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Abstract How to make a coordination policy between suppliers is one of key issues in Supply Chain
Management. This paper deals with a case where multiple farmers harvest and deliver agricultural fresh
products to multiple markets in proportion to each market size provided that the plants related to the fresh
products get flowering periodically like tropical fruits such as papaya. A cooperative model is formulated
in a mathematical form to obtain the optimal harvesting patterns for multiple farmers who harvest the
fresh products cooperatively to maximize the consumption level of fresh products daily used in multiple
markets. Although this model becomes a kind of mixed integer linear programming problem hard to solve in
general, this paper reduces it into a simple LP problem easy to solve, exploiting some properties of optimal
harvesting patterns analytically obtained in an individual un-cooperative model. Numerical analyses provide
optimal harvesting patterns for cooperative multiple farmers, and make it clear that the cooperation effect
depends on the delivery lead times from multiple farmers to multiple markets and the shift periods between
flowering cycles among farmers. In a two-farm, two-market model, it is also shown that the increment of
the consumption level of fresh products in the cooperative model compared with that in the individual
un-cooperative model becomes largest when the shift period between flowering cycles among two farmers is
just half a flowering cycle.

Keywords: Mathematical modeling, linear programming, supply chain management

1. Introduction

Supply chain of agricultural fresh products has the following properties which are distin-
guished from the usual industrial products: (1) Plant flowering and maturing process de-
pends on the climate and the other natural phenomena which are hardly controlled artifi-
cially. The amount of fresh products harvestable at any time depends on this natural factors.
(2) Deterioration process of fresh products starts just after harvested, and the deterioration
rate depends on the circumstances where the fresh products are dealt with. Transporta-
tion from farms to markets and carrying inventory in markets are the major causes of such
deterioration of the fresh products before consumption.

There are a lot of papers dealing with perishable products. Wee[10] classified the types
of deterioration into decay, damage, spoilage, evaporation, obsolescence, pilferage and loss
of utility (or value) of commodity in lot size modeling. Misra[5], Mak[4], Raafat et al.[6],
Yang and Wee[14, 15], Skouri and Papachristos[7] and Lin and Lin[3] discussed production-
inventory policies for perishable items. Dye et al.[2] developed a lot size model with varying
rate of deterioration. These papers assume that deterioration process is independent of
manufacturing history of each item and that the deterioration amount is proportional to the
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current amount of each item, which is suitable only to radioactive material. Deterioration
process of agricultural products does not follow this kind of deterioration but depends on
the time when it is harvested.

Cheng et al.[1], Wang[8] and Wang and Cheng[9] provided some scheduling models with
deterioration jobs caused by frequent product changes. The deterioration process is assumed
to be proportional to historical time duration, which is independent of manufacturing history
of each item.

Widodo et al.[11–13] formulated a basic model for harvesting-delivering agricultural
fresh products under periodical flowering, and derived an optimal harvesting pattern to a
single-farm, single-market model and to a single-farm, multiple-market model analytically.
In supply chain management for agricultural fresh products, it is crucial to analyze the
cooperation effect between multiple farmers, because farms are usually located in suburban
area and have several markets with different market-sizes where farmers can supply their
fresh agricultural products. If they pursue their own profit only, some markets may get
shortage in daily consumption of fresh products and excess inventory of fresh products in
some markets could cause a lot of agricultural products disposed after quick deterioration.
Recent development of transportation measures such as cheap local air freights and frequent
express truck delivery reduce the geographic distance more than ever, and each farm can
supply their fresh products to more markets. If the optimal harvesting pattern in the
multiple-market and multiple-farmer model is obtained, the coordination methods among
farmers can be proposed on the basis of the result. This kind of analysis, however, has not
been implemented yet because the model becomes too complicated to solve.

Therefore, we formulate first an individual un-cooperative farm model with multiple-
markets, and derive its optimal harvesting pattern. Using properties of this optimal har-
vesting pattern, we introduce new variables to formulate the cooperative farm model, and
reduce it into a simple, tractable linear programming problem. Some analyses are imple-
mented by solving the final LP problem, showing that the cooperation effect depends on the
combination of lead times from farms to markets and also on shift periods between flowering
cycles among multiple farms.

2. Model Conditions

We construct a periodical flowering-harvesting model of fresh agricultural products with
multiple farms and multiple markets under the following conditions:

(1) Fresh products are harvested in multiple farms, denoted by Q ≡ {1, 2, · · · , Q(= |Q|)},
and delivered to multiple markets, denoted by M ≡ {1, 2, · · · , M(= |M|)}.

(2) Flowering occurs every F periods in each farm, but the starting time of flowering in
farm q is shifted by ∆Fq from the starting time in the first farm. For simplicity, it is
assumed that ∆F1 = 0 ≤ ∆F2 ≤ ∆F3 ≤ · · · ≤ ∆FQ < F .

(3) Maturing curve of the plant in farm q is given by Pquq(i), 0 ≤ i ≤ nq, as shown in
Figure 1 where flowering occurs at period 0 and the maturing process ends at n1 = 23.
The maximum value of end periods nq, q ∈ Q, is given by n ≡ maxq∈Q nq. Each
maturing curve is quasi-concave in period i after flowering occurs, and has a peak given
by Pquq(k̂). The notation Pq stands for the maximum amount (weight × unit) of fresh
products and uq(i) denotes the normalized maturing curve.

(4) Fresh products are harvested at an amount of Xq(i) at period i in farm q, and the
sequence, Xq(i), 0 ≤ i ≤ nq, is called “harvesting pattern” and is the same for each
flowering in farm q. The harvesting pattern expresses when and how much fresh products
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Figure 1: Plant maturing curve P1u1(i)
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Figure 2: Deterioration curve f(j)

should be harvested over the maturing periods in each farm. This harvesting pattern
is repeated every F periods in each flowering cycle in farm q. The optimal harvesting
pattern, denoted by X∗

q (i), 0 ≤ i ≤ nq, q ∈ Q, is unique for each farm and usually
different from each other. All fresh products harvested at each period are immediately
shipped bound for each market directly from each farm. Letting Xqm(i) be the amount
of fresh products harvested in farm q and shipped bound for market m at period i, we
get Xq(i) =

∑
m∈M Xqm(i) and X∗

q (i) =
∑

m∈M X∗
qm(i), where X∗

qm(i) means the optimal
value of Xqm(i).

