kornbluth [5] suggest the
setting of bounds based on expert judgments, and Takamura and Tone [9] is a concrete
realization of them. Takamura and Tone [9] proposed a method that decides bounds by
utilizing the judgments of people who know well the characteristics of the evaluated objects.
Quantification of bounds is accomplished by Saaty’s Analytic Hierarchy Process (AHP)
(Saaty [8]) based on paired comparison results, but when the number of objects is M ,
M(M − 1)/2 comparisons are needed and comparisons between unimportant objects are
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difficult in general. We can take fewer comparisons for rank order data than for paired
comparison data and if ranking among unimportant objects can be avoided, ranking becomes
easier.

In this paper we discuss cases where more important m (< M) objects than others are
ranked and propose a method which does not use the ranking of all objects and trans-
forms the ranking data into positive real numbers. The proposed method is applied to the
evaluation of batters in Nippon Professional Baseball and chemical companies.

2. Derivation of Importance Scores and Bounds on Ratios of Weights

We would like to know importance of M objects and we ask N persons to rank them. How-
ever, ordering all objects, especially ranking among unimportant objects, may be difficult.
More important m (< M) objects than others are ranked. We give score t1 for the most
favorite object, t2 for the second favorite object,..., tm for the m-th favorite object, and tm+1

for non-selected objects. Variant rankings are usually obtained from person to person. Let
a score of person i and object j be eij. If personi answers object 2 as the most favorite
object and object 5 as the second favorite object, object 2 is given score t1, that is, ei2= t1,
and object 5 is given score t2, that is, ei5 = t2 (See Table 1). Because we would like to know
ratios among ti, let tm+1=1 and log ti is discussed as it becomes familiar with mean and
variance. Differentiation among objects is realized through Maximization of the Variance
Between Objects (MVBO), that is, the following formulation, MVBO1.

Table 1: Ranking data (a)

rank1 rank2 rank3 rank4 rank5
person1 2 5 1 10 7
person2 2 1 5 10 3

Scoring image (b)

person1

object 1 object 2 object 3 object 4 object 5
e11 = t3 e12=t1 e13 = t6 e14 = t6 e15=t2

object 6 object 7 object 8 object 9 object 10
e16 = t6 e17 = t5 e18 = t6 e19 = t6 e1,10 = t4

person2

object 1 object 2 object 3 object 4 object 5
e21 = t2 e22 = t1 e23 = t5 e24 = t6 e25 = t3
object 6 object 7 object 8 object 9 object 10
e26 = t6 e27 = t6 e28 = t6 e29 = t6 e2,10 = t4

(MVBO1)

maximize
M∑

j=1

(µj − µ)2 (1)

subject to
M∑

j=1

N∑
i=1

{(log eij) − µ}2/(MN) = V : constant (2)

t1 ≥ t2 ≥ · · · ≥ tm+1 = 1 (3)

where

µ =
M∑

j=1

N∑
i=1

(log eij)/(MN) ; µj =
N∑

i=1

(log eij)/N. (4)
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In MVBO1 some ths may become a same value, but it means that we cannot make the
best use of ranking among objects. For example, if th = th+1, discrimination of the h-th
faviorite and (h+1)-th favorite objects comes to nothing. Therefore the following constraint
is added.

log(th) − log(th+1) ≥ C ≥ 0. (5)

Also the objective function is changed into

max
M∑

j=1

(µj − µ)2 + C2. (6)

If ths are decided, we obtain values of eij. Thus, we use these values of eij in order to decide
bounds on ratios of multipliers (weights) for inputs or outputs (objects) in DEA as follows.

[Derivation of bounds] The following is the same procedure as Takamura and Tone [9].
(1) Obtain the following quantities.

Ljk = min
i

eik/eij; Ujk = max
i

eik/eij (7)

(2) Let constraints on a ratio uk/uj of weights for k-th object and j-th object be

Ljk ≤ uk/uj ≤ Ujk. (8)

3. Evaluation of Baseball Players

In order to concrete our discussion our method is applied to evaluation of baseball players,
especially 115 batters over 220 times at bat in the 2005 season. We use the following items
(M=10) as objects.

