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Abstract In this paper we consider an airline seat allocation model where multiple fare classes are available
and replenishment can be allowed for the lower fare classes. Such a replenishment likely occurs whenever the
higher fare classes do not have demands large enough compared with the number of the pre-allocated seats.
Then, the lower fare classes should be reopened while the prices may be discounted during the periods left
before the departure. If the demands for high fare classes are large enough, the airlines should not discount
the prices and the replenishment may not be allowed from the point of view of revenue management. We
also allow the customers to cancel their reservations. Our model formulation is much closer to the airlines
practice. We show under some conditions that the expected revenue with replenishment is greater than the
one without replenishment and that there exists a simple optimal booking policy. Some numerical examples
are provided to confirm analytical properties of the revenue function as well as of the optimal policy.

Keywords: Inventory, airline revenue management, capacity allocation, dynamic pro-
gramming

1. Introduction

Many industries dealing with perishable products have the problem of how to sell these
products to maximize the total revenue. Such perishable products possess a property that
the products are worthless if they can not be sold beyond the certain time horizon. Airplane
seats, hotel rooms, and rental-car are examples of such products. In this paper, we deal with
airplane seats. Airline tickets are sold at several different prices for the same type of seats
by imposing various restrictions on the tickets. To increase the road factor, the airlines
sell out the seats by deep discount when there are some vacant seats at the last minute
of the departure. However, if the customers can not change their itinerary of destination
very easily, then the airlines can not expect a large amount of demands even if the airlines
provide customers deep discount fares.

The purpose of this paper is to analyze the seat inventory model of allowing the discount
during the sales period, not as sales at the end of period. We call this “replenishment” in
this paper. If the number of demands is less than the pre-allocated seats in a fare class, then
the airlines discount some seats for the next period. On the other hand, if the number of
demands is larger than the pre-allocated seats, then they will not replenish in the following
period. Moreover, there are three types of customers. First type of customers will buy their
tickets after making the reservation. Second types are of customers who do not eventually
buy the tickets even though they made the reservations. Third type of customers wish to
buy their tickets without reservations. In this paper we distinguish these types of customers
by taking account of this fact.

There are many papers that studied the model of dealing with multiple fare classes.
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Curry [4], Wollmer [13], Brumelle and McGill [1] analyze the single-leg model in which the
booking limit for each fare classes increase monotonically from low to high as the time ap-
proaches to the flight departure. Robinson [9] generalizes Brumelle and McGill’s optimality
conditions to the case when fares are nonmonotonic. Our model is different from the exist-
ing model in a sense that we allow the airlines to reopen the reservation for the lower fare
classes, depending on whether the amount of demands is larger than the pre-allocated seats
or not. On the other hand, there exist dynamic capacity control models which allow passen-
gers to arrive in any order. These articles are Subramanian et al. [11], Lee and Hersh [7],
Liang [8], and Brumelle and Walczak [3]. Moreover, there are several papers that analyze
the stochastic models with discrete price changes (see Feng and Gallego [5], Feng and Xiao
[6]).

In section 2, we introduce notations and assumptions, and formulate a multiple class
seat allocation model. In section 3, we derive an optimal protection level for each fare
class, and discuss analytical properties by comparing the model with non-replenishment
model. In section 4, we extend the replenishment model into the model that the number
of confirmations depends on the number of reservation. Finally, we provide some numerical
examples to confirm analytical properties of the optimal protection level as well as the
expected revenue.

2. The Airline Seat Inventory Control with Replenishment

In this section we present the airline seat inventory model with replenishment. We assume
that there are N fare classes and the reservation requests come in a way of a mixture. The
confirmation of each class will take place at the time of receipt of full payment for the
tickets within the target period for each class. Assume that we set target period to one fare
class and that arrivals of lower-fare classes come first (see Figure 1). The price of tickets
and target period are under the one-to-one relationship. Let i be an index of the period
with the time index running backward (i = 1 is the last period, and i = N − 1 is the first
period). Also, we ascribe the number of confirmation to the demands for the target period,
and assume that the demands for different booking classes are independent of each other.