(5) Any requirement for harvesting fresh products should be met through the earliest plant
maturing as possible in each farm, called “Earliest Flowering First(EFF) Rule.” Any
demand should be satisfied through the fresh products supplied by the earliest harvest,
called “Earliest Harvest First(EHF) Rule.”

(6) Deterioration curve f(j), 0 ≤ j, as shown in Figure 2, is monotone decreasing in duration
j periods after the related fresh products are harvested, and independent of harvesting
period. The deterioration curves are the same for any fresh products harvested in any
farm.

(7) Fresh products are supplied from multiple farms for daily consumption in each market,
and the amount of fresh products consumed in market m is guaranteed to be the same
every period, called “daily consumption level,” denoted by Dm, m ∈ M, in proportion
to the relative market size γm(> 0), m ∈ M,

∑
m∈M γm = 1.

(8) Lead times Lqm, q ∈ Q, m ∈ M, for delivering fresh products from farm q to market m
are all given.

(9) Fresh products harvested at period k in farm q can be carried for more than one period
as on-hand inventory in market m at the end of period Lqm + i(k ≤ i), denoted by
sqm(i, k).

The objective is to maximize the daily consumption level to be satisfied in multiple mar-
kets every period through periodical flowering in multiple farms under the above conditions.

3. Individual Un-cooperative Farm Model

We first consider an individual un-cooperative farm model. Exploiting the results for a
single-farm, multiple-farm model with unrestricted inventory[11, 12], we can derive the fol-
lowing linear programming problem to maximize the total daily consumption level in mul-
tiple markets in proportion to each market size. In this model, farms are considered inde-
pendently without cooperation and the shift period ∆Fq in assumption (2) is not necessary
to consider any more.
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maximize
∑
q∈Q

D(q), (3.1)

subject to
Kq∑

i=Kq−F

Xq(i)

uq(i)
= Pq, q ∈ Q, (3.2)

Xq(i) =
∑

m∈M
Xqm(i), Kq − F ≤ i ≤ Kq, q ∈ Q, (3.3)

Dqm = γmD(q), m ∈ M, q ∈ Q, (3.4)

Dqm + sqm(Kq − F, Kq − F ) = {Xqm(Kq − F ) + Xqm(Kq)}f(Lqm)

+
Kq−1∑

k=Kq−F

sqm(Kq − 1, k)
f(Lqm + Kq − k)

f(Lqm + Kq − k − 1)
,

m ∈ M, q ∈ Q, (3.5)

Dqm +
i∑

k=Kq−F

sqm(i, k) = Xqm(i)f(Lqm) +
i−1∑

k=Kq−F

sqm(i − 1, k)
f(Lqm + i − k)

f(Lqm + i − k − 1)
,

Kq − F < i ≤ Kq − 1, m ∈ M, q ∈ Q, (3.6)

Xqm(k) ≥ sqm(k, k)

f(Lqm)
≥ sqm(k + 1, k)

f(Lqm + 1)
≥ · · · ≥ sqm(Kq − 1, k)

f(Lqm + Kq − k − 1)
,

Kq − F ≤ k ≤ Kq − 1, m ∈ M, q ∈ Q, (3.7)

Xq(i) ≥ 0, Xqm(i) ≥ 0, Kq − F ≤ i ≤ Kq, m ∈ M, q ∈ Q, (3.8)

sqm(j, i) ≥ 0, Kq − F ≤ i ≤ j ≤ Kq − 1, m ∈ M, q ∈ Q, (3.9)

D(q) ≥ 0, Dqm ≥ 0, m ∈ M, q ∈ Q, (3.10)

F + 1 ≤ Kq ≤ nq + F − 1, q ∈ Q. (3.11)

Maturing curve given in assumption (3) is introduced in equation (3.2), where the total
amount of fresh product harvested in each flowering cycle is restricted by Pq in farm q. The
Earliest Harvest First(EHF) Rule and the Earliest Flowering First(EFF) Rule in assumption
(5) are considered in equations (3.5) and (3.6). In equation (3.5), Xqm(Kq−F ) is the amount
of fresh product harvested at period Kq −F in the next flowering cycle, and period K in the
current flowering cycle and period Kq −F in the next flowering cycle are overlapped in this
period. The deterioration curve in assumption (6) is incorporated in equations (3.5)∼(3.7),
where sqm(i − 1, k)/f(Lqm + i − k − 1) denotes the amount of fresh products harvested at
period k in farm q and corresponding to on-hand inventory at period Lqm + i− 1 in market
m. Assumption (7) is considered in equation (3.4).

Decision variables are Xq( · ), Xqm( · ), sqm( · , · ), D(q), Dqm and Kq, where F , nq, f( · ),
Pq and uq( · ) are given constants. In this problem, we set uq(i) = ε for i = 0 and i ≥ nq

instead of setting uq(i) = 0 so that equation (3.2) does not become meaningless, where ε is
a sufficiently small positive value. The range of Kq is specified so that it becomes possible
to harvest whole fresh products at period nq − 1 for satisfying daily consumption in each
market, that is, Xq(nq − 1) = Pquq(nq − 1), and Kq − F = nq − 1(or Kq = nq + F − 1)
becomes possible. It is noticeable that since Kq is one of decision variables, the above
problem becomes an intractable mixed integer linear programming problem.