1: batting average, 2: on-base percentage, 3: rate of runs batted in,
4: slugging percentage, 5: rate of stolen bases, 6: rate of home runs,
7: batting average in scoring position, 8: rate of sacrifice batting,
9: rate of double play, 10: rate of strikeout.

These items are used as outputs of DEA, where the best value and the worst value of
each item are transformed into 1 and 0, respectively. We must note that for items 9 and
10 the largest values are transformed into 0 and the smallest values are transformed into 1.
Each DMU has single input and is set to 1.

Which items are important is different in each batting order. We asked 10 persons
(N=10) to select more important five items (m=5) than others corresponding to each batting
order. Orders of selected items are also asked. In the following Sec.3.1 the case of {m=5}
is discussed. For the purpose of comparison the case of {m <5} is also discussed in Sec.3.2.

3.1. The case of {m=5}
More important items than others are shown in Table 2 for the first batter and Table 3 for
the second batter. Important items for other batting order were also selected. From Table 2
we can see that item 2 (on-base percentage) may be the most important for the first batter.

Table 4 shows values of objective functions. Especially the second and third columns
show values for MVBO1, but except for the second batter the same values were obtained.
This means that Equation (6) which has a parameter C was not effective. Therefore we
gave some fixed values for C. As a result we propose the following formulation.

c⃝ Operations Research Society of Japan JORSJ (2009) 52-4



456 T. Ueda & H. Amatatsu

Table 2: More important items than others for the first batter

personi
important item j
most 2nd 3rd 4th 5th

1 2 5 1 10 7
2 2 1 5 10 3
3 2 10 5 1 7
4 2 1 5 10 8
5 2 1 5 10 4
6 2 10 9 1 5
7 1 2 5 10 3
8 2 1 5 10 7
9 2 10 1 5 4
10 2 1 4 3 7

Table 3: More important items than others for the second batter

personi
important item j
most 2nd 3rd 4th 5th

1 1 2 3 7 4
2 2 1 8 9 10
3 8 9 10 2 1
4 2 8 1 7 10
5 8 2 9 1 7
6 2 9 1 8 5
7 2 1 8 7 9
8 1 8 9 10 7
9 2 1 9 10 8
10 2 8 1 9 10

Table 4: Values of objective functions

batting order [1] [2] [3] [4] [5]
1 8.717 8.717 8.694 8.660 8.610
2 6.674 6.877 6.674 6.674 6.674
3 7.078 7.078 7.054 7.016 6.965
4 7.522 7.522 7.504 7.434 7.266
5 7.907 7.907 7.892 7.846 7.729
6 4.816 4.816 4.805 4.780 4.740

7,8,9 6.761 6.761 6.761 6.761 6.756
[1] Equation (1), [2] Equation (6),
[3] Equation (9), C=0.1,
[4] Equation (9), C=0.2,
[5] Equation (9), C=0.3
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(MVBO2)

max imize
M∑

j=1

(µj − µ)2 (9)

subject to
M∑

j=1

N∑
i=1

{(log eij) − µ}2/(MN) = V : constant (10)

log(th) − log(th+1) ≥ C (h = 1, 2, ..., m − 1) (11)

tm+1 = 1 (12)

When V =1 and C=0.3, the number of the cases where the left hand side of Equation (11)
is equal to C increased. This means that C=0.3 became a decisive factor for values of th.
Therefore let C=0.2.

Table 5 shows values of th, where C=0.2. Table 6 shows values of µj in the first batter
when using values of th in Table 5. Suppose that items which are detached from 0 be impor-
tant. In Table 6 items 1, 2, 5 and 10 are important. Then bounds Ljk and Ujk(k=1,2,5,10;j ̸=
k) are calculated. For example u2 = t1=25.56, u4 = t6=1 and u2/u4=25.56 as person 1 an-
swered item 2 as rank 1 and item 4 as rank 6 for the first batter. Table 7 shows ratios
between item 2 and item 4 for the first batter, and L42 = 4.60 ≤ u2/u4 ≤ U42 = 25.56.
These bounds Ljk and Ujk (k=1,2,5,10;j ̸= k) were used as bounds of the following assur-
ance region method for the batter o (See Sec.6.1 in Cooper et al.[3] and Takamura and Tone
[9]). The efficiency score of the batter o is calculated by Equation (13).