When the demand for certain class does not fill the allocated seats, the airlines replenishes
the leftover seats with two fare class which are cheaper than the present seats. Note that
the demands for replenishment period are independent of one for target period.

Figure 1: Target period and reservation period
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Figure 2: An inventory segmentation

We use the following notations;
• C : the capacity of the plane,

• N : the number of classes,

• pi : the fare for class i (pN < · · · < p1),

• x : the number of the remaining seats, (state variable),

• yi : the nested protection level for class i after accepting the customers for class i + 2,
yi−1 ≤ yi ≤ x, i = 1, · · · , N − 1, y0 ≡ 0, (decision variables),

• Di : the random demand of class i in period i,

• D
′
i : the random demand of class i + 2 in period i.

In period i, a sequence of operations is as follows:
(i) At the beginning of period, if the remaining capacity x is larger than the protection

level yi for class i, then the class i + 2 should be reopened and the airlines accepts the
replenishment demands for class i + 2 up to x − yi. Note that the passengers who are
accepted in replenishment period have to pay the fare at the time of booking. On the
other hand, if the remaining capacity x is less than or equal to the protection level yi,
then the class i + 2 should not be opened in this period.

(ii) The demand Di occurs in target period, and the airlines accepts bookings up to the
booking limit that is equal to the capacity remaining minus the protection level for class
i − 1.

(iii) We follow the same procedure for period i − 1 as for period i. And the remaining seats
at period i − 1 is given by

x − min{D′

i, x − yi} − min{Di, (x − yi−1 − (x − yi) ∧ D
′

i)
+} (2.1)

where a ∧ b := min(a, b) and a+ := max(a, 0).
The value of min{D′

i, x − yi} is the sales when the airlines replenishes the demands for
class i + 2. The value of min{Di, (x − yi−1 − (x − yi) ∧ D

′
i)

+} is the number of passengers
for class i, which can be rewritten as follows;

min{Di, (x − yi−1 − (x − yi) ∧ D
′

i)
+} = min{Di, yi − yi−1 + (x − yi − D

′

i)
+}.
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For i = N − 1, the airlines has no occasion to replenish the lower-fare class because
there is no fare class N + 1. Hence, we assume that the demands for class N come from the
replenishment period in i = N − 1. Thus, we handle the following substitution;

D
′

N−1 = DN ,

pN+1 = pN .

Figure 2 illustrates a sequence of operations for i = 1, · · · , N − 1. Let gi(x,Di, D
′
i, yi)

be the remaining seats at the end of period i, that is,

gi(x,Di, D
′

i, yi) = x − min{D′

i, x − yi} − min{Di, yi − yi−1 + (x − yi − D
′

i)
+}.

Moreover, let vi(x, yi) be the expected revenue starting in x seats remaining at the beginning
of period i with a protection level yi over the truncated horizon i, · · · , N − 1. Then, the
total expected revenue for i = i, · · · , N − 2 is given by

vi(x, yi) = E[pi+2 min{D′

i, x − yi} + pi min{Di, yi − y∗
i−1 + (x − yi − D

′

i)
+}

+ Vi−1(gi(x,Di, D
′

i, yi))], i = 1, · · · , N − 2 (2.2)

and the expected revenue in period N − 1 is given by

vN−1(C, yN−1) = E[pN min{DN , C − yN−1}
+ pN−1 min{DN−1, yN−1 − y∗

N−2 + (C − yN−1 − DN)+}
+ VN−2(gN−1(C,DN−1, DN , yN−1))], (2.3)

where y∗
i is the optimal protection level for class i and Vi−1(·) is the optimal expected revenue

for class i − 1.
The optimal expected revenue is given by

Vi(x) = max
0≤yi≤x

vi(x, yi), (2.4)

with the boundary conditions

V0(x) = 0, Vi(0) = 0 ∀x and i = 1, · · · , N − 1.

3. Optimal Booking Policy and Some Properties

In this section, we derive an optimal booking policy and investigate some properties of
the model. To simplify the analysis, we consider the case that the capacity is continuous.
Although the number of seats is discrete, the continuous model can be an approximation to
the discrete one, provided that the number of seats is large enough.