Substituting equation (3.3) into equation (3.2), and introducing new variables Pqm, we
can derive the following two-phase problem equivalent to the above.
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maximize
∑
q∈Q

D(q), (3.12)

subject to
∑

m∈M
Pqm = Pq, q ∈ Q, (3.13)

D(q) ≤ D∗
qm(Pqm)/γm, m ∈ M, q ∈ Q, (3.14)

Pqm ≥ 0, m ∈ M, q ∈ Q, (3.15)

D(q) ≥ 0, q ∈ Q, (3.16)

D∗
qm(Pqm) ≡ maximize Dqm, (3.17)

subject to
Kq∑

i=Kq−F

Xqm(i)

uq(i)
= Pqm, (3.18)

Dqm + sqm(Kq − F, Kq − F ) = {Xqm(Kq − F ) + Xqm(Kq)}f(Lqm)

+
Kq−1∑

k=Kq−F

sqm(Kq − 1, k)
f(Lqm + Kq − k)

f(Lqm + Kq − k − 1)
, (3.19)

Dqm +
i∑

k=Kq−F

sqm(i, k) = Xqm(i)f(Lqm)

+
i−1∑

k=Kq−F

sqm(i − 1, k)
f(Lqm + i − k)

f(Lqm + i − k − 1)
,

Kq − F < i ≤ Kq − 1, (3.20)

Xqm(k) ≥ sqm(k, k)

f(Lqm)
≥ sqm(k + 1, k)

f(Lqm + 1)
≥ · · · ≥ sqm(Kq − 1, k)

f(Lqm + Kq − k − 1)
,

Kq − F ≤ k ≤ Kq − 1, (3.21)

Xqm(i) ≥ 0, Kq − F ≤ i ≤ Kq, (3.22)

sqm(j, i) ≥ 0, Kq − F ≤ i ≤ j ≤ Kq − 1, (3.23)

Dqm ≥ 0, (3.24)

F + 1 ≤ Kq ≤ nq + F − 1. (3.25)

This problem consists of two parts: the main problem defined by equations (3.12) through
(3.17) and the subproblem defined by equations (3.17) through (3.25). The subproblem
provides an optimal harvesting pattern in farm q for market m under the maturing curve
with the maximum value Pqm specified by the main problem. The main problem finds an
optimal decomposition of P q ≡ (Pq1, Pq2, · · · , PqM) to maximize the daily consumption
level in proportion to each market size.

Widodo et al.[11, 12] derived an optimal harvesting pattern, X∗
qm(K∗

q −F +1), X∗
qm(K∗

q −
F + 2), · · ·, X∗

qm(K∗
q ), to the above subproblem as follows.

ℓ∗qm(i) ≡ arg min

{
min

0≤ℓ≤i−K∗
q +F−1

1

uq(i − ℓ)f(Lqm + ℓ)
,

min
i−K∗

q +F≤ℓ≤F−1

1

uq(i + F − ℓ)f(Lqm + ℓ)

}
,

K∗
q − F + 1 ≤ i ≤ K∗

q , (3.26)
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k∗
qm(i) ≡ i − ℓ∗qm(i) + Fδ(K∗

q − F + 1 − i + ℓ∗qm(i)), K∗
q − F + 1 ≤ i ≤ K∗

q , (3.27)

δ(x) = 1, if x > 0; 0, otherwise,

I1
qm(ℓ) ≡

{
k∗

qm(i)

∣∣∣ ℓ∗qm(i) = ℓ, K∗
q − F + 1 ≤ i ≤ K∗

q

}
, 0 ≤ ℓ ≤ F − 1, (3.28)

I2
qm(i) ≡

{
ℓ∗qm(j)

∣∣∣ k∗
qm(j) = i, K∗

q − F + 1 ≤ j ≤ K∗
q

}
,

K∗
q − F + 1 ≤ i ≤ K∗

q , (3.29)

D∗
qm(Pqm) ≡ Pqmβqm, (3.30)

βqm ≡


F−1∑
ℓ=0

1

f(Lqm + ℓ)

∑
i∈I1

qm(ℓ)

1

uq(i)


−1

, (3.31)

X∗
qm(i) ≡

∑
ℓ∈I2

qm(i)

D∗
qm

f(Lqm + ℓ)
, K∗

q − F + 1 ≤ i ≤ K∗
q , (3.32)

where K∗
q is obtained by letting uq(K

∗
q −F + 1), uq(K

∗
q −F + 2), · · ·, uq(K

∗
q ) be the largest

F values from among uq(i), 0 < i < nq, for farm q. In equation (3.26), the notation ℓ
denotes how long the fresh products is carried as on-hand inventory in market m to satisfy
demand at period Lqm + i. When ℓ exceeds i − (K∗

q − F + 1), daily consumption at period
Lqm + i corresponding to the current flowering should be satisfied by some harvest in the
previous flowering. In other words, some harvest in the current flowering satisfies a part
of daily consumption corresponding to the next flowering. In this meaning, the range of
[K∗

q − F + 1, K∗
q ] denotes the range within which an optimal harvesting pattern for farm

q should be determined. The optimal harvesting pattern in farm q is repeated such as
X∗

qm(K∗
q −F +1), X∗

qm(K∗
q −F +2), · · · , X∗

qm(K∗
q ), X∗

qm(K∗
q −F +1), X∗

qm(K∗
q −F +2), · · ·,

and is independent of the optimal harvesting pattern in the other farm. Each optimal
harvesting pattern provides the part of an optimal daily consumption level in multiple
markets, D∗

qm, m ∈ M, which composes the total optimal daily consumption level in each
market, that is, D∗

m =
∑

q∈Q D∗
qm.

Since the main problem is additive, we can solve it by maximizing D(q) subject to the
related constraints with respect to farm q independently. Substituting equation (3.30) into
equations (3.13) and (3.14), we get D(q)

∑
m∈M γm/βqm ≤ Pq and the optimal solution to

the main problem as follows.

D∗
(q) ≡ Pq

{ ∑
m∈M

γm

βqm

}−1

, q ∈ Q, (3.33)

P ∗
qm ≡

γmD∗
(q)

βqm

, m ∈ M, q ∈ Q. (3.34)

Consequently, we can reduce the original problem defined by equations (3.1) to (3.11)
into the following problem by introducing new variables Xqm(j, i), the amount of fresh
products harvested at farm q at period i to satisfy daily consumption in market m at period
Lqm + j, i ≤ j, meaning that fresh products harvested at period i in farm q, transported
to market m with lead time Lqm and carried as on-hand inventory in the market for j − i
periods before consumption.

maximize
∑
q∈Q

D(q), (3.35)

subject to

K∗
q∑

i=K∗
q−F+1

Xqm(i)

uq(i)
= Pqm, m ∈ M, q ∈ Q, (3.36)
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m∈M

Pqm = Pq, q ∈ Q, (3.37)

Dqm = γmD(q), m ∈ M, q ∈ Q, (3.38)

