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Abstract In this paper an ambulance service facility problem is considered in an urban area with a
polygonal shape. The objective of this research is to locate the facility under bi-criteria. One criterion is to
minimize the maximum weighted sum of distances measured by A-distance in the route which passes from
the facility to the hospital by way of the scene of accident. The other is to maximize the preference function
of the facility site. Usually an optimal site that optimizes both criteria does not exist and so we seek some
non-dominated sites for the facility after defining notion of non-dominated site.
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1. Introduction

Models so far considered as facility location problems assume either Euclid distance or Rec-
tilinear distance. But it is not enough to cover all actual cases, especially urban area case
and so we adopt A-distance introduced by Widmayer et al. [7] which is a generalization of
Rectilinear distance, that is, the distance determined by the given multiple directions (Rec-
tilinear distance is determined by vertical and horizontal directions). Further we introduce
preference function of the facility site ([4]). This implies that we must take construction
cost, safety etc into consideration for determination of the site of the facility, that is, not
only customer side but also the local government side responsible for the construction of
the facility should be considered in an actual problem. Especially for site of an ambulance
facility, safety and security are very important. Our model is an extension of the emergency
facility model considered in [3]. Of course there exist many related works about emergency
facility (please see [1] and [6] for a excellent summary) since Elzinga and Hearn [2] have
considered mini-max model under rectilinear distance and given a geometric solution pro-
cedure. Section 2 formulates our model and derives useful properties. Based on the results
in Section 2, Section 3 proposes a solution procedure for obtaining some non-dominated
facility sites after definition of non-dominated site. Section 4 summarizes this paper and
discusses further research problems.

2. Problem Formulation

We consider an ambulance service station location problem given as follows:

(1) If an accident (demand) occurs, the ambulance servers rush to the scene of accident
(demand point) and bring the injured persons to the nearest hospital as soon as possible.
We consider a polygonal area X where an ambulance service station should be located,
demand occurs and there exist m hospitals H1, H2, · · · , Hm.
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(2) For each point p = (x, y) in X membership function is attached denoting the preference
with respect to construction of the station at the point.

(3) Our objective is to locate the station so as to minimize the maximum weighted A-
distance of the route from the station to the hospital via the demand point (scene of
accident) and maximize the preference of the station site. As is shown below, rectilinear
distance is a special case of A- distance So we think using A-distance is more realistic
than that of rectilinear distance.

(4) Let S(Q) denote the nearest hospital to the point Q. Then we formulate an ambulance
service station problem under the above setting (1),(2),(3) as the following problem PM.

PM :Minimize MaxQ∈XWR(p,Q)(= w1dA(p.Q) + w2dA(Q.S(Q)))
Maximize µp(p)
subject to p ∈ X

(2.1)

where w1, w2 are positive weights corresponding to the importance (emergency) of A-
distance dA(p, Q) from the demand point Q to the station site p and that of dA(Q,S(Q))
from the demand point Q to the nearest hospital S(Q), and we assume that w1 ≥ w2

since for the purpose of the station is to rush to the accident site. We consider the
satisfaction degree about A-distance instead of A-distance directly with respect to Q for
fixed p, i.e., the following membership functions on A-distance.

µ1(dA(p,Q)) =


1 (dA(p,Q) ≤ f1)

1− dA(p,Q)−f1

e1−f1
(f1 ≤ dA(p,Q) ≤ e1)

0 (dA(p,Q) ≥ e1)

(2.2)

µ2(dA(Q,S(Q))) =


1 (dA(Q,S(Q)) ≤ f2)

1− dA(Q,S(Q))−f2

e2−f2
(f2 ≤ dA(Q,S(Q)) ≤ e2)

0 (dA(Q,S(Q)) ≥ e2)

(2.3)

where e1, f1 are critical distances of satisfaction with respect to the distance dA(p,Q)
and e2, f2 those with respect to the distance dA(Q, S(Q)). That is if dA(p,Q) is over
e1 , then the situation becomes severe (not satisfied at all) and ideal distance is less
than f1 (satisfied completely). So distance dA(p,Q) is usually considered between f1 and
e1. For dA(Q,S(Q)), the situation is similar but it does not depend on the station site.
Anyway we should consider the weighted sum of A-distance given as w1 = 1

e1−f1
and

w2 = 1
e2−f2

. (we assume that (e1 − f1) ≤ (e2 − f2) , i.e., w1 ≥ w2 since usually rushing

accident site and making minimal processing to injured person is more important) if the
problem is meaningful, that is, not trivial (maximal minimum satisfaction degree is 1),
nor infeasible (maximal minimum satisfaction degree is 0). This weighted sum has a
meaning, especially maximum value of this sum among Q. Since usually there is no site
that optimizes both criteria, that is, the maximum weighted A-distance and preference
function, we seek some non-dominated sites.

