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Abstract This paper considers the stationary queue length and waiting time distributions in a FIFO
BMAP/GI/1 queue with heavy-tailed service times and that with heavy-tailed batch sizes. In each case,
we provide sufficient conditions under which the stationary queue length and waiting time distributions
are subexponential. Furthermore, we obtain asymptotic relationships between the tail distributions of the
stationary queue length and waiting time.
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1. Introduction

The subexponential asymptotics of the waiting time distribution has been studied exten-
sively in queues with heavy-tailed service times (or heavy-tailed equilibrium service times).
Pakes derived the subexponential asymptotic formula for the actual waiting time distribu-
tion in the stationary GI/GI/1 queue [18]. See [5] also. Asmussen et al. extended the result
in [18] to the MMPP/G/1 queue with state-dependent services [2]. Further Jelenković and
Lazar obtained the subexponential asymptotic formula for the waiting time distribution in
the Markov-modulated G/G/1 queue [10]. Takine studied the subexponential waiting time
distribution in single-server queues with multiple Markovian arrival streams [23]. Contrarily,
there are few studies on the heavy-tailed or subexponential asymptotics of the queue length
distribution. Asmussen et al. studied the tail asymptotics of the queue length distribution
in the GI/GI/1 queue, assuming that equilibrium service times are subexponential [3].

This paper considers the subexponential asymptotics of the queue length and waiting
time distributions in stationary FIFO BMAP/GI/1 queues, where BMAP stands for batch
Markovian arrival process [14]. To the best of our knowledge, the subexponential asymp-
totics in queues with batch arrivals has never been studied so far. In batch-arrival queues, the
heavy-tailed asymptotics can emerge from heavy-tailed batch sizes, as well as heavy-tailed
service times. Therefore we consider both cases: the BMAP/GI/1 queue with heavy-tailed
service times and that with heavy-tailed batch sizes. The latter naturally arises when the
heavy-tailed workload brought by arrivals is divided into small units of service, e.g., data
transfer in IP networks.

After some preliminaries in section 2, we first study the queue length asymptotics when
service times are heavy-tailed in section 3.1. Asmussen et al. derived the subexponen-
tial asymptotic formula for the queue length in the stationary GI/GI/1 queue [3], using
the distributional form of Little’s law (DLL) [9]. However, this approach is not readily
applicable to the BMAP/GI/1 queue, because the conventional DLL does not hold even
for queues with simple non-renewal arrivals such as the MAP/GI/1 queue (cf. [22, The-

377



378 H. Masuyama, B. Liu & T. Takine

orem 2]). In addition, batch arrivals make our problem more complicated. Because the
stationary queue length distribution in the BMAP/GI/1 queue is identical to the steady
state solution of a certain Markov chain of M/G/1 type [21], we shall start with it. The
subexponential asymptotics in structured Markov chains (including M/G/1 type) was stud-
ied in [4, 5, 10, 25]. However, those results have never been applied to queues so far because
the relationship between heavy-tailed service times in queues and heavy-tailed increments
in the corresponding structured Markov chains was not clear. Recently Jelenković et al. [11]
provided some useful results, which enable us to characterize a heavy-tailed random sum
of moderate- or light-tailed random variables (r.v.s). We slightly extend those results and
examine the relationship between heavy-tailed service times in BMAP/GI/1 queues and
heavy-tailed increments in the corresponding Markov chains of M/G/1 type. Furthermore,
combining those with a recent study on Markov chains of M/G/1 type in [25], we estab-
lish a sufficient condition for the subexponential asymptotics of the stationary queue length
distribution in the BMAP/GI/1 queue with heavy-tailed service times. As far as we know,
this is the first result on the subexponential asymptotic tail of the stationary queue length
distribution in queues with non-renewal arrivals.

We then consider the queue length asymptotics when batch sizes are heavy-tailed in
section 3.2. Contrary to the case of heavy-tailed service times, heavy-tailed increments in
the corresponding Markov chain of M/G/1 type can be characterized through a certain
light-tailed random sum of heavy-tailed r.v.s. Thus we use some analytical tools in [10]
and establish a sufficient condition under which the stationary queue length distribution is
subexponential.

Next we study the waiting time asymptotics in section 4. When service times are heavy-
tailed, a subexponential asymptotic formula for the waiting time distribution can be readily
obtained from the existing results; what we have to do is to evaluate a certain light-tailed
random sum of heavy-tailed r.v.s, and this can be done with the results in [10]. When batch
sizes are heavy-tailed, however, the problem turns out to be a little more complicated,
because the analysis involves the characterization of a certain heavy-tailed random sum of
moderate- or light-tailed r.v.s. We utilize the result in [11] in a tactful manner for evaluating
the random sum and derive a sufficient condition under which the waiting time distribution
is subexponential. As a by-product, we also obtain asymptotic relationships between the
tail distributions of the stationary queue length and waiting time in the BMAP/GI/1 queue
with heavy-tailed service times and that with heavy-tailed batch sizes.

Throughout this paper, we use the following conventions. The (i, j)th element of any
matrix X is denoted by (X)i,j. For any nonnegative r.v. F , let F (x) = Pr[F ≤ x]
and F (x) = 1 − F (x) for x ≥ 0. We denote the nth-fold convolution of F (x) with
itself by F (n)(x) (n = 1, 2, . . . ). Thus F (1)(x) = F (x) (x ≥ 0) and for n = 2, 3, . . . ,
F (n)(x) =

∫ x

0
F (n−1)(x − y)dF (y) (x ≥ 0). Furthermore, for any nonnegative real-valued

(resp. integer-valued) r.v. X (resp. Y ) with positive finite mean, we denote its equilibrium
(resp. discrete equilibrium) r.v. by Xe (resp. Ye). Thus Pr[Xe ≤ x] =

∫ x

0
Pr[X > y]/E[X]dy

for x ≥ 0 (resp. Pr[Ye = k] = Pr[Y > k]/E[Y ] for k = 0, 1, . . . ). For convenience, we define
Xe = 0 (resp. Ye = 0) w.p.1 if E[X] = 0 (resp. E[Y ] = 0). Finally, for any real-valued matrix

function R(x) and any positive (scalar) function g(x) (x ≥ 0), we write R(x)
x∼ R̃ · g(x)

when limx→∞ R(x)/g(x) = R̃ for some finite R̃ (which may have zero elements). Note that
R(x) can be a scalar or vector function. In addition, for any real-valued function f(x) and
any positive function g(x), we write f(x) = o(g(x)) to represent limx→∞ f(x)/g(x) = 0.

c© Operations Research Society of JapanJORSJ (2009) 52-4



Subexponential Asymptotics 379

2. Model and Preliminaries

2.1. Model description

We consider a FIFO single-server queue with a buffer of infinite capacity, which is fed by a
batch Markovian arrival process (BMAP) [14]. BMAP is driven by a continuous-time, time-
homogeneous Markov chain {S(t); t ≥ 0} with finite state space M = {1, 2, . . . ,M}, which
is called the underlying Markov chain hereafter. We assume that the underlying Markov
chain {S(t); t ≥ 0} is irreducible.

The underlying Markov chain stays in state i (i ∈ M) for an exponential interval of
time with mean µ−1

i > 0 and then changes its state to state j (j ∈ M) with probability
pi,j, where

∑
j∈M pi,j = 1 for all i ∈ M. Given a state transition from state i to state j,

k customers arrive in batch with probability ζk,i,j, where
∑∞

k=0 ζk,i,j = 1 for all i, j ∈ M.
Without loss of generality, we assume [14] that ζ0,i,i = 0 for all i ∈ M and

ζ0,i,j = 1 if pi,j = 0. (2.1)

For convenience, let C denote an M × M matrix such that (C)i,j = −µi if i = j ∈ M,
and otherwise (C)i,j = µipi,jζ0,i,j (i, j ∈ M). Also, let Dk (k = 1, 2, . . . ) denote an M ×M
matrix such that (Dk)i,j = µipi,jζk,i,j (i, j ∈ M). BMAP is then characterized by the set of
M ×M matrices (C,D1,D2, . . . ). Let D =

∑∞
k=1 Dk. By definition, we have for i, j ∈ M,

(D)i,j = µipi,j, (2.2)

(Dk)i,j = (D)i,jζk,i,j, k = 1, 2, . . . . (2.3)

Note here that C + D is the irreducible infinitesimal generator of the underlying Markov
chain. Let π denote the stationary probability vector of the underlying Markov chain.
Because C + D is irreducible, π is uniquely determined by π(C + D) = 0 and πe = 1,
where e denotes an M × 1 vector whose elements are all equal to one. When arrivals are
simple, i.e., Dk = O for all k ≥ 2, the resulting arrival process is called a Markovian arrival
process (MAP).

Let N(t) (t ≥ 0) denote the counting process of BMAP (C, D1,D2, . . . ), where we
assume N(0) = 0. We define P (z, t) (|z| ≤ 1, t ≥ 0) as an M × M matrix such that
(P (z, t))i,j = E

[
zN(t)1(S(t) = j)

∣∣ S(0) = i
]

for i, j ∈ M, where 1(χ) denotes an indicator
function of event χ. We then have [14]

P (z, t) = exp

[(
C +

∞∑
k=1

zkDk

)
t

]
. (2.4)

Further the arrival rate λ of customers is given by

λ = π lim
z→1−

d

dz
P (z, 1)e = π

∞∑
k=1

kDke. (2.5)

In this paper, we assume that service times are independent and identically distributed
(i.i.d.) according to a distribution function H(x) (x ≥ 0) with finite mean h. Let H denote
a generic r.v. representing i.i.d. service times, which is independent of arrivals. Clearly
H(x) = Pr[H ≤ x] and h = E[H]. Customers are served on a FIFO basis and ties are
broken randomly. Throughout this paper, we assume

0 < ρ < 1, (2.6)

where ρ = λh. The first inequality excludes trivial cases of no arrivals and/or zero service
times, and the second inequality ensures that the system is stable [13].

c© Operations Research Society of JapanJORSJ (2009) 52-4
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2.2. Subexponential and square-root insensitive distributions

This subsection summarizes definitions and some properties of subexponential and square-
root insensitive distributions, both of which are subclasses of heavy-tailed distributions.
Note that a nonnegative r.v. X and its distribution is called heavy-tailed if the moment
generating function E[exp(θX)] (θ > 0) does not exist. We first describe the class of long-
tailed distributions, which is the largest operational class of heavy-tailed distributions and
includes subexponential and square-root insensitive distributions.