Xqm(i) =
∑

ℓ∈I2
qm(i)

Xqm(i + ℓ, i), K∗
q − F + 1 ≤ i ≤ K∗

q , m ∈ M, q ∈ Q, (3.39)

Xqm(j, i) = Xqm(j, i − F ), K∗
q − F + 1 ≤ j < i ≤ K∗

q , m ∈ M, q ∈ Q, (3.40)

Dqm = Xqm(j, j − ℓqm(j))f(Lqm + ℓqm(j)),

K∗
q − F + 1 ≤ j ≤ K∗

q , m ∈ M, q ∈ Q, (3.41)

Xqm(i) ≥ 0, K∗
q − F + 1 ≤ i ≤ K∗

q , m ∈ M, q ∈ Q, (3.42)

Xqm(j, i) ≥ 0, K∗
q − F + 1 ≤ i ≤ j ≤ K∗

q , m ∈ M, q ∈ Q, (3.43)

D(q) ≥ 0, Dqm ≥ 0, Pqm ≥ 0, m ∈ M, q ∈ Q, (3.44)

0 ≤ ℓqm(j) ≤ F − 1, K∗
q − F + 1 ≤ j ≤ K∗

q , m ∈ M, q ∈ Q. (3.45)

Decision variables are Xqm( · ), Xqm( · , · ), ℓqm( · ), Pqm, D(q) and Dqm. In the above un-
cooperative model, the optimal harvesting pattern is obtained by setting ℓqm(j) = ℓ∗qm(j),
K∗

q − F + 1 ≤ j ≤ K∗
q , m ∈ M, q ∈ Q, because consumption level is maximized when

the fresh products are harvested at period k∗
qm(i)( or i − ℓ∗qm(i)), immediately transported

to market m and carried as on-hand inventory for ℓ∗qm(i) periods before consumption at
period i + Lqm in market m. If farms are cooperative to maximize the daily consumption
level in multiple markets, all these combinations of (i, ℓ∗qm(i)), K∗

q − F + 1 ≤ i ≤ K∗
q , can

be considered to find optimal harvesting patterns for all farms, but we have to determine
which pair of (i, ℓ∗qm(i)) should be selected for constructing optimal harvesting pattern.

4. Cooperative Farm Model

According to the property of the optimal solution given in equations (3.26) to (3.32) for the
individual un-cooperative farm model, it is obvious that the optimal harvesting pattern is
obtained during the duration [K∗

q −F +1, K∗
q ] for each flowering in farm q, q ∈ Q, resulting

in the optimal supply cycle of F periods in each farm. Using the similar expression to the
above model defined by equations (3.35) to (3.45), we formulate the cooperative farm model
as follows.

maximize D, (4.1)

subject to

K∗
q∑

j=K∗
q−F+1

Xqm(j)

uq(j)
= Pqm, m ∈ M, q ∈ Q, (4.2)

∑
m∈M

Pqm = Pq, q ∈ Q, (4.3)

Dm = γmD, m ∈ M, (4.4)

Xqm(j) =
F−1∑
ℓ=0

Xqm(j + ℓ, j), K∗
q − F + 1 ≤ j ≤ K∗

q , m ∈ M, q ∈ Q, (4.5)

Dm =
∑
q∈Q

F−1∑
ℓ=0

Xqm(i − Lqm − ∆Fq, i − ℓ − Lqm − ∆Fq)f(Lqm + ℓ),

K(m) − F + 1 ≤ i ≤ K(m), m ∈ M, (4.6)

Xqm(j + ℓ − τF, j − τF ) = Xqm(j + ℓ, j) for any integer τ,

K∗
q − F + 1 ≤ j ≤ K∗

q , 0 ≤ ℓ ≤ F − 1, m ∈ M, q ∈ Q, (4.7)
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Figure 3: Relationships between periods in the markets and farms

Xqm(j) ≥ 0, K∗
q − F ≤ j ≤ K∗

q , m ∈ M, q ∈ Q, (4.8)

Xqm(i − Lmq − ∆Fq, i − ℓ − Lqm − ∆Fq) ≥ 0,

K(m) − F ≤ i ≤ K(m), 0 ≤ ℓ ≤ F − 1, m ∈ M, q ∈ Q, (4.9)

D ≥ 0, Dm ≥ 0, Pqm ≥ 0, m ∈ M, q ∈ Q, (4.10)

F + 1 + L1m ≤ K(m) ≤ n + F − 1 + L1m, m ∈ M, (4.11)

where n ≡ maxq∈Q nq, the maximum value of end periods in all farms.
In this model, assumption (2) is incorporated in equation (4.6) as shown in Figure 3.

In equation (4.5), Xqm(j + ℓ, j) means the fresh products harvested at period j in farm
q is immediately transferred to market m with lead time Lqm and kept for ℓ periods as
on-hand inventory to satisfy demand at period j + Lqm + ℓ in the market. Since the origin
of period in each farm is set at the time when flowering occurs at each farm, the origin
can be different from each other if flowering occurs at different time period, as illustrated
in Figure 3. Therefore, we set the origin of period in each market as the same origin as
in Farm 1, and set K(m) = K∗

(m) ≡ K∗
1 + L1m, m ∈ M. In the above problem, K(m),
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m ∈ M, are also decision variables, but we can fix the value of K(m) arbitrarily because the
consumption pattern in each market is also the same every flowering cycle from assumption
(2), and because the consumption pattern does not depend on the end period K(m) unlike
the relationships between the harvesting pattern and its end period, K∗

q . The origin of time
period in each flowering cycle in farm q is shifted by ∆Fq from the origin in Farm 1 as shown
in Figure 3. In equation (4.6), Xqm(i − Lqm − ∆Fq, i − ℓ − Lqm − ∆Fq) denotes the fresh
products harvested at period i − ℓ − Lqm − ∆Fq in farm q is immediately transferred to
market m with lead time Lqm and kept for ℓ periods to be consumed at period i in market
m. The term f(Lqm + ℓ) in equation (4.6) means the available amount of fresh products
decreases to this fraction during the time interval of Lqm + ℓ after harvested. From the
property of optimal harvesting pattern in individual un-cooperative farm model, we can say
that the best combination of harvesting period and duration for carrying inventory is given
by equations (3.26) and (3.27), considering the maturing curve and the deterioration curve.
Therefore, we can replace equations (4.5) and (4.6) with the following equations:

Xqm(j) =
∑

ℓ∈I2
qm(j)

Xqm(j + ℓ, j), K∗
q − F + 1 ≤ j ≤ K∗

q , q ∈ Q (4.12)

Dm =
∑
q∈Q

Xqm(i − Lqm − ∆Fq, i − ℓ∗qm(i−Lqm−∆Fq) − Lqm − ∆Fq)f(Lqm + ℓ∗qm(i−Lqm−∆Fq)),

K∗
(m) − F + 1 ≤ i ≤ K∗

(m), m ∈ M, (4.13)

As illustrated in Figure 3, we introduce the following new variables ĩqm(i), m ∈ M,
q ∈ Q, to find the period in a suitable flowering cycle in farm q corresponding to period i
in market m:

ĩqm(i) ≡ i − Lqm − ∆Fq + Fñq(i − Lqm − ∆Fq), (4.14)

ñq(j) ≡ min{ ñ | K∗
q − F + 1 ≤ j + ñF, ñ is an integer.}. (4.15)

Applying equation (4.14) to equation (4.13), and introducing new variables xqm( · ), we
get

Dm =
∑
q∈Q

xqm(i), K∗
(m) − F + 1 ≤ i ≤ K∗

(m), m ∈ M, (4.16)

xqm(i) ≡ Xqm(̃iqm(i), ĩqm(i) − ℓ∗
qm(̃iqm(i))

)f(Lqm + ℓ∗
qm(̃iqm(i))

), m ∈ M, q ∈ Q. (4.17)

If ĩqm(i)−ℓ∗
qm(̃iqm(i))

< K∗
q −F +1 in equation (4.17), we have to add Fñq (̃iqm(i)−ℓ∗

qm(̃iqm(i))
)

to both arguments in Xqm(̃iqm(i), ĩqm(i)−ℓ∗
q(̃iqm(i))

), but we omit this term from this equation

for simplicity.
Substituting equations (4.12) and (4.17) into equation (3.36), we get

K∗
q∑

j=K∗
q−F+1

Xqm(j)

uq(j)
=

K∗
q∑

j=K∗
q−F+1

∑
ℓ∈I2

qm(j)

Xqm(j + ℓ, j)

uq(j)

=

K∗
(m)∑

i=K∗
(m)

−F+1

∑
ℓ∈I2

qm (̃iqm(i))

Xqm(̃iqm(i) + ℓ, ĩqm(i))

uq (̃iqm(i))

=

K∗
(m)∑

i=K∗
(m)

−F+1

Xqm(̃iqm(i), ĩqm(i) − ℓ∗
qm(̃iqm(i))

)

uq (̃iqm(i) − ℓ∗
qm(̃iqm(i))

)
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≡
K∗

(m)∑
i=K∗

(m)
−F+1

α̃qm(i)xqm(i),

α̃qm(i) ≡ 1

uq (̃iqm(i) − ℓ∗
qm(̃iqm(i))

)f(Lqm + ℓ∗
qm(̃iqm(i))

)
,

K∗
(m) − F + 1 ≤ i ≤ K∗

(m), m ∈ M. (4.18)

To avoid any confusion, we describe the relationships between ℓ∗
qm(̃iqm(i))

and I2
qm(̃iqm(i)).

The duration ℓ∗
qm(̃iqm(i))

denotes how many periods the fresh products harvested in farm q

are carried as on-hand inventory in market m before consumed at period i, that is, the
corresponding fresh products are harvested at the adjusted period ĩqm(i)−ℓ∗

qm(̃iqm(i))
in farm

q, transported to each market with lead-time Lqm and carried for ℓ∗
qm(̃iqm(i))

periods in each

market. In other words, the fresh products to be consumed at period i in the market should
be harvested at the adjusted period ĩq(i) if we do not use any inventory carrying in the
market, but ℓ∗

qm(̃iqm(i))
> 0 means that it is better to shift the harvesting period earlier by

ℓ∗
qm(̃iqm(i))

periods and to carry them for ℓ∗
qm(̃iqm(i))

periods in market m. On the other hand,

I2
qm(̃iqm(i)) stands for the set of durations of inventory holding in market m with respect

to the fresh products harvested together at the adjusted period ĩqm(i) in farm q, that is,
if I2

qm(̃iqm(i)) = {ℓ1, ℓ2}(it is possible that ℓ1 = 0), then the fresh products obtained from
multiple-harvest are transported together to market m with lead-time Lqm and some of them
are carried for ℓ1 periods and the others are carried for ℓ2 periods before consumption.

Using these equations, we can finally derive the following problem equivalent to the
original problem defined by equations (4.1) to (4.11):

maximize D, (4.19)

subject to
∑

m∈M
Pqm = Pq, q ∈ Q, (4.20)

K∗
(m)∑

i=K∗
(m)

−F+1

α̃qm(i)xqm(i) ≤ Pqm, q ∈ Q, m ∈ M, (4.21)

∑
q∈Q

xqm(i) ≥ γmD, K∗
(m) − F + 1 ≤ i ≤ K∗

(m), m ∈ M, (4.22)

D ≥ 0, Pqm ≥ 0, q ∈ Q, m ∈ M, (4.23)

xqm(i) ≥ 0, K∗
(m) − F + 1 ≤ i ≤ K∗

(m), q ∈ Q, m ∈ M. (4.24)

The decision variables are xqm( · ), Pqm and D. The above problem is very simple com-
pared to the original problem which includes integer decision variables K(m), m ∈ M, and a
lot of periodic variables Xqm( · , · ). Letting x∗

qm(i), K∗
(m)−F +1 ≤ i ≤ K∗

(m), be the optimal
solution to the above problem, we finally get the optimal harvesting pattern as

X∗
q (j) =

∑
m∈M

X∗
qm(j), K∗

q − F + 1 ≤ j ≤ K∗
q , q ∈ Q, (4.25)

X∗
qm(j) =

∑
ℓ∈I2

qm(j)

X∗
qm(j + ℓ, j), K∗

q − F + 1 ≤ j ≤ K∗
q , m ∈ M, q ∈ Q, (4.26)

Xqm(j, j − ℓ∗qm(j)) =
x∗

qm(j + Lqm + ∆Fq)

f(Lqm + ℓ∗qm(j))
, K∗

q − F + 1 ≤ j ≤ K∗
q , m ∈ M, q ∈ Q. (4.27)
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5. Numerical Analyses

We show some results of numerical analyses to evaluate the cooperation effects in terms of
the relative increment of the optimal consumption level D∗ by solving the above cooperative
farm model with two farms and two markets and by comparing the results with those in
the individual un-cooperative farm model.