First we introduce A-distance and derive some useful properties.

c⃝ Operations Research Society of Japan JORSJ (2009) 52-3



Ambulance Facility Problem 341

A-distance

There exists a set of directions A = {α1, α2, · · · , αa} where each αi, i = 1, 2, . . . , a is an
angle from x axis in an orthogonal coordinate and let 0◦ ≤ α1 < α2 < · < αa < 180◦.
Hereafter if no confusion occurs, directions αi, i = 1, 2, . . . , a and angles αi, i = 1, 2, . . . , a
are used as the same meaning.

Directions αj.αj+1 are called neighboring where αa, α1 are also called neighboring, that
is αa+1 is interpreted as α1. Further a line, a half line and a line segment are called A-
directional or A-oriented respectively (here we call them as A line, A half line and A line
segment respectively also) if their directions are ones of αi, i = 1, 2, . . . , a.

Then A distance dA between two points p1, p2 ∈ R2 is defined as follows.

dA(p1, p2) =

{
d2(p

1, p2) if direction p1p2 is A−oriented
minp3∈R2 dA(p1, p3) + dA(p3, p2) otherwise

(2.4)

where d2(p
1, p2) is the Euclidean distance between p1 and p2. Figure 1 illustrates how to

calculate A-distance, that is, making the smallest parallelogram with line segment p1p2 as
one diagonal line (αi, αj are neighboring A line segments).

Figure 1: A-distance between p1 and p2

According to the result in [5], when αj < an angle of the line connecting demand point i
with the station site (x, y) < αj+1, parallelogram is constructed by using neighboring angles
αj, α[j+1 and so

di = M1|m2(pi − x)− (qi − y)|+ M2|m1(pi − x)− (qi − y)| (2.5)

where (pi, qi) is coordinates of demand point i and

m1 = max(tan αj, tan αj+1),m2 = min(tan αj, tan αj+1),M1 =

√
1+m2

1

m1−m2
,M2 =

√
1+m2

2

m1−m2

If either αj or αj+1 is 90◦ , then we interpret

M1 = limm1→∞

√
1+m2

1

m1−m2
= 1,

M2|m1(pi − x)− (qi − y)| = lim
m1→∞

√
1 + m2

2

m1 −m2

|m1(pi − x)− (qi − y)| = |pi − x| (2.6)
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Since in the rectilinear distance case, we consider as a = 2, α1 = 0◦, α2 = 90◦,m1 →∞,m2 =
0 and so di = | − (qi − y)|+ |pi − x| = |pi − x|+ |qi − y|. This means rectilinear distance is
a special case of A-distance.

A-circle with center p and radius r is 2a polygon where vertices are intersection points
between All A half-lines from p and ordinary circle with center p and radius r. Please
refer to Figure 2 as an example of A-circle where a1, a2, a3 are A-line segments and so
hexagonal shape contacted with an ordinary circle. Note that edges of A-circle are denoted
by directions β1, β2, β3 and distance to any points p′ on the line segment p′p′′(= β3) from p
is r.

Figure 2: An example of A-circle

Of course when the line connecting demand point i with the station site p = (x, y) is

A-oriented, di =
√

(pi − x)2 + (qi − y)2 (Euclidean distance between demand point i and

the station).
Now we define non-dominated site and review the Voronoi diagram.

The definition of Non-dominated site
If R(p2) ≥ R(p1), µP (p1) ≥ µP (p2) and at least one inequality holds without equality

for the sites p1 = (x1, y1), p
2 = (x2, y2) ∈ X, then we call p1 dominates p2 where R(p) =

max{WR(p,Q)|Q ∈ X} , i.e., maximal weighted sum of A-distance in the route from the
station site p to all demand points. If there exists no site that dominates p, then p is called
non-dominated site.