Next, we investigate some analytical properties of vi(·, ·) and Vi(·) to identify the optimal
booking policy.
Lemma 3.1. (a) vi(x, yi) is quasi-concave in yi for each x.
(b) Vi(x) is non-decreasing and concave in x for each i.

Proof. We prove (a) and (b) simultaneously, by induction. Letting i = 1, the expected
revenue is given by

v1(x, y1) = E[p3 min{D′

1, x − y1} + p1 min{D1, y1 + (x − y1 − D
′

1)
+}]. (3.1)
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Then we have

∂v1(x, y1)

∂y1

= [p1F 1(y1) − p3]G1(x − y1), (3.2)

where Fi and Gi are the probability distribution of random variable Di and D
′
i, respectively.

Since the term in brackets in equation (3.2) is non-increasing in y1 and G1(x − y1) is non-
negative, it follows that v1(x, y1) is quasi-concave in y1. Therefore, the optimal protection
level for class 1 is given by

y∗
1 = F

−1

1

(
p3

p1

)
. (3.3)

We take first and twice-derivative in x to see the concavity of V1(x),

dV1(x)

dx
= p3G1(x − y∗

1) + p1

∫ x−y∗
1

0

F 1(x − k)dG1(k) > 0, (3.4)

d2V1(x)

dx2
= −[p3 − p1F 1(y

∗
1)]g1(x − y∗

1) − p1

∫ x−y∗
1

0

f1(x − k)dG1(k)

= −p1

∫ x−y∗
1

0

f1(x − k)dG1(k) < 0. (3.5)

The last equality of equation (3.5) follows equation (3.3). Hence, V1(x) is non-decreasing
and concave in x. Suppose that (a) and (b) hold for i ≥ 2. Differentiating vi(x, yi) with
respect to yi, then we have

∂vi(x, yi)

∂yi

=

[
−pi+2 + piF i(yi − y∗

i−1) +

∫ yi−y∗
i−1

0

d

dyi

Vi−1(yi − j)dFi(j)

]
Gi(x − yi)

=

[
pi − pi+2 −

∫ yi−y∗
i−1

0

(pi −
d

dyi

Vi−1(yi − j))dFi(j)

]
Gi(x − yi). (3.6)

When i = N − 1, we substitute GN−1(x − yN−1) for FN−1(C − yN−1).
Let φ(yi) be the term in brackets in (3.6) and we differentiate φ(yi) with respect to yi,

then we obtain,

dφ(yi)

dyi

= −(pi − pi+1)fi(yi − y∗
i−1) +

∫ yi−y∗
i−1

0

d2

dy2
i

Vi−1(yi − j)dFi(j). (3.7)

By the inductive assumption, d2

dy2
i
Vi−1(yi − j) < 0. Since dφ(yi)

dyi
is non-positive, φ(yi) is non-

increasing in yi. Hence, vi(x, yi) is quasi-concave in yi.
On the other hand, we obtain the first and second derivatives of Vi(x) as follows;

dVi(x)

dx
= pi+2Gi(x − y∗

i ) + pi

∫ x−y∗
i

0

F i(x − y∗
i−1 − k)dGi(k)

+

∫ x−y∗
i

0

∫ x−y∗
i−1−k

0

d

dx
Vi−1(x − k − j)dFi(j)dGi(k) > 0, (3.8)

d2Vi(x)

dx2
= −pi

∫ x−y∗
i

0

fi(x − y∗
i−1 − k)dGi(k)

+

∫ x−y∗
i

0

∫ x−y∗
i−1−k

0

d2

dx2
Vi−1(x − k − j)dFi(j)dGi(k) < 0. (3.9)

Hence, Vi(x) is non-decreasing and concave in x.
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Theorem 3.1. The optimal protection level y∗
i , i = 1, · · · , N − 1, is given by

y∗
i =


0 if ∂vi(x,0)

∂y
< 0,

max
{

y : Hi

(
pi − d

dy
Vi−1(y − j)