Maturing curve and deterioration curve are given in Table 1 and Figures 1 and 2, where
P1 = P2 = 1000. Flowering cycle is set as F = 10, and the largest ten values of uq(i) in Table
1 are obtained at periods 11 through 19, resulting in K∗

1 = K∗
2 = 19. In a symmetric case,

the values of lead time L12 and L21 are both fixed as 3 and L11 and L22 are simultaneously
varied from 0 to 6 by a step size of one. In an asymmetric case, the values of lead time
from farm 2 to two markets are fixed as L21 = 5 and L22 = 1, and the values of lead time
from Farm 1 to two markets (L11, L12) are varied from (0,6) to (6,0) by a step size of one
on condition that L11 = 6 − L12.

Optimal values of harvesting pattern X∗
qm(j), consumption pattern x∗

qm(j) and consump-
tion level D∗ in the symmetric case for ∆F2 = 0, 1, 3 and 5 are given in Tables 2 and 3, where
the values in parentheses correspond to either the next or the previous flowering cycle. For
example, in case of ∆F2 = 0, the optimal harvesting pattern is the same for both farms such
as (0, 0, 96.7, 96.7, 96.7, 96.7, 96.7, 497.3, 0, 0) at periods 10 through 19, and this pattern is
repeated every 10 periods for the succeeding flowering cycles. X∗

11(12) = 96.7 implies that
the fresh products are harvested at period 12 in Farm 1 and immediately transferred to
market 1 with lead time L11 = 3 to satisfy the daily consumption level of 94.7 at period 15
in market 1. The difference between 96.7 and 94.7 implies the loss caused by deterioration
during transportation and carrying inventory. X∗

11(19) = 497.3 means the multiple-harvest
to satisfy the daily consumption level for 5 periods, i = 20 through 24 in market 1. The
deterioration loss for 5 periods is given by the difference between 497.3 and 94.7×5. It
should be noted that X∗

21(i) and X∗
22(i) in case of ∆F2 = 0 are replaced with X∗

21(i − ∆F2)
and X∗

22(i − ∆F2) if ∆F2 > 0 in Tables 2 and 3, since period i expresses the duration from
flowering for each farm and since the value of i in Tables 2 and 3 stands for the period value
in Farm 1. On the other hand, x∗

qm(i + L1m) in Tables 2 and 3 means that fresh products
harvested at some period earlier than or equal to period i−∆Fq in Farm q are immediately
transferred to Market m with lead time Lqm, carried for some periods(possibly zero period),
and consumed at period i + L1m(the origin of period is set at the flowering period in Farm
1), and the consumption volume of fresh products at period j in Market m is given by
x∗

1m(j) + x∗
2m(j) from Tables 2 and 3.

The values of optimal consumption level D∗ are obtained in Tables 4 and 5 for the
symmetric case and the asymmetric case, respectively. In these tables, we can find that
the value of D∗ in the un-cooperative model is the same as that in the cooperative model
with ∆F2 = 0 for L11 = L12 = L21 = L22 = 3 in Table 4 and for L11 = L21 = 5 and
L12 = L22 = 1 in Table 5. This is because both farms can not be distinguished in these
cases from a view point of each market, as shown in Table 2 with ∆F2 = 0 where the
optimal harvesting patterns are the same for both farms. The values of relative increment
ratio compared with this un-cooperative solution are given in parentheses in Tables 4 and 5
and illustrated in Figure 4. In both cases, the cooperation effect increases as the shift period
between flowering cycles in two farms increases, and becomes largest when ∆F2 = 5, just
half a flowering cycle. Excluding the special case where both farms can not be distinguished
from a view point of markets, the cooperation effect can be expected up to 1 to 4 %, which
varies in a convex style as the lead time L11 increases in both symmetric and asymmetric
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Table 1: Normalized maturing curve uq(i) and deterioration curve f(i)
i 0 1 2 3 4 5 6 7 8 9 10 11

uq(i) 0.00 0.005 0.05 0.13 0.22 0.32 0.44 0.55 0.65 0.74 0.82 0.87
f(i) 1.00 0.995 0.99 0.98 0.97 0.955 0.94 0.92 0.90 0.87 0.83 0.79

i 12 13 14 15 16 17 18 19 20 21 22 23
uq(i) 0.93 0.96 0.98 0.99 1.00 0.99 0.94 0.84 0.71 0.53 0.27 0.00
f(i) 0.74 0.69 0.63 0.56 0.47 0.385 0.28 0.15 0.00 0.00 0.00 0.00

Table 2: Values of X∗
qm(i − ∆Fq), x∗

qm(i + L1m) and D∗ (L11 = L12 = L21 = L22 = 3, ∆F1 = 0)
Period i at Farm 1 10 11 12 13 14 15 16 17 18