Table 5: Values of th(C=0.2)

batting order t1 t2 t3 t4 t5
1 25.56 4.60 2.84 2.33 1.22
2 13.45 10.11 5.65 3.84 2.72
3 13.48 11.04 5.63 3.38 2.77
4 10.59 8.67 7.10 5.81 4.76
5 10.63 8.70 7.13 5.84 4.60
6 13.67 8.07 6.61 5.41 2.44

7,8,9 17.68 9.33 3.21 1.80 1.22

(assurance region method 1)

max imize
M=10∑
j=1

ujyjo (13)

subject to
M=10∑
j=1

ujyjg ≤ 1 (g = 1, ..., 115) (14)

Ljk ≤ uk/uj ≤ Ujk (k = 1, 2, 5, 10; j ̸= k) (15)

uj ≥ 0 (j = 1, 2, ..., [M = 10]) (16)

Table 8 shows efficient batters for each batting order. Table 9 shows efficiency scores of
22 batters efficient in the ordinary CCR model by each batting order (Normalized statistics
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Table 6: Values of µjfor the first batter

j µj j µj

1 1.465 6 0.000
2 3.070 7 0.080
3 0.124 8 0.000
4 0.144 9 0.104
5 0.883 10 0.964

Table 7: Ratios between item 2 and item 4 for the first batter

person item 2/item4 person item 2/item4
1 25.56 6 25.56
2 25.56 7 4.60
3 25.56 8 25.56
4 25.56 9 20.93
5 20.93 10 9.00

max 25.56
min 4.60

of these batters are shown in Table A1). Aoki is efficient as the first batter, but inefficient
as the fifth batter. Araki is inefficient for every batting order. Kanemoto is efficient for
every batting order. Yamazaki is only efficient as the second batter (Efficiency scores of
these batters are shown in Table 9, and normalized statistics of Aoki, Araki, Kanemoto and
Yamazaki are shown in Table 10). These facts show effectiveness of the assurance region
model. Maeda is an excellent batter, but he is efficient in the second batter only, because his
statistics are inferior to Kanemoto except for item 10 and he refers to Kanemoto in batting
orders except for the second batter. Since for the second batter item 10 was judged as more
important than item 8 by person 9, Maeda became efficient in the second batter.

Table 8: Efficient batters by each batting order

1

Aoki

3

Ibata
Akaboshi Kanemoto
Kanemoto Matsunaka

2

Aoki
4

Kanemoto
Akaboshi Matsunaka

Ibata
5

Kanemoto
Kanemoto Matsunaka

Maeda
6

Kanemoto
K.Yamazaki Matsunaka

7,8,9
Akaboshi
Kanemoto

Matsunaka was efficient for batting order 3, 4, 5 and 6. If Kanemoto and Matsunaka are
selected for the third, fourth or fifth batter, there is only one candidate, Akaboshi, for the
sixth ∼ ninth batter. Table 11 shows efficient batters when Kanemoto and Matsunaka are
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Table 9: Efficiency scores of CCR efficient batters by each batting order

1 2 3 4 5 6 7,8,9
Aoki 1 1 0.917 0.795 0.733 0.950 0.997

Akaboshi 1 1 0.868 0.760 0.723 0.932 1
Araki 0.786 0.837 0.708 0.619 0.598 0.738 0.733
Ibata 0.946 1 1 0.893 0.853 0.946 0.951

Imaoka 0.741 0.811 0.959 0.990 0.931 0.973 0.814
Iwamura 0.886 0.979 0.890 0.857 0.852 0.958 0.987
Ogata 0.828 0.968 0.846 0.804 0.780 0.916 0.956

Kanemoto 1 1 1 1 1 1 1
Kawasaki 0.671 0.971 0.721 0.626 0.590 0.768 0.802
Kinjoh 0.904 0.990 0.950 0.884 0.860 0.944 0.927
Koike 0.473 0.855 0.475 0.551 0.473 0.586 0.614