)
< pi − pi+2

}
,

if ∂vi(x,C)
∂y

< 0 < ∂vi(x,0)
∂y

,

C if 0 < ∂vi(x,C)
∂y

,

(3.10)

where

Hi(uj) =

∫ yi−y∗
i−1

0

ujdFi(j). (3.11)

Proof. By Lemma 1 (a), v1(x, y1) is quasi-concave and an optimal booking policy given by
(3.3) is optimal for period 1. By Lemma 1 (b), V1(x) is concave. Thus, the same argument
as well can be applied backward through the periods in the sequence i = 1, · · · , N − 1.

Corollary 3.1. If the replenishment demand for i = 1, · · · , N − 1 is zero, then equation
(2.2) is simplified as follows;

vi(x, yi−1) = E[pi min{Di, x − yi−1} + V i−1(x − min{Di, x − yi−1})]. (3.12)

The optimal protection level is given by

yi−1 ≡ max

{
y : pi <

d

dy
V i−1(y)

}
. (3.13)

The proof has been carried out by Curry [4]. We call this model a non-replenishment
model.
Proposition 3.1. If dVi(x)

dx
≥ dV i(x)

dx
for all x, then the optimal protection level for the

replenishment model is greater than or equal to the one for non-replenishment model, that
is, y∗

i ≥ yi, i = 1, · · · , N − 1.

Proof. In order to compare the optimal protection level for equation (3.10) with the one for
(3.13), we compute the first derivative of vi+1(x, yi) with respect to yi as follows;

∂vi+1(x, yi)

∂yi

=

[
−pi+1 +

d

dyi

V i(yi)

]
F i(x − yi). (3.14)

Letting φi(yi) be the term in bracket in equation (3.14), for i = 1 we have

φ1(y1) − φ1(y1) = p2 − p3 > 0. (3.15)

Since the φ1 and φ1 are non-increasing function for y1, the relationship between the optimal
protection levels for replenishment and non-replenishment is given by y∗

1 ≥ y1. To apply
induction, we assume that proposition 3.1 holds for fare class 1, · · · , i − 1. Then, we have

φi(yi) − φi(yi) = pi − pi+2 −
∫ yi−y∗

i−1

0

(
pi −

d

dyi

Vi−1(yi − j)

)
dFi(j)

+ pi+1 −
d

dyi

V i(yi), (3.16)
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where

d

dyi

V i(yi) = pi −
∫ yi−yi−1

0

(
pi −

d

dyi

V i−1(yi − j)

)
dFi(j).

Therefore, equation (3.16) can be rewritten as follows;

φi(yi) − φi(yi) = pi+1 − pi+2 +

∫ yi−y∗
i−1

0

(
d

dyi

Vi−1(yi − j) − d

dyi

V i−1(yi − j)

)
dFi(j)

+

∫ yi−yi−1

yi−y∗
i−1

(
pi −

d

dyi

V i−1(yi − j)

)
dFi(j) ≥ 0. (3.17)

From the assumption, the second term in integral of (3.17) is positive. And third term in
integral is also positive within [yi − y∗

i−1, yi − yi−1]. Hence, we obtain y∗
i ≥ yi.

The following Corollary represents that the expected revenue of the replenishment model
is greater than one of the non-replenishment model when the demands for normal period is
smaller than the allocated seats.
Corollary 3.2. If Di < y∗

i − y∗
i−1 +(x− y∗

i −D
′
i)

+, then Vi(x) > V i(x) for i = 1, · · · , N − 1.

Proof. We follow an induction argument. For i = 1, we have

V1(x) − V 1(x)

= E[v1(x, y∗
1) − v1(x, y1) | D1 < y∗

1 + (x − y∗
1 − D

′

1)
+]

= E[p3 min{D′

1, x − y1} + p1(D1 − min{D1, x}) | D1 < y∗
1 + (x − y∗

1 − D
′

1)
+] > 0.