Definition 2.1 ([7, 20]) A distribution function F (x) (x ≥ 0) and the corresponding non-
negative r.v. F are called long-tailed if F (x) > 0 for all x ≥ 0 and F (x + y)

x∼ F (x) for all
y ≥ 0.

We denote the class of long-tailed distributions by L and write F (x) ∈ L (resp. F ∈ L) to
represent that F (x) (resp. F ) is long-tailed.

Proposition 2.1 (Corollary 3.3 in [20]) If Fe ∈ L, Pr[F > x] = o(Pr[Fe > x]).

Definition 2.2 ([6, 20]) A distribution function F (x) (x ≥ 0) and the corresponding non-

negative r.v. F are called subexponential if F (x) > 0 for all x ≥ 0 and F (n)(x)
x∼ nF (x) for

all n = 2, 3, . . ..

Let S denote the class of subexponential distributions. When F (x) (resp. F ) is subexpo-
nential, we write F (x) ∈ S (resp. F ∈ S). Note that S ⊂ L (see [19]).

Proposition 2.2 (Lemma 10 in [10]) Let Yi’s (i = 1, 2, . . . , n) denote independent non-
negative r.v.s such that for some r.v. F ∈ S, Pr[Yi > x]

x∼ κi Pr[F > x], where κi ≥ 0 for
all i = 1, 2, . . . , n. Further let κmax = max{κi; i = 1, 2, . . . , n}.

(a) Pr[Y1 + · · · + Yn > x]
x∼ (

∑n
i=1 κi) Pr[F > x].

(b) For any ε > 0, there exists some constant K := K(ε, κmax) < ∞ such that

Pr[Y1 + · · · + Yn > x]

Pr[F > x]
≤ K · (1 + ε)n, ∀x ≥ 0,

where K is independent of n.

Proposition 2.3 (Lemma 2 in [18]) A nonnegative r.v. Y is subexponential if Pr[Y >
x]

x∼ κ Pr[F > x] for some r.v. F ∈ S and some positive constant κ.

Definition 2.3 (Definition 1 in [11]) A distribution function F (x) (x ≥ 0) and the cor-
responding nonnegative r.v. F are called square-root insensitive if F (x) > 0 for all x ≥ 0
and F (x −

√
x)

x∼ F (x).

We denote the class of square-root insensitive distributions by L2, taking account of Propo-
sition A.1. Thus F (x) ∈ L2 (resp. F ∈ L2) represents that F (x) (resp. F ) is square-root
insensitive. Note that L2 ⊂ L. We summarize some important properties of class L2 in
Appendix A, because class L2 was introduced recently in [11] and its properties are not
generally known.

c© Operations Research Society of JapanJORSJ (2009) 52-4
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2.3. Independent sampling

We describe a result on independent sampling at heavy-tailed random times [11]. Let
{B(t); t ≥ 0} denote a cumulative process associated with a (possibly delayed) regenerative
process, where B(0) = 0. Let νn (n = 0, 1, . . . ) denote the length of the nth regenerative
cycle. Note that νn’s (n = 1, 2, . . . ) are i.i.d. and independent of ν0. Let τn =

∑n
i=0 νi

(n = 0, 1, . . .). We then define γn and γ∗
n (n = 0, 1, . . . ) as γn = B(τn) − B(τn−1) and

γ∗
n = supτn−1≤t≤τn

|B(t) − B(τn−1)|, respectively, where τ−1 = 0. By definition, γ∗
n ≥ 0

and γ∗
n ≥ γn for all n = 0, 1, . . . . Further γn’s (resp. γ∗

n’s) (n = 1, 2, . . . ) are i.i.d. and
independent of γ0 (resp. γ∗

0). We assume that all of ν0, ν1, γ∗
0 , and γ∗

1 are proper r.v.s. and
that 0 < E[ν1] < ∞ and 0 < E[γ1] < ∞.

The following lemma is considered as an extension of Proposition 3 in [11].

Lemma 2.1 Suppose E[ν2
1 ] < ∞, γ1 ≥ 0 w.p.1, and there exists some φ > 0 such that

E[eφ
√

γ∗
n ] < ∞ for n = 0, 1. Let Y denote a nonnegative r.v. independent of {B(t); t ≥ 0}.

If Y satisfies
Pr[Y > x]

x∼ κ Pr[F > x], (2.7)

for some r.v. F ∈ L2 and some nonnegative constant κ, we have

Pr[B(Y ) > bx]
x∼ Pr[U(Y ) > bx]

x∼ κ Pr[F > x],

where b = E[γ1]/E[ν1] > 0 and U(t) = sup0≤u≤t B(u). In addition, if Y = F ∈ L2,

Pr[B(Y ) > bx]
x∼ Pr[U(Y ) > bx]

x∼ Pr[Y > x]. (2.8)

Proof: The proof of Lemma 2.1 is given in Appendix C. 2

Remark 2.1 For κ > 0, Lemma 2.1 is an immediate consequence of Proposition 3 in [11],
because Y ∈ L2 (see Lemma A.1). It is not the case, however, for κ = 0, because Y may
not be square-root insensitive.

Remark 2.2 In the proof of Lemma 2.1, we apply the central limit theorem to {B(t)}, which
requires E[ν2

1 ] < ∞ and E[γ2
1 ] < ∞. The latter holds due to γ1 ≥ 0 and E[exp(φ

√
γ∗

1)] < ∞.
In fact, γ2

1 ≤ (γ∗
1)

2 and therefore

φ4

4!
E[γ2

1 ] ≤
φ4

4!
E[(γ∗

1)
2] ≤

∞∑
k=0

φk

k!
E[(γ∗

1)
k/2] = E[eφ

√
γ∗
1 ] < ∞.

3. Queue Length Asymptotics

This section considers the queue length asymptotics in the FIFO BMAP/GI/1 queue. Let
L(t) (t ≥ 0) denote the queue length (including a customer in service, if any) at time t.
We define xk (k = 0, 1, . . . ) as a 1 × M vector whose jth (j ∈ M) element represents
Pr[L = k, S = j], where L and S denote generic r.v.s representing {L(t); t ≥ 0} and
{S(t); t ≥ 0}, respectively, in steady state. In [21], Takine showed that {xk; k = 0, 1, . . .} is
identical to the steady state solution of a Markov chain of M/G/1 type [17], whose transition
probability matrix Π is given by

Π =


A0 A1 A2 A3 · · ·
A0 A1 A2 A3 · · ·
O A0 A1 A2 · · ·
O O A0 A1 · · ·
...

...
...

...
. . .

 , (3.1)

c© Operations Research Society of JapanJORSJ (2009) 52-4
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where Ak (k = 0, 1, . . . ) denotes an M × M nonnegative matrix whose (i, j)th (i, j ∈ M)
element represents Pr[N(H) = k, S(H) = j | S(0) = i]. Note that Ak’s satisfy

∞∑
k=0

zkAk =

∫ ∞

0

P (z, x)dH(x) =

∫ ∞

0

exp

[(
C +

∞∑
k=1

zkDk

)
x

]
dH(x), (3.2)

which implies that
∑∞

k=0 Ak is an irreducible and stochastic matrix such that π
∑∞

k=0 Ak =
π, because C +D is an irreducible and proper generator satisfying π(C +D) = 0. Further
it follows from (2.5), (2.6) and (3.2) that ρ =

∑∞
k=1 kπAke < 1. As a result, Π in (3.1) is

irreducible and positive recurrent [1, Proposition 3.1 in Chapter XI].
Let G denote the minimal nonnegative solution of G =

∑∞
k=0 AkG

k. It is known [17]
that if

∑∞
k=0 Ak is irreducible and ρ =

∑∞
k=1 kπAke < 1, G is stochastic and equal to the

limit G∞ of an elementwise nondecreasing sequence {Gn; n = 0, 1, . . . }, where

G0 = O, Gn =
∞∑

k=0

AkG
k
n−1 (n = 1, 2, . . . ).

Note here that D ≥, 6= O and exp[(C + D)t] > O for all t > 0, which leads to

∞∑
k=1

Ak =

∫ ∞

0

dH(x)

∫ x

0

dy e(C+D)yDe(C+D)(x−y) > O.

Note also that A0 =
∫ ∞

0
dH(x)eCx ≥ O, whose diagonal elements are all positive. Thus

G ≥ G2 = A0 +
∑∞

k=1 AkA
k
0 > O. Let g > 0 denote the unique stationary probability

vector of G, i.e., gG = g and ge = 1. We then have

lim
m→∞

Gm = eg. (3.3)

Let xk =
∑∞

l=k+1 xl for k = 0, 1 . . . . It is easy to see that (xk)j = Pr[L > k, S = j] for
k = 0, 1, . . . and j ∈ M.