Voronoi diagram
For a set of v points VT = {V T1, V T2, · · · , V tn} , Voronoi polygon V TA(Ti) with respect

to V Ti and A-distance on X is defined as follows:

V TA(V Ti) =
∩
j ̸=i

{p|dA(p, V Ti) ≤ dA(p, V Tj), p ∈ x} (2.7)

The set of all Voronoi polygons for the points in it VT is a partition of X and called
Voronoi diagram. We construct Voronoi diagram V DA(H) with respect to the set of hospital
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Ambulance Facility Problem 343

points H = {H1, H2, · · · , Hm} and A-distance on the area X. in order to solve the problem.
Figure 3 illustrates Voronoi diagram with respect to Hospitals. It is done in O(m log m)
computational time [7].

Then we have the same properties as the results in [5] though in that case not necessarily
w1 ̸= w2.

Figure 3: Voronoi diagram with respect to hospitals H1, H2, H3

Theorem 1 For the line segment DE with endpoints D,E and points B,C not on DE,
suppose BD and BE are A-oriented adjacent orientations αj, αj+1. Then the weighted
sum of A-distance among paths between B and C via point T on the line segment DE,
w1dA(B, T ) + w2dA(T, C) is maximized when T=D or E.

(Proof)
The lines of all orientations of A through C partition the line segment DE into subin-

tervals [Fk, Fk+1], k = 0, 1, . . . , q− 1 where F0 = D, Fq = E and Fk, k ̸= 0, q are cross points
between DE and all A-oriented lines through C. Consider the certain subinterval [Fk, Fk+1].
By a suitable transformation, we assume DE is x axis, Fk = (0, 0), Fk+1 = (e, 0), B = (b1, b2)
and C = (c1, c2) without any loss of generality. Then for point T = (x, 0), (0 ≤ x ≤ e),

Rk
A(x) = w1dA(B, T ) + w2dA(T, C) = w1M1|m2(x− b1) + b2|

+w1M2|m1(x− b1) + b2|+ w2M3|m4(x− c1) + c2|+ w2M4|m3(x− c1) + c2| (2.8)

where

m1 = max(tan αj, tan αj+1),m2 = minx(tan αj, tan αj+1),M1 =

√
1+m2

1

m1−m2
,M2 =

√
1+m2

2

m1−m2
,m3 =

max(tan αi, tan αj+1),m4 = minx(tan αi, tan αi+1),M3 =

√
1+m2

3

m3−m4
,M4 =

√
1+m2

4

m3−m4

and αj, αj+1 are the orientations corresponding to the subinterval [Fk, Fk+1] (Figure 4 il-
lustrates the situation). Rk

A(x) is a convex function and so maximum value of Rk
A(x) is
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Figure 4: Relation between segment DE and neighboring direction

attained at x=0 or x=e, i.e. T = Fk or Fk+1. Thus the candidate points of maximum
A-distance path is F0, · · · , Fq. Since each Fk, k = 1, 2, . . . , q − 1, dA(Fk, C) = d2(Fk, C),
dA(F0, C) ≥ d2(F0, C), dA(Fq, C) ≥ d2(Fq, C) and αj, αj+1 are adjacent orientations, then
dA(B < T ) + d2(T, C), for T ∈ DE, is considered as a path length between B and C via
T ∈ DE.

Now let D = (0, 0), E = (e′, 0), B = (b1, b2) and C = (c1, c2) without any loss of
generality. Then for T = (x, 0), (0 ≤ x ≤ e′),

w1dA(B, T ) + w2d2(T, C) = w1M1|m2(x− b1) + b2|

+w1M2|m1(x− b1) + b2|+ w2

√
(x− c1)2 + c2

2 (2.9)

Each term of right hand side in the above expression is convex function ofx. So maximum
of w1dA(B, T ) + w2dA(T, C) is attained at x = 0 or e′, i.e. D or E. Further the path length
through D or E is not less than w1dA(B, D) + w2d2(D,C) or w1dA(B,E) + w2d2(E, C) ,
because either CD or EC is necessarily A-oriented. Therefore maximum is attained at D or
E.

Q. E. D.

Further we relax the constraints that BD and BE have αj and αj+1 oriented respectively
from Theorem 1.

Theorem 2 For the line segment DE with endpoints D,E and points B,C not on DE,
w1dA(B, T ) + w2dA(T, C), T ∈ DE is maximized when T=D or E.