X∗
11(i) 0 0 96.7 96.7 96.7 96.7 96.7 497.3 0

∆F2 X∗
12(i) 0 0 0 0 0 0 0 0 0

= 0 X∗
21(i) 0 0 0 0 0 0 0 0 0

X∗
22(i) 0 0 96.7 96.7 96.7 96.7 96.7 497.3 0

x∗
11(i+3) (94.7) (94.7) 94.7 94.7 94.7 94.7 94.7 94.7 94.7

D∗ x∗
12(i+3) (0) (0) 0 0 0 0 0 0 0

=189.5 x∗
21(i+3) (0) (0) 0 0 0 0 0 0 0

x∗
22(i+3) (94.7) (94.7) 94.7 94.7 94.7 94.7 94.7 94.7 94.7

19 20 21 22 23 24 25 26 27
X∗

11(i) 0 (0) (0) (96.7) (96.7) (96.7) (96.7) (96.7) (497.3)
X∗

12(i) 0 (0) (0) (0) (0) (0) (0) (0) (0)
X∗

21(i) 0 (0) (0) (0) (0) (0) (0) (0) (0)
X∗

22(i) 0 (0) (0) (96.7) (96.7) (96.7) (96.7) (96.7) (497.3)
x∗

11(i+3) 94.7 94.7 94.7 (94.7) (94.7) (94.7) (94.7) (94.7) (94.7)
x∗

12(i+3) 0 0 0 (0) (0) (0) (0) (0) (0)
x∗

21(i+3) 0 0 0 (0) (0) (0) (0) (0) (0)
x∗

22(i+3) 94.7 94.7 94.7 (94.7) (94.7) (94.7) (94.7) (94.7) (94.7)
Period i at Farm 1 10 11 12 13 14 15 16 17 18

X∗
11(i) 0 0 97.4 97.4 97.4 97.4 97.4 0 0

∆F2 X∗
12(i) 0 0 94.9 97.4 97.4 97.4 97.4 0 0

= 1 X∗
21(i − 1) (0) 0 0 0 0 0 0 97.4 397.3

X∗
22(i − 1) (0) 0 0 0 0 0 0 97.4 399.9

x∗
11(i+3) 0 0 95.4 95.4 95.4 95.4 95.4 0 0

D∗ x∗
12(i+3) 0 0 93.0 95.4 95.4 95.4 95.4 0 0

=190.9 x∗
21(i+3) (95.4) (95.4) (0) 0 0 0 0 95.4 95.4

x∗
22(i+3) (95.4) (95.4) (2.4) 0 0 0 0 95.4 95.4

19 20 21 22 23 24 25 26 27
X∗

11(i) 0 (0) (0) (97.4) (97.4) (97.4) (97.4) (97.4) (0)
X∗

12(i) 0 (0) (0) (94.9) (97.4) (97.4) (97.4) (97.4) (0)
X∗

21(i − 1) 0 0 (0) (0) (0) (0) (0) (0) (97.4)
X∗

22(i − 1) 0 0 (0) (0) (0) (0) (0) (0) (97.4)
x∗

11(i+3) 0 0 0 (95.4) (95.4) (95.4) (95.4) (95.4) (0)
x∗

12(i+3) 0 0 0 (93.0) (95.4) (95.4) (95.4) (95.4) (0)
x∗

21(i+3) 95.4 95.4 95.4 0 (0) (0) (0) (0) (95.4)
x∗

22(i+3) 95.4 95.4 95.4 2.4 (0) (0) (0) (0) (95.4)
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Table 3: Values of X∗
qm(i − ∆Fq), x∗

qm(i + L1m) and D∗ (L11 = L12 = L21 = L22 = 3, ∆F1 = 0)
Period i at Farm 1 10 11 12 13 14 15 16 17 18

X∗
11(i) 0 0 0 98.4 98.4 98.4 98.4 98.4 0

∆F2 X∗
12(i) 0 0 0 98.4 98.4 98.4 98.4 97.9 0

= 3 X∗
21(i−3) (298.9) (0) (0) 0 0 0 0 0 98.4

X∗
22(i−3) (298.9) (0) (0) 0 0 0 0 0.5 98.4

x∗
11(i+3) 0 0 0 96.5 96.5 96.5 96.5 96.5 0

D∗ x∗
12(i+3) 0 0 0 96.5 96.5 96.5 96.5 96.0 0

=192.9 x∗
21(i+3) (96.5) (96.5) (96.5) 0 0 0 0 0 96.5

x∗
22(i+3) (96.5) (96.5) (96.5) 0 0 0 0 0.5 96.5

19 20 21 22 23 24 25 26 27
X∗

11(i) 0 (0) (0) (0) (98.4) (98.4) (98.4) (98.4) (98.4)
X∗

12(i) 0 (0) (0) (0) (98.4) (98.4) (98.4) (98.4) (97.9)
X∗

21(i−3) 98.4 298.9 0 0 (0) (0) (0) (0) (0)
X∗

22(i−3) 98.4 298.9 0 0 (0) (0) (0) (0) (0.5)
x∗

11(i+3) 0 (0) (0) (0) (96.5) (96.5) (96.5) (96.5) (96.5)
x∗

12(i+3) 0 (0) (0) (0) (96.5) (96.5) (96.5) (96.5) (96.0)
x∗

21(i+3) 96.5 96.5 96.5 96.5 (0) (0) (0) (0) (0)
x∗

22(i+3) 96.5 96.5 96.5 96.5 (0) (0) (0) (0) (0.5)
Period i at Farm 1 10 11 12 13 14 15 16 17 18

X∗
11(i) 0 0 0 0 98.8 98.8 98.8 198.6 0

∆F2 X∗
12(i) 0 0 0 0 98.8 98.8 98.8 198.6 0

= 5 X∗
21(i−5) (98.8) (98.8) (198.6) (0) (0) 0 0 0 0

X∗
22(i−5) (98.8) (98.8) (198.6) (0) (0) 0 0 0 0

x∗
11(i+3) 0 0 0 0 96.8 96.8 96.8 96.8 96.8

D∗ x∗
12(i+3) 0 0 0 0 96.8 96.8 96.8 96.8 96.8

=193.6 x∗
21(i+3) (96.8) (96.8) (96.8) (96.8) (0) 0 0 0 0

x∗
22(i+3) (96.8) (96.8) (96.8) (96.8) (0) 0 0 0 0

19 20 21 22 23 24 25 26 27
X∗

11(i) 0 (0) (0) (0) (0) (98.8) (98.8) (98.8) (198.6)
X∗

12(i) 0 (0) (0) (0) (0) (98.8) (98.8) (98.8) (198.6)
X∗

21(i−5) 98.8 98.8 98.8 198.6 0 0 (0) (0) (0)
X∗

22(i−5) 98.8 98.8 98.8 198.6 0 0 (0) (0) (0)
x∗

11(i+3) 0 (0) (0) (0) (0) (96.8) (96.8) (96.8) (96.8)
x∗

12(i+3) 0 (0) (0) (0) (0) (96.8) (96.8) (96.8) (96.8)
x∗

21(i+3) 96.8 96.8 96.8 96.8 96.8 0 (0) (0) (0)
x∗

22(i+3) 96.8 96.8 96.8 96.8 96.8 0 (0) (0) (0)

cases.