Proposition 3.1 (Theorem 4 and Remark 12 in [25]) Let Ak =
∑∞

l=k+1 Al for k =
0, 1, . . . . Suppose (3.3) holds and there exists a nonnegative integer-valued r.v. F with posi-
tive finite mean such that
(a) Fe ∈ S, and

(b) Ak
k∼ CA Pr[F > k]/E[F ] for some finite nonnegative matrix CA (CA 6= O).

We then have xk
k∼ (1 − ρ)−1(πCAe)π Pr[Fe > k].

Remark 3.1 The condition (3.3) is necessary for Proposition 3.1 (see Appendix A.6 in
[24]), though Theorem 4 in [25] presented the subexponential asymptotic formula for the xk

without this condition.

Recall that (Ak)i,j = Pr[N(H) > k, S(H) = j | S(0) = i] (i, j ∈ M) and that N(H) is
given by

N(H) =

NG(H)∑
l=1

Gl, (3.4)

where NG(t) (t ≥ 0) denotes the number of batches arriving in interval (0, t] and Gl (l =
1, 2, . . .) denotes the number of customers in the lth arriving batch. Thus condition (b) of
Proposition 3.1 requires us to characterize the tail distribution of N(H) in (3.4). In what
follows, we consider two cases H ∈ L and Gl ∈ L separately.

c© Operations Research Society of JapanJORSJ (2009) 52-4
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3.1. Queue with heavy-tailed service times

In this subsection, we consider the queue length asymptotics in the FIFO BMAP/GI/1
queue with heavy-tailed service times. More specifically, we utilize Lemma 2.1 to explore
a sufficient condition under which condition (b) of Proposition 3.1 holds. As we will see,
we regard the counting process {N(t); t ≥ 0} of arrivals (resp. the service time H) in the
BMAP/GI/1 queue as {B(t)} (resp. Y ) in Lemma 2.1.

Assumption 3.1 For some φ > 0,
∑∞

k=1 eφ
√

kDk < ∞.

For simplicity, let Pi(·) = Pr[ · |S(0) = i] and Ei[ · ] = E[ · |S(0) = i].

Lemma 3.1 If Assumption 3.1 holds and H ∈ L2, Pi(N(H) > λk)
k∼ Pr[H > k] (∀i ∈ M).

Proof: For each i ∈ M, we apply Lemma 2.1 to N(H), assuming S(0) = i. In this specific
application, let τ0 = 0 and we define τn (n = 1, 2, . . . ) as the nth point in time, at which
the underlying Markov chain {S(t); t ≥ 0} enters state i from other states. It is easy to
see that τn’s (n = 1, 2, . . . ) are regenerative points for the counting process {N(t); t ≥ 0}
of BMAP arrivals. Thus in the framework of section 2.3, the above can be described with
B(t) = N(t), Y = F = H, ν0 = τ0 = 0, νn = τn − τn−1 (n = 1, 2, . . . ), γ0 = N(τ0) = 0,
and γn = N(τn) − N(τn−1) (n = 1, 2, . . . ). It is clear that νn’s (n = 1, 2, . . . ) are i.i.d. and
so are γn’s (n = 1, 2, . . .). Also γ∗

0 = 0 and γ∗
n = γn ≥ 0 (n = 1, 2, . . .) because N(t) is

nondecreasing in t sample path wise. By (2.6) and the definition of BMAP, ν1 and γ1 are
proper nonnegative r.v.s, and Ei[ν

2
1 ] < ∞, and 0 < Ei[γ1] < ∞.

There remains to verify Ei[exp(φ
√

γ1)] < ∞ and Ei[γ
2
1 ] < ∞, in order to apply Lemma 2.1

to N(H). From the renewal reward theorem [26, Theorem 2 in Chapter 2], we have

Ei[γ1]

Ei[ν1]
= λ > 0,

Ei[e
φ
√

γ1 ]

Ei[ν1]
= π

∞∑
k=1

eφ
√

kDke < ∞.

The former shows 0 < Ei[ν1] < ∞. Thus from the latter, we have Ei[exp(φ
√

γ∗
1)] =

Ei[exp(φ
√

γ1)] < ∞, which yields Ei[γ
2
1 ] < ∞ due to γ1 > 0 (see Remark 2.2). As a result, we

apply (2.8) in Lemma 2.1 to N(H) and obtain Pi(N(H) > λk)
k∼ Pi(H > k) = Pr[H > k].

2

Lemma 3.2 Suppose Assumption 3.1 holds. If H ∈ L2,

Pi(N(H) > λk, S(H) = j)
k∼ Pr[H > k](π)j, i, j ∈ M. (3.5)

Proof: The proof of this lemma is given in Appendix D. 2

Remark 3.2 Lemmas 3.1 and 3.2 yield limk→∞ Pi(S(H) = j | N(H) > λk) = (π)j.

Recall that (Ak)i,j = Pi(N(H) > k, S(H) = j) (i, j ∈ M). Thus (3.5) is equivalent to

Ak
k∼ eπ · Pr[λH > k] = E[λH]eπ · Pr[λH > k]/E[λH]. (3.6)

Let Θ = λH. It is easy to see that Pr[Θe > x] = Pr[λHe > x], which implies that if He ∈ S,
Θe ∈ S for any λ > 0. Because πe = 1 and E[λH] = ρ, combining Proposition 3.1 with
(3.6) yields the following theorem.

c© Operations Research Society of JapanJORSJ (2009) 52-4
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Theorem 3.1 Suppose Assumption 3.1 holds. If H ∈ L2 and He ∈ S,

xk
k∼ ρ

1 − ρ
π · Pr[λHe > k], Pr[L > k]

k∼ ρ

1 − ρ
· Pr[λHe > k], (3.7)

which shows that the stationary queue length L is subexponential, i.e., L ∈ S.

Note that if the arrival process is MAP (i.e., Dk = O for all k ≥ 2), Assumption 3.1
always holds.

Corollary 3.1 Consider the stationary FIFO MAP/GI/1 queue. If H ∈ L2 and He ∈ S,
(3.7) holds.

3.2. Queue with heavy-tailed batch sizes

In this subsection, we consider the queue length asymptotics in the FIFO BMAP/GI/1
queue with heavy-tailed batch sizes. Let G denote a generic r.v. representing the number of
customers in a randomly chosen batch in steady state. We then have Pr[G = k] = λ−1

G πDke
(k = 1, 2, . . . ) and

E[G] = λ/λG, (3.8)

where λG = πDe < ∞ denotes the arrival rate of batches.

Assumption 3.2 There exists some nonnegative matrix D̃ (D̃ 6= O) such that Dk
k∼

D̃ Pr[G > k], where Dk =
∑∞

l=k+1 Dl for k = 0, 1, . . . .

Note that if Assumption 3.2 holds, we have

πD̃e = λG, (3.9)

because Pr[G > k] = λ−1
G πDke.

We define Λk (k = 0, 1, . . . ) as

Λ0 = I + θ−1C, Λk = θ−1Dk (k = 1, 2, . . . ),

where θ = maxj∈M |(C)j,j|. We then rewrite (3.2) as

∞∑
k=0

zkAk =

∫ ∞

0

∞∑
n=0

e−θx (θx)n

n!
dH(x)

[
∞∑

k=0

zkΛk

]n

. (3.10)

Let Λ
(n)
k ’s (n = 1, 2, . . . , k = 0, 1, . . . ) denote M × M matrices satisfying

∞∑
k=0

zkΛ
(n)
k =

[
∞∑

k=0

zkΛk

]n

, n = 1, 2, . . . .

It then follows from (3.10) that

Ak =

∫ ∞

0

∞∑
n=1

e−θx (θx)n

n!
dH(x)Λ

(n)
k , k = 0, 1, . . . , (3.11)

where Λ
(n)
k =

∑∞
l=k+1 Λ

(n)
l (n = 1, 2, . . . , k = 0, 1, . . . ). Thus we can examine the asymp-

totics of
{
Ak

}
through

{
Λ

(n)
k

}
, where the (i, j)th element of Λ

(n)
k represents the probability

that the uniformized underlying Markov chain with parameter θ moves from state i to state
j in n steps during which more than k customers arrive.

c© Operations Research Society of JapanJORSJ (2009) 52-4



Subexponential Asymptotics 385

Lemma 3.3 Suppose Assumption 3.2 holds. If G ∈ S,

Λ
(n)
k

k∼
n−1∑
ν=0

ΛνΛ̃Λn−ν−1 · Pr[G > k], ∀n = 1, 2, . . . , (3.12)

where
Λ = I + θ−1(C + D), Λ̃ = θ−1D̃. (3.13)

Proof: The proof of Lemma 3.3 is given in Appendix E. 2

Lemma 3.4 Suppose Assumption 3.2 holds. If G ∈ S, for any ε > 0 there exists some
positive constant K := K(ε) such that

Λ
(n)
k

Pr[G > k]
≤ K · (1 + ε)nΛn, ∀k = 0, 1, . . . , ∀n = 1, 2, . . . .

Proof: The proof of Lemma 3.4 is given in Appendix F. 2

Assumption 3.3 The service time distribution function H(x) (x ≥ 0) is light-tailed, i.e.,
there exists some δ > 0 such that

∫ ∞
0

eδxdH(x) < ∞.

Lemma 3.5 Suppose Assumptions 3.2 and 3.3 hold. If G ∈ S, Ak
k∼ CA ·Pr[G > k]/E[G],

where

CA = E[G]

∫ ∞

0

dH(x)

∫ x

0

e(C+D)yD̃e(C+D)(x−y)dy.

Proof: We choose ε > 0 such that εθ ≤ δ. Because Λe = e, it follows from (3.11) and
Lemma 3.4 that

Ake

Pr[G > k]
≤ K

∫ ∞

0

∞∑
n=1

e−θx{(1 + ε)θx}n

n!
dH(x)e ≤ K

∫ ∞

0

eεθxdH(x)e < ∞.