Proof
We draw all A-oriented half lines from B and C, and let all intersections of these lines

and DE be T1, T2, · · · , Tt−1 by ordering from D. Further let T0 = D and Tt = E. Then the
situation may be interpreted as Figure 5. By Theorem 1, when consider the subinterval
T ∈ [Ti−1, Ti+1], w1dA(B, T ) + w2dA(T, C) is maximized at Ti−1 or Ti+1. So Ti is dropped
from candidates of maximizer. In turn, when considering T ∈ [Ti−2, Ti], Ti−1 is dropped by
Theorem 1. Continuing this way, only remaining candidates are D,E and points as Ti+7
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which are intersections between DE and certain A -lines from both B and C. Let all points
on DE with same property as Ti+7 be T ′

1 · · · , T ′
ℓ. Then

w1dA(B, T ′
i ) + w2dA(T ′

i , C) = w1d2(B, T ′
i ) + w2d2(T

′
i , C), i = 1, . . . , ℓ (2.10)

since both BT ′
i and CT ′

i are A-oriented. Since Euclidean distance is a convex function, then
w1d2(B, T ) + w2d2(T, C), T ∈ DE is maximized at T = D or E. Thus

w1dA(B, D) + w2dA(D, C) ≥ w1d2(B, D) + w2d2(D, C) (2.11)

w1dA(B,E) + w2dA(E, C) ≥ w1d2(B, E) + w2d2(E, C) (2.12)

implies w1dA(B, T ) + w2dA(T,C), T ∈ DE is maximized when T = D or E.

Figure 5: Intersections between each A half line from B,C and line segment DE

Q. E. D.

Figure 6 illustrates a small example (m=6) of Voronoi diagram with respect to H =
{H1, · · · , Hm}. Consider any interior point E of X on a Voronoi edge and draw the half
line originating from the facility P and through E. Let the intersection of this half line and
the other Voronoi edge of same Voronoi polygon as E be F.

Further let the intersection of this half line and boundary of X be G. It is sufficient
to consider the situation of Figure 6, in order to show w1dA(P, G) + w2dA(G,S(G)) ≥
w1dA(P, E) + w2dA(E, S(E)) It holds that

w1dA(P,E) + w2dA(E, S(E))lw1dA(P, E) + w1dA(E, F ) + w2dA(F, S(F )) (2.13)

c⃝ Operations Research Society of Japan JORSJ (2009) 52-3
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= w1dA(P, F ) + w2dA(F, S(F ))

by the triangular property of A-distance. Since F is on Voronoi edge of Voronoi poly-
gons with respect to both H2 and H4, then w2dA(F, S(F )) = w2dA(F,H2) = w2dA(F,H4).
Further w1dA(F,G) + w2dA(G,S(G)) ≥ w2dA(F,H4) holds by the triangular inequality of
A-distance. Thus

w1dA(P, G) + w2dA(G,S(G)) = w1dA(P, F ) + w1dA(F, G) + w2dA(G,S(G))

≥ w1dA(P, F ) + w2dA(F,H4) = w1dA(P, F ) + w2dA(F, S(F ))

≥ w1dA(P,E) + w2dA(E, S(E)) (2.14)

From above discussion and Theorem 2, we have the following Theorem 3.

Figure 6: Voronoi diagram with respect to H = {H1, H2, · · · , H6} illustrating the situation
of Theorem 2

Theorem 3 For fixed p, candidates of maximizer of WR(p,Q) are

(a) Vertices of boundary of X.

(b) The intersection points of Voronoi edges and boundary of X.

Proof It is directly shown from above discussion and Theorem 2.