Shimizu 0.765 0.947 0.747 0.701 0.693 0.849 0.846
Johjima 0.854 0.897 0.803 0.812 0.819 0.847 0.844
Zuleta 0.903 0.914 0.952 0.946 0.941 0.958 0.917
Tsuboi 0.788 0.924 0.693 0.604 0.568 0.862 0.939

Nakamura 0.614 0.664 0.732 0.860 0.793 0.852 0.683
Nishioka 0.811 0.918 0.873 0.785 0.725 0.817 0.827

Fukudome 0.989 0.977 0.945 0.926 0.934 0.966 0.985
Maeda 0.909 1 0.898 0.893 0.896 0.936 0.909

Matsunaka 0.987 0.997 1 1 1 1 0.989
K.Yamazaki 0.433 1 0.522 0.482 0.392 0.632 0.651

LaRocca 0.826 0.903 0.824 0.852 0.855 0.885 0.855

Table 10: Normalized statistics of particular batters

item Aoki Araki Kanemoto K.Yamazaki
1 1 0.647 0.887 0.407
2 0.706 0.465 0.992 0
3 0.034 0.124 0.774 0
4 0.364 0.179 0.878 0.032
5 0.522 0.781 0.125 0.121
6 0.054 0.034 0.751 0.050
7 0.643 0.571 0.824 0.391
8 0.221 0.071 0 1
9 0.857 0.649 0.819 0.757
10 0.573 0.847 0.716 0.573

mean 0.497 0.437 0.677 0.333

neglected. Table 12 shows an example of the batting order (line-up) constructed by batters
with higher efficiency scores than others.

MVBO2 maximizes the variance between items under constant total variance. This
corresponds to maximization of the correlation ratio. Therefore the following formulation
can be taken.
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Table 11: Efficient batters when two batters are neglected

6

Aoki

6

Fukudome
Akaboshi Maeda

Ibata LaRocca
Imaoka

7,8,9

Aoki
Iwamura Akaboshi
Garcia Ibata
Kinjoh Iwamura
Zuleta Fukudome

Table 12: An ideal line-up

1 Aoki 6 Imaoka
2 Maeda

7,8,9

Akaboshi
3 Ibata Iwamura
4 Kanemoto Fukudome
5 Matunaka

(MVBO3)

max imize
M∑

j=1

(µj − µ)2/V (17)

subject to

log(ti) − log(ti+1) ≥ C (18)

tm+1 = 1 (19)

t1 : a fixed value (20)

where
M∑

j=1

N∑
i=1

{(log eij) − µ}2/(MN) = V .

t1 must be given a fixed value, otherwise even if t1 becomes infinitive, the same value
of correlation ratio can be achieved. Table 13 shows ratios ti/ti+1 (i=1, 2,.., 5), where
“MVBO2”s are results of MVBO2 shown by Equation (9)∼Equation (12), “t1=MVBO2”s
are results of MVBO3 when using values of t1 obtained by MVBO2 and “t1=15”s are results
of MVBO3 when t1 is given a fixed value, 15. A little difference is brought about by tm+1 = 1
as shown in Table 13. Both MVBO2 and MVBO3 have the same set of efficient batters.
Also when Kanemoto and Matsunaka are neglected, both methods have the same set of
efficient batters except for LaRocca in the sixth batter. From these facts we can use either
MVBO2 or MVBO3.

3.2. The cases of {m <5}
In the above discussion, persons selected more important five items (m=5) than others,
corresponding to each batting order. We suppose that the same items as Table 2 are selected
for (m<5), for example, person 1 selected item 2 as the most important item for (m =2,..,5).
Table 14 shows efficient batters at each batting order corresponding to each m. Table 15
shows efficiency scores corresponding to each m of batters who are efficient at some batting
orders, but are not efficient at other batting orders. There is no large difference between
m and m−1. For example, in the case of m=2, µj of seven items were evaluated as zero,
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Table 13: Ratiosti/ti+1 (i=1,2,..,5)