Thus (3.11), Lemma 3.3, and the dominated convergence theorem yield

lim
k→∞

Ak

Pr[G > k]
=

∫ ∞

0

∞∑
n=1

e−θx (θx)n

n!
dH(x) lim

k→∞

Λ
(n)
k

Pr[G > k]

=

∫ ∞

0

dH(x)

(
∞∑

n=1

e−θx (θx)n

n!

n−1∑
ν=0

ΛνΛ̃Λn−ν−1

)

=

∫ ∞

0

dH(x)

∫ x

0

e(C+D)yD̃e(C+D)(x−y)dy,

where we use (3.13) in the last equality. 2

Lemma 3.5 implies that we can utilize Proposition 3.1. From (3.8) and (3.9), we have
πCAe = ρ. Thus we obtain the following theorem.

Theorem 3.2 Suppose Assumptions 3.2 and 3.3 hold. If G ∈ S and Ge ∈ S, we have

xk
k∼ ρ

1 − ρ
π · Pr[Ge > k], Pr[L > k]

k∼ ρ

1 − ρ
· Pr[Ge > k],

which shows L ∈ S.
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4. Waiting Time Asymptotics

This section considers the subexponential asymptotics of the waiting time and sojourn
time distributions in the FIFO BMAP/GI/1 queue. Let V , W , and T denote generic r.v.s
representing the amount of unfinished work in system, the actual waiting time, and the
sojourn time, respectively, in the stationary FIFO BMAP/GI/1 queue. Also let S+ denote a
generic r.v. representing the state of the underlying Markov chain immediately after arrivals
in steady state. We then define v(x), w(x), and t(x) (x ≥ 0) as 1 × M vectors whose jth
(j ∈ M) elements represent Pr[V ≤ x, S = j], Pr[W ≤ x, S+ = j], and Pr[T ≤ x, S+ = j],
respectively.

Lemma 4.1 w(x) and t(x) (x ≥ 0) are given by

w(x) =
1

λ

∫ x

0

dv(y)
∞∑

k=0

DkH
(k)(x−y), t(x) =

1

λ

∫ x

0

dv(y)
∞∑

k=0

DkH
(k+1)(x−y), (4.1)

respectively, where H(0)(x) = 1 for all x ≥ 0.

Proof: Let v∗(s), w∗(s), and H∗(s) denote the Laplace-Stieltjes transforms of v(x), w(x),
and H(x), respectively. Applying Theorem III.2 in [15] to the FIFO BMAP/GI/1 queue,
we can readily obtain

w∗(s) =
∞∑

n=1

v∗(s)Dn

λ

n∑
k=1

{H∗(s)}k−1 =
1

λ

∞∑
k=0

v∗(s)Dk {H∗(s)}k ,

from which the result for w(x) follows. Noting T = W +H, we also have the result for t(x).
2

Let v(x), w(x), and t(x) (x ≥ 0) denote 1×M vectors whose jth (j ∈ M) elements are
given by

(v(x))j = Pr[V > x, S = j], (w(x))j = Pr[W > x, S+ = j], (t(x))j = Pr[T > x, S+ = j],

respectively. Let Vi (i ∈ M) denote a conditional r.v. representing the amount of unfinished
work in system given the underlying Markov chain being in state i. Clearly, Pr[Vi > x] =
(v(x))i/(π)i for x ≥ 0. Let ζk,i,j =

∑∞
l=k+1 ζl,i,j (i, j ∈ M, k = 0, 1, . . . ). It then follows

from (2.3) and (4.1) that

(w(x))j =
1

λ

∑
i∈M

(π)i(D)i,j

∞∑
k=0

ζk,i,j · Pr[Vi + H1 + · · · + Hk > x], (4.2)

(t(x))j =
1

λ

∑
i∈M

(π)i(D)i,j

∞∑
k=0

ζk,i,j · Pr[Vi + H1 + · · · + Hk+1 > x], (4.3)

where Hl (l = 1, 2, . . . ) denotes the service time of the lth customer in a batch.
Let G(i, j) (i, j ∈ M) denote a conditional r.v. representing the number of customers in

a batch given that the batch arrives with a transition of the underlying Markov chain from
state i to state j. It then follows from (2.3) that Pr[G(i, j) = k] = ζk,i,j (i, j ∈ M) and
therefore

(D)i,j Pr[G(i, j) = k] = (Dk)i,j, k = 1, 2, . . . , (4.4)
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which leads to

(D)i,jE[G(i, j)] =
∞∑

k=1

k(Dk)i,j, i, j ∈ M. (4.5)

From (2.1) and (2.2), we observe that if (D)i,j = 0,

Pr[G(i, j) = 0] = ζ0,i,j = 1 and Pr[G(i, j) > k] = ζk,i,j = 0 (k = 0, 1, . . . ). (4.6)

Also (2.5) and (2.6) imply that the equilibrium r.v. Ge(i, j) of G(i, j) (i, j ∈ M) is well-
defined. Thus for any i, j ∈ M,

ζk,i,j = E[G(i, j)] Pr[Ge(i, j) = k], k = 0, 1, . . . . (4.7)

From (4.7), we have
∞∑

k=0

ζk,i,j · Pr [H1 + H2 + · · · + Hk > x] = E[G(i, j)]
∞∑

k=0

Pr[Ge(i, j) = k]H(k)(x)

= E[G(i, j)] Pr[X̂i,j > x], i, j ∈ M, (4.8)

where X̂i,j (i, j ∈ M) is defined as

X̂i,j = H1 + H2 + · · · + HGe(i,j). (4.9)

As a result, substituting (4.8) into (4.2) and (4.3) yields

(w(x))j =
1

λ

∑
i∈M

(π)i(D)i,jE[G(i, j)] Pr[Vi + X̂i,j > x], (4.10)

(t(x))j =
1

λ

∑
i∈M

(π)i(D)i,jE[G(i, j)] Pr[Vi + X̂i,j + H > x]. (4.11)

We now define D(x) (x ≥ 0) as

D(x) =
∞∑

k=1

DkH(k)(x). (4.12)

Note that D(0) = D. The following proposition is an adaptation of Theorem 1 in Takine
[23].

Proposition 4.1 (Theorem 1 in [23]) Suppose there exists a nonnegative r.v. F with
positive finite mean such that

(a) Fe ∈ S and

(b) D(x)
x∼ CD Pr[F > x]/E[F ] for some finite nonnegative matrix CD (CD 6= O).

We then have v(x)
x∼ (1 − ρ)−1(πCDe)π Pr[Fe > x].

Substituting (4.4) into (4.12) yields

(D(x))i,j = (D)i,j

∞∑
k=1

Pr[G(i, j) = k]H(k)(x) = (D)i,j Pr[Xi,j > x], i, j ∈ M, (4.13)

where Xi,j (i, j ∈ M) is defined as

Xi,j = H1 + H2 + · · · + HG(i,j). (4.14)

Therefore (4.10), (4.11), and Proposition 4.1 imply that the waiting time and sojourn time

asymptotics can be examined through the random sums Xi,j and X̂i,j. In what follows, we
consider two cases Hl ∈ L and G(i, j) ∈ L separately.
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4.1. Queue with heavy-tailed service times

We consider the FIFO BMAP/GI/1 queue with heavy-tailed service times, which satisfies
the following assumption.

Assumption 4.1 There exists some ε > 0 such that
∑∞

k=1(1 + ε)kDk < ∞.

Remark 4.1 Assumption 4.1 is a sufficient condition of Assumption 3.1.

Proposition 4.2 (Proposition 2.9 in [20]) Let {Zn; n = 1, 2, . . . } denote a sequence of
i.i.d. subexponential r.v.s and N denote a nonnegative integer-valued r.v. independent of
{Zn} such that 0 ≤ E[N ] < ∞. If N is light-tailed, i.e.,

∑∞
n=0(1 + ε)n Pr[N = n] < ∞ for

some ε > 0, we have Pr[Z1 + Z2 + · · · + ZN > x]
x∼ E[N ] Pr[Z1 > x].

Lemma 4.2 Suppose Assumption 4.1 holds. If H ∈ S, we have

D(x)
x∼

∞∑
k=1

kDk · Pr[H > x]. (4.15)

Proof: Assumption 4.1, (4.4), and (4.6) show that G(i, j) (i, j ∈ M) is light-tailed. Thus
we apply Proposition 4.2 to the random sum Xi,j in (4.14) and obtain Pr[Xi,j > x]

x∼
E[G(i, j)] Pr[H > x]. (4.15) now follows from (4.5) and (4.13). 2

Lemma 4.2 implies that CD in Proposition 4.1 is given by h
∑∞

k=1 kDk. Therefore the
following lemma immediately follows from Proposition 4.1, Lemma 4.2 and (2.5).

Lemma 4.3 Suppose Assumption 4.1 holds. If H ∈ S and He ∈ S,

v(x)
x∼ ρ

1 − ρ
π · Pr[He > x], Pr[V > x]

x∼ ρ

1 − ρ
· Pr[He > x].

Lemma 4.4 Suppose Assumption 4.1 holds. If H ∈ S, X̂i,j in (4.9) satisfies

Pr[X̂i,j > x]
x∼ E[Ge(i, j)] Pr[H > x], i, j ∈ M. (4.16)

Proof: It follows from (4.7), Assumption 4.1, and (Dk)i,j = (D)i,jζk,i,j that

(D)i,jE[G(i, j)]
∞∑

k=0

(1 + ε)k Pr[Ge(i, j) = k]

=
∞∑

k=0

(1 + ε)k(Dk)i,j =
1

ε

(
∞∑

k=1

(1 + ε)k(Dk)i,j −
∞∑

k=1

(Dk)i,j

)
< ∞,

which implies Ge(i, j) is light-tailed. Consequently, Proposition 4.2 yields (4.16). 2

Theorem 4.1 Suppose Assumption 4.1 holds. If H ∈ S and He ∈ S,

w(x)
x∼ t(x)

x∼ h

1 − ρ
π

∞∑
k=1

kDk · Pr[He > x], (4.17)

Pr[W > x]
x∼ Pr[T > x]

x∼ ρ

1 − ρ
· Pr[He > x],

which shows that the actual waiting time W and sojourn time T are subexponential.
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Remark 4.2 (4.17) was obtained in the MAP/G/1 queue (i.e., Dk = O for all k ≥ 2)
under the assumption He ∈ S [23, Corollary 2].