From Theorem 3 we can reduce the number of demand points which should be con-
sidered in the solution procedure for PM to be finite. In this case, we have the following
solution algorithm which is the very same as that in [5]. But we consider the solution
procedure in [5] since this solution procedure becomes a base for the solution procedure of
our model and an optimal solution corresponds to one non-dominated solution of PM (that
is, so-called minimizer of one objective MaxQ∈XWR(p,Q)(= w1dA(p.Q) + w2dA(Q.S(Q)))
of PM). Let consider all points in (a) and (b) of Theorem 3. Let vertices of boundary
of X be V1, V2, · · · , Vn. Further let the intersections of Voronoi edges and boundary of X
be E1, E2, · · · , Ee. By a suitable numbering of V1, V2, · · · , Vn and E1, E2, · · · , Ee, let those
points be Q1, Q2, · · · , QN where N is the number of different points of them (for example,
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decreasing order of ki = w2

w1
d(Qi, S(Qi)), i = 1, 2, . . . , N) Then by Theorem 3, PM is reduced

to the following messenger boy problem PE since
MaxQ∈XWR(p,Q)(= w1dA(p.Q)+w2dA(Q.S(Q))) = Max{w1dA(p.Qi)+w2dA(Qi.S(Qi))|i =
1, 2, . . . , N} = w1Max{dA(p,Qi) + ki|i = 1, 2, . . . , N}.

PE :Minimize max{dA(p,Qℓ) + ki|i = 1, 2, . . . , N} subject to p ∈ X (2.15)

PE is further transformed into the following problem PL

PL :Minimize z subject to dA(p,Qℓ) + ki ≤ z, i = 1, 2, . . . , N, p ∈ X (2.16)

3. Solution Procedure for PM

PL is the very same as that in [5] and clearly an optimal solution p0 of PL is a a non-
dominated site of PM since the center of A-circle with minimal radius covering all A-circle
with radius ki at a center Qi is optimal for PL. So we now consider the solution procedure
for PL. Let Ci denote A-circle with radius ki at a center Qi. Then PL is the determination
problem of minimum radius A-circle covering all A-circles C1, C2, · · · , CN where A-circle
with radius r at center c is defined as follows:

{p|dA(c, p) ≤ r} (3.1)

Usually it becomes a polygon consisting of A-line segments with length r. We define

CA(Ci, Cj) = {p ∈ R2|dA(p,Qi) + ki = dA(p,Qj) + kj}fori ̸= j, i, j = 1, . . . , N. (3.2)

where CA(Ci, Cj) is a bisector between Qi and Qj taking account of the weighted distance
to hospitals. Then p0 is obtained as follows.

[Solution procedure for p0 ]

Step 1: Draw A-circle C1, C2, · · · , CN and let Cθ denote the biggest A-circle which has
the largest radius among C1, C2, · · · , CN . If Cθ covers all other Ci, i ̸= θ, then Cθ is the
optimal A-circle. Stop as Qθ is an optimal solution. Otherwise, find Cs, Ct such that

max{dA(Qi, Qj) + ki + kj|i ̸= j, i, j = 1, . . . , N} = dA(Qs, Qt) + ks + kt (3.3)

and go to Step 2.

Step 2 Let P0 be the intersection of CA(Cs, Ct) and the line segment connecting Qs with
Qt. Draw the A-circle C0 centered at P0 with minimum radius covering Cs, Ct. If C0

covers all Ci, then C0 is an optimal A-circle. Stop as P0 is an optimal location of the
ambulance service station. Otherwise, choose one A-circle Cu which is not covered by
C0 and go to Step 3.

Step 3 Let P1 be an intersection of CA(Cs, Ct), CA(Ct, Cu) and CA(Cu, Cs). Draw A-circle
Cc covering Cs, Ct, Cu with minimum radius centered at P1, that is, externally tangent
to these three A-circles. If Cc covers all i , then Cc is an optimal A-circle. Stop as P1 is
an optimal solution. Otherwise, choose one A-circle Cv which is not covered by Cc. Go
to Step 4. (Please refer to Figure 7)

c⃝ Operations Research Society of Japan JORSJ (2009) 52-3
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Figure 7: An illustration of Step 3 in Solution Procedure for p0

Step 4 Draw a half line from P1 which through Qv and let an intersection of the line and
boundary be Zv which is the farthest from P1. By the same manner obtain Zs, Zt, Zu.
Let D = Zv and farthest point from D among Zs, Zt, Zu be PA. Divide an area X into
two sub-areas by line through both PA and P1. Let a point which does not belong to the
same sub-area with D be C. Let Qs = PA, Qt = C,Qu = D and return to Step 3.

The above procedure finds p0 in at most O(max(n,m)3 · T ) computational time where
T is the computational time constructing A-circle covering given three A-circles.　Validity
of the algorithm is clear since basically, a center of A-circle covering suitable three A-circles
is an optimal solution p0 (this is shown already in [5]).