(3.18)

Suppose that Corollary 3.2 holds for fare class 1, · · · , i− 1, and then show that it holds for
i. Then, we obtain

Vi(x) − V i(x)

= E[vi(x, y∗
i ) − vi(x, yi−1) | Di < y∗

i − y∗
i−1 + (x − y∗

i − D
′

i)
+]

= E[pi+2 min{D′

i, x − y∗
i } + pi(Di − min{Di, x − yi−1}) + Vi−1(gi(x,Di, D

′

i, yi))

− V i−1(x − min{Di, x − yi−1}) | Di < y∗
i − y∗

i−1 + (x − y∗
i − D

′

i)
+] > 0. (3.19)

Hence, Vi(x) > V i(x).

The next proposition shows that the more demands for replenishment period increases,
the more optimal expected revenue increases.

Proposition 3.2. If D̃
′
i dominates D

′
i for i = 1, · · · , N − 1, then we obtain Vi(x, D̃

′
i) ≥

Vi(x,D
′
i).

Proof. From equation (3.8), min{D′
i, x − y∗

i }, min{Di, y
∗
i − y∗

i−1 + (x − y∗
i − D

′
i)

+} and
Vi−1(gi(x,Di, D

′
i, y

∗
i )) are non-decreasing in x. Hence, it can be shown from first-oder

stochastic dominance that

Vi(x, D̃
′

i) ≥ Vi(x,D
′

i). (3.20)
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4. The Model with Demands Depending on the Number of Reservation

In this section we analyze the model that there is a dependency between the number of
reservation requests and the number of confirmation. In the proceeding section, we as-
sumed that the airlines accepts the replenishment demands as long as the remaining seats
are larger than the protection level of the next higher class. However, if the number of
reservation requests is large enough, then it may not be profitable for the airlines to accept
the replenishment demands. Therefore, we extend the previous model into the model that
the sales volume for the replenishment period depend on the number of the reservation
requests.

Let Di be the total number of reservation requests for class i up to the starting time
of target period i. Suppose that the reservation request is accepted up to the allocated
seats for class i, yi − yi−1. Also, we assume that Di and D

′
i are independent to each other,

but it is not assumed that Di and Di are independent. We consider the case that Di is
greater than the allocated seats for class i, yi − yi−1. Because, if Di is less than yi − yi−1,
then the airlines does not lose the revenue from accepting the replenishment demands. The
conditional probability distribution function of Di given that Di ≥ yi − yi−1 is as follows;

FDi
∗ FDi

(a, a) = Pr(Di ≤ a | Di ≥ a). (4.1)

Let ψi be the term in brackets in (2.2), and the expected revenue for class i is given by

ṽi(x, yi) = E[ψi(yi) | Di ≥ yi − y∗
i−1] (4.2)

and the optimal expected revenue is given by

Ṽi(x) = max
0≤yi≤x

ṽi(x, yi). (4.3)

The part of condition in FDi
∗ FDi

depends on the protection level of higher class yi. Thus,
when we differentiate ṽi(x, yi) with respect to yi to find the optimal protection level, it turns
out to be very complex expressions. Now, we treat with demand as discrete, and consider
the situation that the airlines has already had yi − yi−1 −1 requests for class i, and the next
passenger request arrives. If the passenger pays the fare in target period, then the expected
revenue is ṽi(x, yi). Otherwise, the expected revenue is ṽi(x, yi − 1). Since the number of
request Di is greater than of equal to yi − y∗

i−1 for each case, we will be able to drop the
derivative of the part of Di ≥ yi − y∗

i−1 in future calculations. To hold the property of
Lemma 1, we set the following assumption.

Assumption 4.1. Pr(Di ≥ yi − y∗
i−1 | Di ≥ yi − y∗

i−1) is non-increasing in yi.