batting order C=0.2 t1/t2 t2/t3 t3/t4 t4/t5 t5/t6

1

MVBO2 5.555 1.620 1.221 1.904 1.221
t1=MVBO2 5.460 1.627 1.221 1.928 1.221

t1=15 4.113 1.473 1.221 1.659 1.221

2

MVBO2 1.331 1.790 1.470 1.414 2.717
t1=MVBO2 1.331 1.790 1.470 1.412 2.717

t1=15 1.347 1.835 1.494 1.433 2.834

3

MVBO2 1.221 1.961 1.665 1.221 2.768
t1=MVBO2 1.221 1.942 1.674 1.221 2.780

t1=15 1.221 2.006 1.719 1.221 2.917

4

MVBO2 1.221 1.221 1.221 1.221 4.757
t1=MVBO2 1.221 1.221 1.221 1.221 4.757

t1=15 1.221 1.221 1.221 1.221 6.740

5

MVBO2 1.221 1.221 1.221 1.268 4.602
t1=MVBO2 1.221 1.221 1.221 1.259 4.633

t1=15 1.221 1.221 1.221 1.364 6.036

6

MVBO2 1.694 1.221 1.221 2.217 2.440
t1=MVBO2 1.636 1.221 1.221 2.280 2.456

t1=15 1.676 1.221 1.221 2.367 2.535

7,8,9

MVBO2 1.895 2.909 1.786 1.470 1.221
t1=MVBO2 1.892 2.912 1.787 1.471 1.221

t1=15 1.821 2.739 1.726 1.426 1.221

but the close efficiency scores between m=2 and m=3 were obtained. Efficiency scores of
Aoki have large difference between m=5 and m=4, because two persons selected item 3, for
which Aoki recorded a very low value, as the fifth favorite item and at m=4, item 3 was
evaluated as t5=1 by the above-mentioned two persons. The similar results as Aoki may
occur, though they were rare cases in this study.

4. Evaluation of Chemical Companies

We evaluate a total of 25 chemical companies (See Table 16) in the year 2004 as a case
in which each DMU has two inputs besides outputs, the inputs are total assets and the
numbers of employees and the outputs are the volume of sales and incomes (These data
were derived from Electronic Disclosure for Investors’ Network (EDINET) in Japan). Since
DEA cannot handle zero in any input, each value of four items (two inputs and two outputs)
was divided by the maximum of each item; that is, this normalization is different from Sec.3
(See Table A2). We asked 20 students at Seikei University (N=20), who are not economists,
to select two items (m=2) more important than others (See Table 17). For example, student
1 selected “incomes” as the most important item and “sales” as the second important item.
When V =0.2257 (which is the total variance obtained at {t1=3, t2=2 and t3=1}) and C=0.2,
the values of ti (t1=3.0915, t2=1.2214 and t3=1) are obtained according to MVBO2. Let wk

be as follows: wk = vk(k=1,2) and wk = uk−2(k=3,4). Since µ1=0.266, µ2=0.153, µ3=0.213
and µ4=0.744, boundsLjk and Ujk(j=1,2,3; k=4) were calculated by Equation (7). These
bounds, Ljk and Ujk, were used as bounds of the following assurance region method. The
efficiency score of company o is calculated by Equation (21).

c⃝ Operations Research Society of Japan JORSJ (2009) 52-4
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Table 14: Efficient batters by each batting order and each m

m=5 m=4 m=3 m=2

1

Aoki Aoki Aoki Aoki
Akaboshi Matsunaka Matsunaka
Kanemoto Kanemoto Kanemoto Kanemoto

2

Aoki Aoki Aoki Aoki
Akaboshi Akaboshi Akaboshi Akaboshi

Ibata Ibata Ibata Ibata
Kanemoto Kanemoto Kanemoto Kanemoto

Kinjoh Kinjoh
Maeda Maeda

Matsunaka Matsunaka Matsunaka
K.Yamazaki K.Yamazaki K.Yamazaki K.Yamazaki

3

Ibata Ibata Ibata Ibata
Imaoka

Kanemoto Kanemoto Kanemoto Kanemoto
Matsunaka Matsunaka Matsunaka Matsunaka

4

Aoki
Kanemoto Kanemoto Kanemoto Kanemoto
Matsunaka Matsunaka Matsunaka Matsunaka

5

Ibata Ibata
Imaoka Imaoka

Kanemoto Kanemoto Kanemoto Kanemoto
Matsunaka Matsunaka Matsunaka Matsunaka

6

Aoki Aoki
Ibata Ibata

Kanemoto Kanemoto Kanemoto Kanemoto
Matsunaka Matsunaka Matsunaka Matsunaka

7,8,9

Aoki
Akaboshi Akaboshi Akaboshi Akaboshi

Iwamura
Kanemoto Kanemoto Kanemoto Kanemoto

Matsunaka Matsunaka

(assurance region method 2)

max imize
2∑

j=1

wj+2yjo (21)

subject to
2∑

j=1

wjxjo = 1 (22)