Next we seek other non-dominated sites. First let X(β) = {p ∈ X|µP (p) ≥ β} for
1 ≥ β > µP (p0), that is, the set of sites that their preference is not less than β. Then we
consider the following parametric problem PL(β), that is, the problem where possible sites
are restricted to X(β) instead of X.

PL(β) : Minimize z subject to dA(p,Qi) + ki ≤ z, i = 1, 2, . . . , N, p ∈ X(β) (3.4)

As is easily seen, p0 is in the area X though it is not explicitly restricted. But PL(β) is a
little bit difficult to solve since we explicitly restrict the feasible region of PL(β)　Let P(β)
be an optimal site of PL(β) and R(β) = R(p(β)). Now we propose a solution method for
PL(β).

Solution Procedure for PL(β)

Step 1: Draw A-circle C1, C2, · · · , CN and let Cθ denote the biggest A-circle which has the
largest radius among C1, C2, · · · , CN . If Cθ covers all other Ci, i ̸= θ and Qθ ∈ X(β),
then Cθ is the optimal A-circle. Stop as Qθ is an optimal solution PL(β). Otherwise,
find Cs, Ct such that

c⃝ Operations Research Society of Japan JORSJ (2009) 52-3
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max{dA(Qi, Qj) + ki + kj|i ̸= j, i, j = 1, . . . , N} = dA(Qs, Qt) + ks + kt

and go to Step 2.
Step 2 Let P0 be the intersection of CA(Cs, Ct) and the line segment connecting Qs with

Qt. If P0 ∈ X(β), draw the A-circle C0 centered at P0 with minimum radius covering
Cs, Ct. If C0 covers all Ci, then C0 is an optimal A-circle. Stop as P0 is an optimal
location of PL(β). Otherwise, choose one A-circle Cu which is not covered by C0 and go
to Step 3. If P0 ̸∈ X(β), go to Step 4.

Step 3 Let P1 be an intersection of CA(Cs, Ct), CA(Ct, Cu) and CA(Cu, Cs). If P1 ∈ X(β)
draw A-circle Cc covering Cs, Ct, Cu with minimum radius centered at P1, that is, exter-
nally tangent to these three A-circles. If Cc covers all Ci , then Cc is an optimal A-circle.
Stop as P1 is an optimal solution. Otherwise, choose one A-circle Cv which is not covered
by Cc. Go to Step 5. If P1 ̸∈ X(β), go to Step 4.

Step 4 Consider each case that Qi is maximum among all Q1, Q2, · · · , QN from X(β) with
respect to A-distance and find the point pi in minimizing dA(Qi, p) corresponding to
A-circle covering all C1, C2, · · · , CN . Let pc minimizing dA(Qj, pj) + kj, j = 1, 2, . . . , N
be an optimal solution of PL(β) and stop.

Step 5 Draw a half line from P1 which passes Qv and let an intersection of the line and
boundary of PL(β) be Zv which is the farthest from P1. By the same manner, obtain
Zs, Zt, Zu. Let D = Zv and farthest point from D among Zs, Zt, Zu be PA. Divide an
area X(β) into two sub-areas by the line through both PA and P1. Let a point which
does not belong to the same sub-area with D be C. Let Qs = PA, Qt = C,Qu = D and
return to Step 3.

PL(β) can be solved efficiently if Step 4 is executed efficiently and this depend the shape of
PL(β). That is to find pi efficiently is critical. Anyway, based on the solution procedure for
PL(β), we consider the following solution procedure for PM though for a general case, how
to determine ε0, εβ is not clear.

(Solution Procedure for PM )

Step 1 Set β = µP (P 0) + ε0 ( ε0 is suitable small positive number), DS = {P 0} and go to
Step 2.

Step 2 Solve PL(β) and obtain P (β) and R(β). If there exists no site p ∈ DS dominating
P (β), then go to Step3. Otherwise go to Step 4.

Step 3 Update DS ← DS
∪{p(β)}. If β = 1, terminate (DS is a set of some non-dominated

sites). Otherwise, update β ← min{µP (p(β)) + εβ, 1} (εβ is a suitable small positive
number) and return to Step 2.

Step 4 If β = 1, terminate (DS is a set of some non-dominated sites). Otherwise update
β ← min{µP (p(β))+εβ, 1} (εβ is a suitable small positive number) and return to Step 2.