From the above results, we can provide some conjectures for multiple-farm, multiple-
market models with more than two farms and more than two markets, that is, (1) the
cooperation effect increases as the difference of peak periods among maturing curves in
multiple farms increases, and (2) the maximum effect can be obtained when the difference
becomes largest. It should be noted that to prove these conjectures exactly in multiple-
farm, multiple-market models is not easy and requires a vast simulation run because the
cooperative effect is affected by the combination of delivery lead times from farms to markets.
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Table 4: Value of D∗ (the relative value % in parenthises) with respect to
∆F2 and L11(= L22) (L12 = L21 = 3)

L11, L22 Un-Coop ∆F2 = 0 ∆F2 = 1 ∆F2 = 2
0, 0 192.4 195.4 (1.550) 195.4 (1.550) 195.4 (1.581)
1, 1 191.6 193.7 (1.101) 193.7 (1.105) 194.2 (1.369)
2, 2 190.7 191.9 (0.627) 192.2 (0.792) 193.2 (1.324)
3, 3 189.5 189.5 (0.000) 190.9 (0.740) 192.1 (1.380)
4, 4 188.2 189.5 (0.691) 189.8 (0.854) 191.0 (1.499)
5, 5 186.4 189.5 (1.652) 189.5 (1.652) 189.9 (1.851)
6, 6 184.3 189.5 (2.814) 189.5 (2.814) 189.5 (2.814)

L11, L22 Un-Coop ∆F2 = 3 ∆F2 = 4 ∆F2 = 5
0, 0 192.4 195.8 (1.791) 196.3 (2.029) 196.3 (2.031)
1, 1 191.6 194.9 (1.769) 195.3 (1.983) 195.5 (2.063)
2, 2 190.7 194.0 (1.749) 194.5 (2.017) 194.6 (2.071)
3, 3 189.5 192.9 (1.812) 193. 3(2.024) 193.6 (2.187)
4, 4 188.2 191.8 (1.934) 192.4 (2.256) 192.5 (2.310)
5, 5 186.4 190.7 (2.309) 191.2 (2.585) 191.4 (2.696)
6, 6 184.3 189.8 (2.985) 190.3 (3.259) 190.5 (3.370)

Table 5: Value of D∗ (the relative value in parentheses) with respect to
∆F2, L11 and L12 (L21 = 5, L22 = 1)

L11, L12 Un-Coop ∆F2 = 0 ∆F2 = 1 ∆F2 = 2
0, 6 187.7 194.5 (3.603) 194.5 (3.609) 194.5 (3.613)
1, 5 188.4 193.7 (2.790) 193.7 (2.790) 193.7 (2.790)
2, 4 188.9 192.7 (2.045) 192.7 (2.048) 192.8 (2.080)
3, 3 188.9 191.5 (1.365) 191.5 (1.370) 192.1 (1.645)
4, 2 188.9 190.2 (0.698) 190.7 (0.947) 191.7 (1.516)
5, 1 188.4 188.4 (0.000) 190.0 (0.846) 191.1 (1.429)
6, 0 187.7 189.2 (0.767) 189.6 (0.983) 190.7 (1.565)

L11, L12 Un-Coop ∆F2 = 3 ∆F2 = 4 ∆F2 = 5
0, 6 187.7 194.5 (3.616) 194.5 (3.618) 194.5 (3.616)
1, 5 188.4 193.7 (2.791) 193.9 (2.926) 194.2 (3.064)
2, 4 188.9 193.2 (2.296) 193.7 (2.570) 193.8 (2.627)
3, 3 188.9 192.8 (2.051) 193.3(2.299) 193.4 (2.353)
4, 2 188.9 192.5 (1.920) 193.0 (2.195) 193.1 (2.226)
5, 1 188.4 191.9 (1.873) 192.4 (2.146) 192.6 (2.252)
6, 0 187.7 191.5 (2.006) 192.0 (2.274) 192.2 (2.386)

6. Conclusions

Basic supply chain management models of agricultural fresh products under periodical flow-
ering were constructed to express un-cooperation and cooperation between farmers in math-
ematical forms. Optimal harvesting pattern to maximize the daily consumption level in
each market in proportion to its market size was derived analytically for the individual
un-cooperative farm model. Since the cooperative farm model was too complicated to solve
directly, it was converted into a simple linear programming problem by exploiting properties
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(a) Symmetric case (L12 = L21 = 3)

Figure 4: Relative increment ratio of D∗ compared with un-cooperative case
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(b) Asymmetric case (L21 = 5, L22 = 1)

of the optimal harvesting pattern in the un-cooperative model. Some numerical analyses for
a two-farm, two-market model made it clear that the effect of cooperation between farmers
became largest when the shift period between flowering cycles in two farms was just half a
flowering cycle, and that the cooperation effect also depended on the combination of delivery
lead times from farms to markets.

Some conjectures were provided by extending the results obtained from a two-farm,
two-market model to multiple-farm, multiple-market models, as long as a plant has a usual
property for its maturing curve, that is, quasi-concavity in period after periodical flowering,
which is necessary for deriving the optimal harvesting pattern. Since the effect of cooperation
among farmers depends on the combination of delivery lead times from farms to markets,
it is difficult to show these conjectures hold precisely for any cases. Once the farms and
markets are given, we can, however, find optimal harvesting patterns for all farms through
the reduced simple linear problem derived in this paper. The maturing curve used in the
numerical example is not a real curve but only a sample curve reflecting that a real maturing
curve for any plant has the similar pattern such as flowering phase, growing phase, maturing
phase and deteriorating phase. If flowering pattern of the plant is not periodical but seasonal,
the criterion function should be changed into maximization of daily consumption level during
a given interval of the related season. The optimal harvesting pattern derived by supposing
the flowering pattern be periodical can be used as a near optimal pattern for generating an
optimal harvesting pattern in seasonal flowering.
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