Proof: Lemma 4.3 implies Pr[Vi > x]
x∼ ρ(1 − ρ)−1 Pr[He > x] (i ∈ M). Also, it follows

from Proposition 2.1 and Lemma 4.4 that Pr[H > x] = o(Pr[He > x]) and Pr[X̂i,j > x] =
o(Pr[He > x]). Thus applying Proposition 2.2 (a) to (4.10) and (4.11) yields

(w(x))j
x∼ (t(x))j

x∼ 1

λ

∑
i∈M

(π)i(D)i,jE[G(i, j)]
ρ

1 − ρ
· Pr[He > x].

Substituting (4.5) into the above equation, we obtain (4.17). The other statement immedi-
ately follows from (4.17). 2

The following corollary is an immediate consequence of Theorems 3.1 and 4.1, Re-
mark 4.1, and Lemma 4.3.

Corollary 4.1 Suppose Assumption 4.1 holds. If H ∈ L2 ∩ S and He ∈ S,

Pr[L > k, S = j]
k∼ Pr[λV > k, S = j], j ∈ M, (4.18)

Pr[L > k]
k∼ Pr[λW > k]

k∼ Pr[λT > k]. (4.19)

When the arrival process is MAP (i.e., Dk = O for all k ≥ 2), Assumption 4.1 always
holds. Further D(x) = D · H(x) and therefore we can exclude the condition H ∈ S.

Corollary 4.2 Consider the stationary FIFO MAP/GI/1 queue. If H ∈ L2 and He ∈ S,
(4.18) and (4.19) hold.

Remark 4.3 (4.19) shows that the tail of the queue length L behaves asymptotically like
that of the sojourn time T multiplied by the arrival rate λ, which may be considered as an
asymptotic Little’s law. Asmussen et al. [3, Proposition 3.12] shows that (4.19) holds in the
GI/GI/1 queue, assuming that He ∈ S and He satisfies a certain technical condition.

4.2. Queue with heavy-tailed batch sizes

This subsection considers the FIFO BMAP/GI/1 queue with heavy-tailed batch sizes.

Lemma 4.5 Let {Zn; n = 1, 2, . . . } denote a sequence of i.i.d. nonnegative r.v.s with pos-
itive finite mean and N denote a nonnegative integer-valued r.v. independent of {Zn}. If

E[exp(φ
√

Z1)] < ∞ for some φ > 0 and Pr[N > k]
k∼ κ Pr[J > k] for some r.v. J ∈ L2 and

some nonnegative constant κ, we have

Pr[Z1 + Z2 + · · · + ZN > x]
k∼ κ Pr[E[Z1]J > x]. (4.20)

Proof: We apply Lemma 2.1 to the random sum
∑N

n=1 Zn. Consider the cumulative process
{B(t)} associated with the regenerative process with unit cycle lengths, where B(t) is defined
as a (nondecreasing) step function with jumps Zn’s at time n (n = 1, 2, . . .). We then have
B(N) = Z1 + Z2 + · · · + ZN . In the framework of section 2.3, B(N) can be described with
Y = N , F = J , B(t) = Z0 + Z1 + · · · + Zbtc, Z0 = 0, ν0 = 0, νn = 1 (n = 1, 2, . . . ), and
γn = Zn ≥ 0 (n = 0, 1, . . . ). It is clear that E[ν2

1 ] = 1 < ∞, 0 < E[γ1] = E[Z1] < ∞, and b =
E[γ1]/E[ν1] = E[Z1] > 0. Note also that γ∗

0 = 0 and γ∗
n = Zn for n = 1, 2, . . . and therefore
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E[exp(φ
√

γ∗
1)] = E[exp(φ

√
Z1)] < ∞, from which and γ1 ≥ 0 we have E[γ2

1 ] = E[Z2
1 ] < ∞

(see Remark 2.2). As a result, applying Lemma 2.1 to the above setting, we obtain

Pr[Z1 + · · · + ZN > E[Z1]y]
y∼ κ Pr[J > y]. (4.21)

Setting x = E[Z1]y in (4.21) then yields (4.20). 2

Assumption 4.2 There exists some φ > 0 such that
∫ ∞
0

eφ
√

xdH(x) < ∞.

Remark 4.4 Assumption 3.3 is a sufficient condition of Assumption 4.2.

Lemma 4.6 Suppose Assumptions 3.2 and 4.2 hold. If G ∈ L2,

D(x)
x∼ D̃ · Pr[hG > x]. (4.22)

Proof: Recall that Pr[G(i, j) = k] = ζk,i,j (k = 0, 1, . . . ). It then follows from Assump-
tions 3.2, (4.4) and (4.6) that

Pr[G(i, j) > k]
k∼ ζ̃i,j Pr[G > k], i, j ∈ M, (4.23)

where ζ̃i,j (i, j ∈ M) is defined as ζ̃i,j = (D̃)i,j/(D)i,j if (D)i,j > 0, and otherwise ζ̃i,j = 0.
We also have

(D̃)i,j = (D)i,j ζ̃i,j, i, j ∈ M, (4.24)

because (D̃)i,j = 0 if (D)i,j = 0 (see Assumption 3.2). Applying Lemma 4.5 to the random

sum Xi,j in (4.14) and using (4.23) yield Pr[Xi,j > x]
x∼ ζ̃i,j Pr[hG > x], from which, (4.13),

and (4.24), we obtain (4.22). 2

Let Γ = hG. We then have Pr[Γe > x] = Pr[hGe > x], which implies that Γe ∈ S if

Ge ∈ S. Also, Lemma 4.6 shows that CD in Proposition 4.1 is given by hE[G]D̃. Thus the
following lemma immediately follows from Proposition 4.1, Lemma 4.6, (3.8), and (3.9).

Lemma 4.7 Suppose Assumptions 3.2 and 4.2 hold. If G ∈ L2 and Ge ∈ S,

v(x)
x∼ ρ

1 − ρ
π · Pr[hGe > x], Pr[V > x]

x∼ ρ

1 − ρ
· Pr[hGe > x].

Theorem 4.2 Suppose Assumptions 3.2 and 4.2 hold. If G ∈ L2 and Ge ∈ S,

w(x)
x∼ t(x)

x∼

(
h

1 − ρ
π

∞∑
k=1

kDk +
1

λG

πD̃

)
· Pr[hGe > x], (4.25)

Pr[W > x]
x∼ Pr[T > x]

x∼ 1

1 − ρ
Pr[hGe > x], (4.26)

which shows that W ∈ S and T ∈ S.

Proof: We prove only (4.25), which leads immediately to (4.26). Lemma 4.7 implies

Pr[Vi > x]
x∼ ρ

1 − ρ
Pr[hGe > x], i ∈ M. (4.27)
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It follows from (3.8), (4.6), and (4.23) that Pr[Ge(i, j) > x]
x∼ (λ/λG)gi,j ζ̃i,j · Pr[Ge > x]

(i, j ∈ M), where gi,j = 1/E[G(i, j)] if (D)i,j > 0, and otherwise gi,j = 0. Note that Ge ∈ L2

because G ∈ L2 (see Lemma A.2). Thus applying Lemma 4.5 to X̂i,j in (4.9), we obtain

Pr[X̂i,j > x]
x∼ λ

λG

gi,j ζ̃i,j · Pr[hGe > x], i, j ∈ M. (4.28)

Because hGe ∈ S, applying Proposition 2.2 (a) to (4.10) and using (4.27) and (4.28) yield

(w(x))j
x∼ 1

λ

∑
i∈M

(π)i(D)i,jE[G(i, j)]

[
ρ

1 − ρ
+

λ

λG

gi,j ζ̃i,j

]
Pr[hGe > x]

=
1

λ

∑
i∈M

(π)i

[
ρ

1 − ρ

∞∑
k=1

k(Dk)i,j +
λ

λG

(D̃)i,j

]
Pr[hGe > x], (4.29)

where the last equality follows from (4.5), (4.24), and the fact that (D̃)i,j = 0 if (D)i,j = 0.
Consequently, (4.29) leads to the result for w(x) in (4.25).

The rest is to show t(x)
x∼ w(x). Because G ∈ L2, Lemma A.2 implies hGe ∈ L2, and

thus it follows from Assumption 4.2 and Proposition A.2 that Pr[H > x] = o(Pr[hGe > x]).
As a result, Proposition 2.2 (a) and hGe ∈ S show that H on the right hand side of (4.11)
has no contribution to the limit limx→∞ t(x)/ Pr[hGe > x], i.e., t(x)

x∼ w(x). 2

From Theorems 3.2 and 4.2, Remark 4.4, and Lemma 4.7, we readily obtain the following.

Corollary 4.3 Suppose Assumptions 3.2 and 3.3 hold. If G ∈ L2 ∩ S and Ge ∈ S,

Pr[hL > k, S = j]
k∼ Pr[V > k, S = j], j ∈ M,

Pr[hL > k]
k∼ ρ Pr[W > k]

k∼ ρ Pr[T > k].