−
2∑

j=1

wjxjg +
2∑

j=1

wj+2yjg ≤ 0 (g = 1, 2, ..., 25) (23)

Lj4 ≤ w4/wj ≤ Uj4 (j = 1, 2, 3) (24)

wj ≥ 0 (j = 1, 2, 3, 4) (25)
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Table 15: Efficiency scores by each batting order and each m

m=5 m=4 m=3 m=2

1
Akaboshi 1 0.993 0.943 0.924

Matsunaka 0.987 0.996 1 1

2

Kinjoh 0.990 1 1 0.953
Maeda 1 1 0.998 0.933

Matsunaka 0.997 1 1 1
3 Imaoka 0.959 0.964 0.993 1
4 Aoki 0.795 0.943 0.987 1

5
Ibata 0.853 0.893 1 1

Imaoka 0.931 1 1 0.990

6
Aoki 0.950 0.946 1 1
Ibata 0.946 0.930 1 1

7,8,9

Aoki 0.997 0.996 0.995 1
Iwamura 0.987 0.988 0.988 1

Matsunaka 0.989 0.995 1 1

Table 16: DMU numbers and names of chemical companies

DMU number name of company DMU number name of company
1 Asahi Chemical 14 Dainippon Ink
2 UBE Industries 15 Denka
3 Kao Corporation 16 Tosoh
4 Kaneka 17 Toyo Ink
5 Kyowa Hakko 18 Tokuyama
6 JSR 19 Zeon
7 Shiseido 20 Hitachi Chemical
8 Showa Denko 21 Fujifilm
9 Shinetsu 22 Mitsui Chemical
10 Sumitomo Chemi 23 Mitubishi Chemi
11 Sumitomo Bake 24 Mitubishi Gas
12 Sekisui-Chemi 25 Lion Corporation
13 Daisel Chemical

Table 18 shows the efficiency scores of chemical companies, where values in AR-I-C were
obtained by the above assurance region method 2. All efficiency scores except for efficient
DMU 3 are smaller than the scores in the CCR model. This shows that more severe
evaluation was conducted.

5. Conclusion

The assurance region model needs to decide bounds on the ratios of multipliers (weights) for
inputs or outputs (objects). We proposed three derivation methods through the maximum
variance between objects.

We showed the effectiveness of the assurance region model by an evaluation of batters
in baseball, which have the same input and ten outputs and an evaluation of chemical
companies, which have two inputs and two outputs. Especially, the batters were studied in
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Table 17: Importance ranking of each item for companies

Student i Assets Employee Sales Incomes
1 3 3 2 1
2 1 3 3 2
3 3 3 2 1
4 3 3 2 1
5 2 3 3 1
6 1 2 3 3
7 3 3 2 1
8 3 2 3 1
9 2 3 1 3
10 1 2 3 3
11 3 3 1 1
12 3 3 2 1
13 3 3 2 1
14 3 3 2 1
15 2 1 3 3
16 3 3 2 1
17 3 3 2 1
18 3 3 2 1
19 1 2 3 3
20 2 1 3 3

1: the most important, 2:secondly important,
3: others

detail. In the case of batters, similar results were obtained by MVBO2 and MVBO3 and the
cases of m <5 were also studied, but we did not find large differences among the different
values of m.
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Table A 1: Normalized statistics of efficient batters in the ordinal CCR model

item 1 2 3 4 5 6 7 8 9 10
Aoki 1 0.706 0.034 0.364 0.522 0.054 0.643 0.221 0.857 0.573