This assumption is similar in intent to “monotonic association property” in Brumelle et
al. [2]. From this assumption, the main change from section 2 is only that Fi is replaced by
FDi

∗ FDi
. By the same argument as section 2, we obtain the optimal protection level for

class i as follows;

ỹi =


0 if ∂vi(x,0)

∂yi
< 0,

max{yi : H̃yi−y∗
i−1,yi−y∗

i−1
(pi − d

dyi
Ṽi−1(yi − ai)) < pi − pi+2},

if ∂vi(x,C)
∂yi

< 0 < ∂vi(x,0)
∂yi

,

C if 0 < ∂vi(x,C)
∂yi

,

(4.4)

c© Operations Research Society of JapanJORSJ (2009) 52-4
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where

H̃s,t(uai
) =

1

FDi
(t)

∫ ∞

t

∫ s

0

uai
fDi,Di

(ai, ai)daidai. (4.5)

Corollary 4.1. For N = 2, the expected revenue is

ṽ1(C, y1) = E[p2 min{D′

1, C − y1} + p1 min{D1, y1 + (C − y1 − D
′

1)
+} | D1 ≥ y1]. (4.6)

Then, the optimal protection level for class 1 is given by

ỹ1 ≡ max

{
y : Pr(D1 ≥ y | D1 ≥ y) <

p2

p1

}
. (4.7)

5. Numerical Examples

In this section we present numerical examples to explain the result obtained in sections 3
and 4. First, we compare the models with and without replenishment. Second, we make
a comparison between the models with the demands depending on either the number of
reservations or the number of confirmations.

5.1. The result of section 3

We assume that there are four fare classes, and that Di and D
′
i are independently normally

distributed with means µi, µ
′
i, and variances σ2

i , σ
′2
i , (here after abbreviated by N(µ, σ))

respectively. Table 1 shows the specific values of the parameters and Table 2 presents the
demand data. Figure 3 draws the optimal protection levels for the replenishment model
and non-replenishment model, and Figure 4 shows the improvement rate of maximum ex-
pected revenue. The horizontal axis presents the demand rate which comes from demand
parameters for Di in Table 2. For example, if the demand rate is 1.5, then Di follows
N(1.5µi, 1.5σi) for each i. We can see that the value of y∗

i is greater than yi for each i. Also,
the replenishment model shows better performances than the non-replenishment model as
long as the demand is low.

Next, we investigate the influence of demand change in replenishment period. In Figure
5, we study how the maximum expected revenue changes as the demand rate increases.

5.2. The result of section 4

Suppose that Di and Di are bivariately normally distributed with means µi, µi, variances
σ2

i , σ2
i , and correlation ρi. In this numerical example, we also use the data of Table 1 and

2. Note that ρi are equal to 0.9 for each i. Figure 6 shows a comparison between the
independent and dependent models. Note that we assume that the demand rate is rate of
demand parameters for Di and Di. For each class, the value of ỹi is greater than y∗

i .
In the dependent model, we know that there are enough number of reservations. Thus,

the more reservations are available, the more seats are allocated to prevent the bargain
sale from replenishment as much as possible. When demand rate is larger than 1.4, the
protection level for class 2 increases suddenly because there are enough demands for two
high fare classes to fill the number of total seats.

Table 1: The data for numerical example

C N p1 p2 p3 p4

200 4 950 450 300 230

c© Operations Research Society of JapanJORSJ (2009) 52-4
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Table 2: Demand parameters

Demand/Class i 1 2 3 4

Normal N(µi, σi) N(17.3,6.2) N(35.1,12.0) N(48.6,18.5) N(65.2,20.3)

Replenishment N(µ
′
i, σ

′
i) N(8.2,3.0) N(10.5,5.0) — —

Reservation N(µi, σi) N(20.0,5.5) N(40.2,12.5) N(55.5,20.3) —
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6. Conclusion

In this paper, we have proposed a seat inventory model where multiple fare classes are
available and replenishment can be allowed for the lower fare classes. We also have derived
an optimal booking policy, and showed the effectiveness of the expected total revenue in
our model by comparing our model with the existing models. Extending our model could
be fruitful directions for future research. First, it is of interest to consider the simultaneous
determination of the number of seats and selling price for replenishment seats based on the
number of the remaining seats. Second, for practical purposes the continuous seat model
for the first or business classes should be considered. Third, the distribution of high fare
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demands should depend on the demand of lower fare class. These extensions would lead to
additional insights and closer agreement with airlines practice.
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