5. Concluding Remarks

In this paper, we considered the tail asymptotics of the queue length and waiting time
distributions in the stationary FIFO BMAP/GI/1 queue. In particular, we considered two
cases: heavy-tailed service times and heavy-tailed batch sizes. In each case, we derived
sufficient conditions under which the stationary queue length and waiting time distribu-
tions are subexponential. Both these distributions are also square-root insensitive due to
Lemmas A.1 and A.2. Further, we obtained the asymptotic relationship between the queue
length and waiting time distributions in each case. To the best of our knowledge, this is the
first paper that reports on the queue length and waiting time asymptotics in queues with
batch arrivals.

We conclude this paper by some comments on the inclusion relationship between F ∈ L2

and Fe ∈ S, which appeared in our subexponential asymptotic conditions on the service
times and batch sizes (see Theorems 3.1 and 4.2). Note first that Fe ∈ S does not imply
F ∈ L, and vice versa [7, 20]. Thus F ∈ L2 (⊂ L) and Fe ∈ S are substantially different
conditions. Nevertheless, there exists an intersection between class L2 and a rich subclass
S∗ of S, in which F, Fe ∈ S [7, 8, 12]. It is known that F ∈ L2 implies that its tail
distribution F (x) is heavier than e−ε

√
x for any ε > 0 (see Proposition A.2). We can confirm

that L2 includes typical distributions in S∗, e.g., Pareto, heavy-tailed Weibull, lognormal,
Benktander-type-I and type-II, Burr, and loggamma distributions, if they have positive finite
mean and heavier tails than e−ε

√
x. This fact also implies that (L−L2)∩S is not empty. For
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example, heavy-tailed Weibull with shape parameter β (1/2 ≤ β < 1) is in class S∗(⊂ S)
but not square-root insensitive. On the other hand, we can construct square-root insensitive
distributions whose equilibrium distributions are not subexponential. For example, consider
a continuous, nonnegative r.v. F such that the hazard rate function qFe(x) of Fe is given by

qFe(x) =
Pr[F > x]

E[F ] Pr[Fe > x]
=

1

n
√

xn

, xn−1 < x < xn,

where {xn; n = 0, 1, . . . } satisfies x0 = 0, x1 = 1, and xn − xn−1 = 2n
√

xn/ Pr[Fe > xn−1]
(n = 2, 3, . . . ). We can show that F ∈ L2 but Fe 6∈ S in a way similar to the argument at
p. 343 in [19].
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A. Properties of Square-root Insensitive Distributions

This appendix summarizes some properties of the square-root insensitive class.

Proposition A.1 (Lemma 1 in [11]) F is square-root insensitive if and only if
√

F ∈ L.

Proposition A.2 (Lemma 2 in [11]) For any F ∈ L2,

lim
x→∞

exp(−ε
√

x)

Pr[F > x]
= 0, ∀ε > 0.

Proposition A.3 (Remark 1 in [11]) F ∈ L2 if and only if Pr[F > x − ξ
√

x]
x∼ Pr[F >

x] for all ξ ∈ (−∞,∞).

Proposition A.3 was stated without proof in [11]. Thus for completeness, we provide its
proof in Appendix B.

Lemma A.1 A nonnegative r.v. Y is square-root insensitive if Pr[Y > x]
x∼ κ Pr[F > x]

for some r.v. F ∈ L2 and some positive constant κ.

Proof: The lemma follows from

lim
x→∞

Pr[Y > x −
√

x]

Pr[Y > x]
= lim

x→∞

Pr[Y > x −
√

x]

Pr[F > x −
√

x]

Pr[F > x −
√

x]

Pr[F > x]

Pr[F > x]

Pr[Y > x]
= κ · 1 · κ−1.

2

Lemma A.2 If F ∈ L2 and E[F ] < ∞, aFe ∈ L2 for any positive constant a.
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Proof: Using l’Hospital’s rule, we have

lim
x→∞

Pr[aFe > x −
√

x]

Pr[aFe > x]
= lim

x→∞

F e(x/a −
√

x/a)

F e(x/a)
= lim

x→∞

F (x/a −
√

x/a)

F (x/a)

(
1 − 1

2
√

x

)
= 1,

where we use Proposition A.3 in the last equality. 2

B. Proof of Proposition A.3

From Definition 2.3, the if part is obvious. Thus we assume F ∈ L2 and prove the only-
if part. Note that for any real number ξ, there exists a nonnegative integer k such that
−2k ≤ ξ ≤ 2k, and hence

Pr[F > x + 2k
√

x]

Pr[F > x]
≤ Pr[F > x − ξ

√
x]

Pr[F > x]
≤ Pr[F > x − 2k

√
x]

Pr[F > x]
.

Therefore it suffices to show that for any nonnegative integer k,

Pr[F > x + 2k
√

x]
x∼ Pr[F > x], Pr[F > x − 2k

√
x]

x∼ Pr[F > x]. (B.1)

We first prove the first limit in (B.1) for k = 0. For x ≥ 0, let y0 denote a real number
such that y0 ≥ x and x = y0 −

√
y0 ≥ 0. Note that given x ≥ 0, y0 is uniquely determined.

We then have

1 ≥ Pr[F > x +
√

x]

Pr[F > x]
≥

Pr[F > x +
√

y0]

Pr[F > x]
=

Pr[F > y0]

Pr[F > y0 −
√

y0]
.

Because y0 → ∞ as x → ∞ and F ∈ L2, we obtain Pr[F > x +
√

x]
x∼ Pr[F > x], which

shows that the first limit in (B.1) holds for k = 0. On the other hand, it is obvious from
the definition of L2 that the second limit in (B.1) holds for k = 0.

We now assume that (B.1) holds for some k = n ≥ 0. It then follows that

Pr[F > x + 2n
√

x]
x∼ Pr[F > x − 2n

√
x]. (B.2)

For x ≥ 0, let yn denote a real number such that yn ≥ x and x = yn − 2n√yn ≥ 0. Note
that given x ≥ 0, yn is uniquely determined and that yn → ∞ as x → ∞. We then have

1 ≥ Pr[F > x + 2n+1
√

x]

Pr[F > x]
≥

Pr[F > x + 2n+1√yn]

Pr[F > x]
=

Pr[F > yn + 2n√yn]

Pr[F > yn − 2n
√

yn]
,

from which and (B.2), we obtain Pr[F > x+2n+1
√

x]
x∼ Pr[F > x]. Therefore the first limit

in (B.1) holds for k = n + 1.
From the above discussion, we have

Pr[F > x − 2n
√

x]
x∼ Pr[F > x + 2n+1

√
x]. (B.3)

Solving x = zn+1 + 2n+1√zn+1 (zn+1 ≥ 0) with respect to
√

zn+1 yields
√

zn+1 = −2n +√
22n + x ≥ −2n +

√
x, from which it follows that 3 ·2n√zn+1 ≥ 2n {−3 · 2n + (2 + 1)

√
x} ≥

2n+1
√

x for x ≥ (3 · 2n)2. Thus we obtain for x ≥ (3 · 2n)2,

1 ≤ Pr[F > x − 2n+1
√

x]

Pr[F > x]
≤

Pr[F > x − 3 · 2n√zn+1]

Pr[F > x]
=

Pr[F > zn+1 − 2n√zn+1]

Pr[F > zn+1 + 2n+1√zn+1]
.

Noting zn+1 → ∞ as x → ∞ and using (B.3), we obtain Pr[F > x − 2n+1
√

x]
x∼ Pr[F > x],

which shows that the second limit in (B.1) holds for k = n + 1. 2
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C. Proof of Lemma 2.1

Because Pr[U(Y ) > bx] ≥ Pr[B(Y ) > bx], it suffices to show

lim sup
x→∞

Pr[U(Y ) > bx]

Pr[F > x]
≤ κ, lim inf

x→∞

Pr[B(Y ) > bx]

Pr[F > x]
≥ κ. (C.1)

In what follows, we prove the first and second inequalities in (C.1) separately, using the
following results.

Let QX(x) (x ≥ 0) denote the integrated hazard function of a nonnegative r.v. X, i.e.,
QX(x) = − log(Pr[X > x]). X belongs to class SC (subexponential concave) if (i) QX(x) is
eventually concave, (ii) limx→∞ QX(x)/ log x = ∞, and (iii) there exists x0 > 0, 0 < α < 1,
and 0 < β < 1 such that [QX(x) − QX(u)]/QX(x) ≤ α(x − u)/x for all x ≥ x0 and
βx ≤ u ≤ x (see [11, 16]).

Proposition C.1 (Proposition 1 in [11]) Consider the cumulative process {B(t)} intro-
duced in section 2.3. If E[ν2

1 ] < ∞, γ1 ≥ 0 w.p.1 and E[exp(QX(γ∗
i ))] < ∞ (i = 0, 1) for

some nonnegative r.v. X ∈ SC, there exist positive constants C and c such that

Pr

[
sup

0≤t≤x
{B(t) − bt} > u

]
≤ C

(
e−cu2/x + e−cx + xe−cQX(u)

)
, ∀x ≥ 0, ∀u ≥ 0.

Proposition C.2 For any F ∈ L and ε > 0, there exists some x0 := x0(ε) > 0 such that

Pr[F > x − u] ≤ Pr[F > x]eε(u+1), (C.2)

for all x > u + x0 and u ≥ 0, where x0 is independent of u.