Akaboshi 0.813 0.773 0.095 0.259 1 0.017 0.685 0.093 0.916 0.732
Araki 0.647 0.465 0.124 0.179 0.781 0.034 0.571 0.071 0.649 0.847
Ibata 0.860 0.800 0.300 0.353 0.353 0.113 1 0.230 0.669 0.777

Imaoka 0.567 0.570 1 0.549 0.091 0.545 0.845 0.000 0.368 0.703
Iwamura 0.833 0.785 0.653 0.721 0.148 0.575 0.634 0.000 0.939 0.296
Ogata 0.747 0.734 0.406 0.613 0.053 0.512 0.630 0.033 0.922 0.728

Kanemoto 0.887 0.992 0.774 0.878 0.125 0.751 0.824 0.000 0.819 0.716
Kawasaki 0.513 0.363 0.214 0.181 0.351 0.105 0.651 0.383 0.831 0.804
Kinjoh 0.867 0.632 0.503 0.422 0.071 0.214 0.845 0.062 0.829 0.892
Koike 0.327 0.276 0.362 0.400 0.066 0.520 0.235 0.599 0.625 0.413

Shimizu 0.707 0.516 0.293 0.458 0.113 0.321 0.454 0.075 0.828 0.955
Johjima 0.767 0.738 0.440 0.727 0.072 0.613 0.529 0.000 0.222 1
Zuleta 0.833 0.810 0.771 0.958 0.073 0.979 0.643 0.000 0.489 0.327
Tsuboi 0.767 0.659 0.091 0.233 0.131 0.067 0.277 0.068 1 0.649

Nakamura 0.433 0.414 0.933 0.847 0.045 0.975 0.244 0.000 0.503 0.314
Nishioka 0.493 0.400 0.309 0.305 0.830 0.094 0.870 0.097 0.774 0.865

Fukudome 0.893 1 0.670 0.813 0.228 0.571 0.668 0.000 0.739 0.363
Maeda 0.833 0.704 0.564 0.699 0.072 0.622 0.664 0.000 0.720 0.993

Matsunaka 0.807 0.922 0.884 1 0.109 1 0.718 0.000 0.791 0.634
Yamazaki 0.407 0.000 0.000 0.032 0.121 0.050 0.391 1 0.757 0.573
LaRocca 0.727 0.668 0.776 0.730 0.091 0.708 0.500 0.000 0.496 0.871
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Table A 2: Normalized statistics of chemical companues

DMU (I)Asset (I)Employee (O)Sales (O)Incomes
Asahi Chemical 0.4257 0.3149 0.5451 0.6952
UBE Industries 0.2369 0.1464 0.2226 0.1456
Kao Corporation 0.2309 0.2531 0.3707 0.7721

Kaneka 0.1331 0.0879 0.1733 0.2547
Kyowa Hakko 0.1255 0.0788 0.1420 0.1994

JSR 0.1089 0.0577 0.1208 0.2715
Shiseido 0.2350 0.3197 0.2532 0.1883

Showa Denko 0.3164 0.1476 0.2931 0.2397
Shinetsu 0.4948 0.2400 0.3828 0.9332

Sumitomo Chemi 0.5526 0.2670 0.5129 0.7606
Sumitomo Bake 0.0851 0.1037 0.0884 0.1265
Sekisui-Chemi 0.2493 0.2248 0.3391 0.2340

Daisel Chemical 0.1386 0.0769 0.1212 0.1549
Dainippon Ink 0.3348 0.3672 0.3968 0.2787

Denka 0.1100 0.0628 0.1108 0.1349
Tosoh 0.2022 0.1209 0.2328 0.3434

Toyo Ink 0.0910 0.0815 0.0907 0.0770
Tokuyama 0.1035 0.0606 0.0940 0.0945

Zeon 0.0794 0.0368 0.0915 0.1158
Hitachi Chemical 0.1379 0.2188 0.2198 0.2847

Fujifilm 1 1 1 1
Mitsui Chemical 0.4040 0.1617 0.4857 0.4912
Mitubishi Chemi 0.6605 0.4397 0.8663 0.9121
Mitubishi Gas 0.1658 0.0585 0.1538 0.2324

Lion Corporation 0.0789 0.0756 0.1225 0.0509
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