Proof: The proof of Proposition C.2 is given in Appendix G. 2

C.1. Proof of the first inequality in (C.1)

Let δ and ξ denote fixed real numbers such that 0 < δ < 1 and ξ > 1, respectively, and
assume x > ξ2/(1 − δ)2. We then have 0 < δx < x − ξ

√
x and therefore

Pr[U(Y ) > bx] = Pr[U(Y ) > bx, Y > x − ξ
√

x]

+ Pr[U(Y ) > bx, δx < Y ≤ x − ξ
√

x] + Pr[U(Y ) > bx, Y ≤ δx]

≤ Pr[Y > x − ξ
√

x]

+ Pr[U(Y ) > bx, δx < Y ≤ x − ξ
√

x] + Pr[U(δx) > bx]. (C.3)

Note here that

lim
x→∞

Pr[Y > x − ξ
√

x]

Pr[F > x]
= lim

x→∞

Pr[Y > x − ξ
√

x]

Pr[F > x − ξ
√

x]
· Pr[F > x − ξ

√
x]

Pr[F > x]
= κ · 1 = κ,

where we use (2.7) and Proposition A.3 in the second equality. Thus it suffices to show that
the second and third terms on the right hand side of (C.3) are o(Pr[F > x]).

We start with the third term. Note first that

Pr[U(δx) > bx] = Pr

[
sup

0≤t≤δx
B(t) > bx

]
= Pr

[
sup

0≤t≤δx
B(t) − sup

0≤t≤δx
bt > bx − bδx

]
≤ Pr

[
sup

0≤t≤δx
(B(t) − bt) > (1 − δ)bx

]
. (C.4)
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Let Q(x) = φ
√

x for x ≥ 0, where φ > 0. The assumption of the existence of φ in
Lemma 2.1 is then rewritten to be E[exp(Q(γ∗

n))] < ∞. Because Q(x) = φ
√

x is considered
as the integrated hazard function of a r.v. that belongs to class SC (see p. 101 in [11]), we
can apply Proposition C.1 to (C.4), which ensures the existence of positive constants C and
c such that

Pr[U(δx) > bx] ≤ C
(
e−c{(1−δ)b}2x/δ + e−cδx + δxe−cφ

√
(1−δ)bx

)
.

Therefore we have
Pr[U(δx) > bx] ≤ C ′

(
e−c′x + xe−c′

√
x
)

,

where C ′ = 2C and c′ = c min
{
{(1 − δ)b}2/δ, δ, φ

√
(1 − δ)b

}
. Proposition A.2 yields

e−c′x = o(Pr[F > x]) and xe−c′
√

x = e−c′
√

x+2 log
√

x = e−c′
√

x+o(
√

x) = o(Pr[F > x]). Conse-
quently, we conclude Pr[U(δx) > bx] = o(Pr[F > x]).

Next we consider the second term on the right hand side of (C.3). Because U(u)− bu =
sup0≤t≤u B(t) − bu ≤ sup0≤t≤u(B(t) − bt) for u ≥ 0, we have

Pr[U(Y ) > bx, δx < Y ≤ x − ξ
√

x] ≤
∫ x−ξ

√
x

δx

Pr

[
sup

0≤t≤u
(B(t) − bt) > b(x − u)

]
dY (u),

where Y (x) = Pr[Y ≤ x] for x ≥ 0. Applying Proposition C.1 to the right hand side of the
above inequality, we have for some positive constants C and c,

Pr[U(Y ) > bx, δx < Y ≤ x − ξ
√

x]

≤
∫ x−ξ

√
x

δx

C
(
e−c{b(x−u)}2/u + e−cu + ue−cφ

√
b(x−u)

)
dY (u)

= C{f1(x) + f2(x) + f3(x)},

where fi(x)’s (i = 1, 2, 3) are defined as

f1(x) =

∫ x−ξ
√

x

δx

e−c1(x−u)2/udY (u), f2(x) =

∫ x−ξ
√

x

δx

e−cudY (u),

f3(x) =

∫ x−ξ
√

x

δx

ue−c3
√

x−udY (u),

respectively, with c1 = cb2 and c3 = cφ
√

b. Proposition A.2 implies that f2(x) ≤ e−cδx =
o(Pr[F > x]). Therefore, it suffices to show f1(x) = o(Pr[F > x]) and f3(x) = o(Pr[F > x]).

We first consider f3(x). Letting ĉ = c3/2, we have

f3(x) ≤ x

∫ x−ξ
√

x

δx

e−c3
√

x−udY (u) ≤ xe−ĉx
1
4

∫ x−ξ
√

x

δx

e−ĉ
√

x−udY (u), (C.5)

where the second inequality holds because e−c3
√

x−u = e−ĉ
√

x−ue−ĉ
√

x−u ≤ e−ĉx
1
4 e−ĉ

√
x−u for

0 ≤ u ≤ x − ξ
√

x and ξ > 1. Let Π3 denote a nonnegative r.v. independent of Y , whose
distribution function is given by Pr[Π3 ≤ x] = 1 − exp(−ĉ

√
x) (x ≥ 0). We then have from

(C.5),

f3(x) ≤ xe−ĉx
1
4

∫ x−ξ
√

x

δx

Pr[Π3 > x − u]dY (u) ≤ xe−ĉx
1
4 Pr[Y + Π3 > x]. (C.6)
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Further we obtain

Pr[Y + Π3 > x] ≤ Pr[Π3 > x/4] + Pr[Y > x − Π3, Π3 ≤ x/4]

= Pr[Π3 > x/4] +

∫ x/4

0

Pr[
√

Y >
√

x − u]
ĉ

2
√

u
e−ĉ

√
udu

≤ Pr[Π3 > x/4] +

∫ x/4

0

Pr[
√

Y >
√

x −
√

u]
ĉ

2
√

u
e−ĉ

√
udu, (C.7)

where we use
√

x − u ≥
√

x −
√

u for 0 ≤ u ≤ x in the last inequality. Using Proposi-
tion A.2, the first term of the right hand side of (C.7) can be evaluated as Pr[Π3 > x/4] =
exp[−ĉ

√
x/2] = o(Pr[F > x]). Applying (2.7) and

√
x−

√
u ≥

√
x/2 (0 ≤ ∀u ≤ x/4) to the

second term of the right hand side of (C.7), we obtain

lim sup
x→∞

∫ x/4

0

Pr[
√

Y >
√

x −
√

u]
ĉ

2
√

u
e−ĉ

√
udu

Pr[F > x]

= lim sup
x→∞

∫ x/4

0

Pr[
√

Y >
√

x −
√

u]

Pr[
√

F >
√

x −
√

u]

Pr[
√

F >
√

x −
√

u]

Pr[
√

F >
√

x]

ĉ

2
√

u
e−ĉ

√
udu

≤ lim sup
x→∞

sup
y≥

√
x/2

Pr[
√

Y > y]

Pr[
√

F > y]

∫ x/4

0

Pr[
√

F >
√

x −
√

u]

Pr[
√

F >
√

x]

ĉ

2
√

u
e−ĉ

√
udu

= κ lim sup
x→∞

∫ x/4

0

Pr[
√

F >
√

x −
√

u]

Pr[
√

F >
√

x]

ĉ

2
√

u
e−ĉ

√
udu. (C.8)

Noting
√

F ∈ L, it follows from Proposition C.2 that for any 0 < ε < ĉ,

lim sup
x→∞

∫ x/4

0

Pr[
√

F >
√

x −
√

u]

Pr[
√

F >
√

x]

ĉ

2
√

u
e−ĉ

√
udu < eε

∫ ∞

0

ĉ

2
√

u
e−(ĉ−ε)

√
udu < ∞. (C.9)

As a result, the left hand side of (C.7) can be evaluated in the following way.

lim sup
x→∞

Pr[Y + Π3 > x]

Pr[F > x]
< ∞. (C.10)

Applying (C.10) and limx→∞ x exp(−ĉx1/4) = 0 to (C.6) yields f3(x) = o(Pr[F > x]).

Finally we consider f1(x). Note that for 0 < u ≤ x − ξ
√

x, e−c1(x−u)2/u ≤ e−c1(x−u)2/x =
e−c̃(x−u)2/xe−c̃(x−u)2/x ≤ e−c̃ξ2

e−c̃(x−u)2/x, where c̃ = c1/2. Thus from the definition of f1(x),
we have

f1(x) ≤ e−c̃ξ2

∫ x−ξ
√

x

δx

e−c̃(x−u)2/xdY (u). (C.11)

Let Π1 denote a nonnegative r.v. independent of Y , whose distribution function is given
by Pr[Π1 ≤ x] = 1 − e−c̃x2

(x ≥ 0). It then follows that e−c̃(x−u)2/x = Pr[
√

xΠ1 > x − u].
Substituting this into (C.11), we have

f1(x) ≤ e−c̃ξ2

∫ x−ξ
√

x

δx

Pr[
√

xΠ1 > x − u]dY (u) ≤ e−c̃ξ2

Pr[Y +
√

xΠ1 > x]. (C.12)
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Further we have

Pr[Y +
√

xΠ1 > x] ≤ Pr[Π1 >
√

x/2] + Pr[Y > x − Π1

√
x,Π1 ≤

√
x/2]

≤ o(Pr[F > x]) +

∫ √
x/2

0

Pr[
√

Y >
√

x − u] 2c̃ue−c̃u2

du, (C.13)

where we use Proposition A.2 and
√

x − u
√

x ≥
√

x − u for all u ≤
√

x in the second
inequality. According to reasoning similar to the derivation of (C.8) and (C.9) with

√
x−u ≥√

x/2 (∀u ≤
√

x/2), we obtain for any ε > 0,

lim sup
x→∞

∫ √
x/2

0

Pr[
√

Y >
√

x − u] 2c̃ue−c̃u2

du

Pr[F > x]

≤ κ lim sup
x→∞

∫ √
x/2

0

Pr[
√

F >
√

x − u]

Pr[
√

F >
√

x]
2c̃ue−c̃u2

du ≤ κeε

∫ ∞

0

2c̃ue−c̃u2+εudu < ∞,

from which and (C.13) it follows that

lim sup
x→∞

Pr[Y +
√

xΠ1 > x]

Pr[F > x]
< ∞. (C.14)

Therefore combining (C.14) with (C.12) and letting ξ → ∞ yield f1(x) = o(Pr[F > x]). 2

C.2. Proof of the second inequality in (C.1)

Let ξ denote a fixed positive real number and assume x > ξ2. We then have

Pr[B(Y ) > bx] ≥
∫ ∞

x+ξ
√

x

Pr[B(u) > bx]dY (u) ≥ inf
u>x+ξ

√
x
Pr[B(u) > bx] · Pr[Y > x + ξ

√
x]

= inf
u>x+ξ

√
x
Pr

[
B(u) − bu√

u
>

b(x − u)√
u

]
Pr[Y > x + ξ

√
x]. (C.15)

For any x > 0, b(x − u)/
√

u is a nonincreasing function of u > 0 because b > 0. It thus
follows from (C.15) that for any x > ξ2,

Pr[B(Y ) > bx] ≥ inf
u>x+ξ

√
x
Pr

[
B(u) − bu√

u
>

−bξ
√

x√
x + ξ

√
x

]
Pr[Y > x + ξ

√
x]

= inf
u>x+ξ

√
x
Pr

[
B(u) − bu√

u
>

−bξ√
1 + ξ/

√
x

]
Pr[Y > x + ξ

√
x]

≥ inf
u>x+ξ

√
x
Pr

[
B(u) − bu√

u
>

−bξ√
2

]
Pr[Y > x + ξ

√
x], (C.16)

where we use
√

1 + ξ/
√

x <
√

2 in the last inequality. Note here that when Var[ν1] < ∞
and Var[γ1] < ∞, there exists some σ > 0 such that

lim
t→∞

Pr

[
B(t) − bt

σ
√

t
≤ x

]
=

1√
2π

∫ x

−∞
e−

y2

2 dy, x ∈ (−∞,∞), (C.17)
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where b = E[γ1]/E[ν1] [1, Theorem 3.2, Chapter VI]. Applying (C.17) and Proposition A.3
to (C.16), we have

lim inf
x→∞

Pr[B(Y ) > bx]

Pr[F > x]
≥ lim inf

x→∞
inf

u>x+ξ
√

x
Pr

[
B(u) − bu

σ
√

u
>

−bξ

σ
√

2

]
· Pr[F > x + ξ

√
x]

Pr[F > x]

Pr[Y > x + ξ
√

x]

Pr[F > x + ξ
√

x]
=

1√
2π

∫ ∞

−bξ

σ
√

2

e−
y2

2 dy · 1 · κ.

Consequently, letting ξ → ∞ yields the second equation in (C.1). 2

D. Proof of Lemma 3.2

As in Appendix C.1, let δ and ξ denote fixed real numbers such that 0 < δ < 1 and ξ > 1,
respectively, and assume x > ξ2/(1− δ)2. We also fix i ∈ M arbitrarily. It then follows that

Pi(N(H) > λx, S(H) = j) = Pi(N(H) > λx, S(H) = j,H > x − ξ
√

x)

+ Pi(N(H) > λx, S(H) = j, δx < H ≤ x − ξ
√

x) + Pi(N(H) > λx, S(H) = j,H ≤ δx)

≤ Pi(H > x − ξ
√

x, S(H) = j) + Pi(N(H) > λx, δx < H ≤ x − ξ
√

x) + Pi(N(δx) > λx).

(D.1)

In the same way as in Appendix C.1, we can show that

Pi(N(H) > λx, δx < H ≤ x − ξ
√

x) = o(Pr[H > x]), Pi(N(δx) > λx) = o(Pr[H > x]).

As for the first term on the right hand side of (D.1), Proposition A.3 yields

Pi(H > x − ξ
√

x, S(H) = j) = Pi(H > x − ξ
√

x)Pi(S(H) = j | H > x − ξ
√

x)

= Pr[H > x − ξ
√

x]Pi(S(H) = j | H > x − ξ
√

x)
x∼ Pr[H > x](π)j,

for any j ∈ M because H ∈ L2 and limt→∞ Pi(S(t) = j) = (π)j (∀j ∈ M). As a result,

lim sup
x→∞

Pi(N(H) > λx, S(H) = j)

Pr[H > x]
≤ (π)j, j ∈ M. (D.2)

On the other hand, it follows from (D.2), Lemma 3.1, and
∑

ν∈M Pi(S(H) = ν | N(H) >
λx) = 1 (∀x ≥ 0) that

lim inf
x→∞

Pi(N(H) > λx, S(H) = j)

Pr[H > x]

= lim inf
x→∞

Pi(N(H) > λx, S(H) = j)

Pi(N(H) > λx)

Pi(N(H) > λx)

Pr[H > x]
= lim inf

x→∞

Pi(N(H) > λx, S(H) = j)

Pi(N(H) > λx)

= lim inf
x→∞

Pi(S(H) = j | N(H) > λx) = lim inf
x→∞

(
1 −

∑
ν∈M
ν 6=j

Pi(S(H) = ν | N(H) > λx)

)

≥ 1 −
∑
ν∈M
ν 6=j

lim sup
x→∞

Pi(S(H) = ν | N(H) > λx) = (π)j, (D.3)

where the last equality is due to Remark 3.2. Lemma 3.2 now follows from (D.2) and (D.3).
2
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E. Proof of Lemma 3.3

It follows from Λ
(1)
k = θ−1Dk (k = 0, 1, . . . ), Assumption 3.2 and (3.13) that

Λ
(1)
k

k∼ Λ̃ Pr[G > k], (E.1)

which shows that (3.12) holds for n = 1. In what follows, we fix i, j ∈ M arbitrarily and con-

sider the case of n ≥ 2. Let M(n−1)+
i,j = {(l1, . . . , ln−1) ∈ Mn−1; (Λ)i,l1(Λ)l1,l2 · · · (Λ)ln−1,j >

0}, where Mm = {(l1, . . . , lm); li ∈ M (i = 1, 2, . . . ,m)} for m = 1, 2, . . . . For each
(ν, η) ∈ M2 such that (Λ)ν,η > 0, there exists a nonnegative r.v. Λν,η satisfying

Pr[Λν,η = k] =
(Λk)ν,η

(Λ)ν,η

, k = 0, 1, . . . , (E.2)

because (Λk)ν,η ≥ 0 (k = 0, 1, . . . ) and (Λ)ν,η =
∑∞

k=0(Λk)ν,η. Further because Λk = Λ
(1)
k

(k = 0, 1, . . .), it follows from (E.1) and (E.2) that for any (ν, η) ∈ M2 such that (Λ)ν,η > 0,

Pr[Λν,η > k] =

(
Λ

(1)
k

)
ν,η

(Λ)ν,η

k∼ (Λ̃)ν,η

(Λ)ν,η

· Pr[G > k].

Thus using Proposition 2.2 (a), we have(
Λ

(n)
k

)
i,j

=
∑

(l1,...,ln−1)∈Mn−1

∑
k1+···+kn>k

(Λk1)i,l1(Λk2)l1,l2 · · · (Λkn)ln−1,j

=
∑

(l1,...,ln−1)∈M(n−1)+
i,j

(Λ)i,l1(Λ)l1,l2 · · · (Λ)ln−1,j Pr

[
n∑

m=1

Λlm−1,lm > k

]

k∼
∑

(l1,...,ln)∈M(n−1)+
i,j

(Λ)i,l1(Λ)l1,l2 · · · (Λ)ln−1,j

n∑
m=1

(Λ̃)lm−1,lm

(Λ)lm−1,lm

Pr[G > k], (E.3)

where l0 = i and ln = j. Lemma 3.3 follows from (E.3) because (Λ̃)i,j = 0 if (Λ)i,j = 0. 2

F. Proof of Lemma 3.4

Note first that for any i, j ∈ M,(
Λ

(n)
k

)
i,j

=
∑

(l1,...,ln−1)∈Mn−1

∑
k1+···+kn>k

(Λk1)i,l1
(Λk2)l1,l2

· · · (Λkn)ln−1,j , ∀k = 0, 1, . . . . (F.1)

Because M is a finite set, Proposition 2.2 (b) implies that for any ε > 0 there exists a
positive constant K := K(ε) such that for all i, j, l1, . . . , ln−1 ∈ M and k = 0, 1, . . . ,∑

k1+···+kn>k

(Λk1)i,l1
(Λk2)l1,l2

· · · (Λkn)ln−1,j

Pr[G > k]
≤ K · (1 + ε)n (Λ)i,l1

(Λ)l1,l2
· · · (Λ)ln−1,j ,

where K is independent of n. Substituting the above inequality into (F.1), we have for any
i, j ∈ M, (

Λ
(n)
k

)
i,j

Pr[G > k]
≤ K · (1 + ε)n (Λn)i,j , ∀k = 0, 1, . . . .

2
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G. Proof of Proposition C.2

It is obvious that if u = 0, (C.2) holds for all x ≥ 0. Thus we consider the case of u > 0.
Note first that for any ε > 0 there exists some x0 := x0(ε) > 0 such that Pr[F > y] ≤
Pr[F > y + 1]eε for all y > x0, because F ∈ L. Note also that 0 < u/due ≤ 1 for all u > 0.
We then have

Pr [F > y]

Pr [F > y + u/due]
≤ Pr [F > y]

Pr [F > y + 1]
≤ eε, y > x0, u > 0,

from which it follows that for all x > u + x0 and u > 0,

Pr[F > x − u]

Pr[F > x]
=

due−1∏
i=0

Pr [F > x − (i + 1) · u/due]
Pr [F > x − i · u/due]

≤ edueε ≤ e(u+1)ε.

2
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