Whether this solution procedure terminates or not is not clear since its preference function is
not specified and so suitable small numbers are not concrete. But when we give up to find all
non-dominated solutions and change β by constant amount ε and each PL(β) can be solved
in at most O(max(n,m)3 · T ) computational time, the above solution algorithm terminates
in at most O(max(n,m)3 · T

ε
) computational time. However for the following special but

important case, we can obtain the non-dominated solutions by changing β = t1, t2, · · · , tq in
the above solution procedure.

(Case that the preference function is constant block-wisely)
We assume that
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µP (p) =



t1 p ∈ A1

t2 p ∈ A2
...

...
...

...
tq p ∈ Aq

0 p ∈ X − A1 − A2 − · · · − Aq

(3.5)

where 1 ≥ t1 > t2 > · · · > tq > 0 and A1, A2, · · · , Aq ⊂ X are disjoint polygons. In this
case, for solution procedure for PM , as β only t1, t2, · · · , tq should be considered. That is,
following problems P t1 ,P t2 , · · · ,P tq should be considered and each feasible region of P tk is
set Ak. that is, a polygon.

P tk : Minimize z subject to dA(p,Qi) + ki ≤ z, i = 1, 2, . . . , N, p ∈ Ak (3.6)

Then following theorem is very useful in this case.

Theorem 4 If p0 /∈ Ak, then an optimal solution of P tk exists on the boundary of Ak.

Proof
We derive a contradiction by assuming the optimal solution p(tk) is the interior point of

Ak. Following cases (i) (ii) (iii) should be checked.
(i) The optimal value is attained by a certain only one Qi. Then a point moved by small
amount toward Qi from p(tk) along the line segment connecting between Qi and p(tk) is
better point with respect to z as is easily shown.
(ii)The optimal value is attained by certain two Qi and Qj.

Then p(tk) is on the bisector CA(CI , CJ) ≡ {p ∈ R2|dA(p,Qi) + ki = dA(p,Qj) + kj}.
(ii a) p(tk) is the anchor point, that is, an intersection point
between the line segment QiQJ and the bisector CA(Ci, Cj).
Then in this subcase clearly p(tk) is also an optimal solution of PL

and it derives a contradiction with p0 /∈ Ak.
(ii b) p(tk) is not the anchor point. Then moving by small amount
toward anchor point along the bisector from p(tk) makes z decrease.
This means p(tk) is not optimal.

(iii) The optimal value is attained by certain three Qi, Qs and Qj.
Then again clearly p(tk) is also an optimal solution of PL

and it derives a contradiction with p0 /∈ Ak.

Q. E. D

First we construct the farthest point Voronoi diagram with respect to C1, C2, · · · , CN as
follows: For each pair of Qi and Qj , we draw the bisector

CA(CI , CJ) ≡ {p ∈ R2|dA(p,Qi) + ki = dA(p,Qj) + kj} and we make the farthest region
Xi about Qi , that is, Xi ≡ {p ∈ R2|dA(p,Qi) + ki ≥ dA(p,Qj) + kj, j ̸= i} for each i based
on these bisectors. Then the farthest point Voronoi diagram is constructed similarly as the
usual Voronoi diagram with respect to C1, C2, · · · , CN and draw all A-half lines from each
Qi, obtain the intersection points FP i,k

1 , FP i,k
2 · · · , FP i,k

ni,k
between these half lines and the

boundary of Ak ∩ Xi where ni,k is the number of different intersection points. Further let

vertices of the boundary with respect to Ak ∩ Xi be FP i,k
ni,k+1, FP i,k

ni,k+2 · · · , FP i,k
ni,k+bi,k

by
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suitable numbering of vertices where bi,k is the number of their vertices. Next we solve the
following single objective problem:

PL : Minimize z subjectto dA(p,Qi) + ki ≤ z, i = 1, 2, . . . , N, p ∈ X and obtain an optimal
solution p0. Then we have the following theorem.

Theorem 5 If p0 /∈ Ak, then an optimal solution of P tK exists among

FP i,k
1 , FP i,k

2 · · · , FP i,k
ni,k

Proof
From the result of Theorem 4, an optimal solution exists on boundary of Ak ∩Xi Note

that the boundary of Ak ∩ Xi consists of line segments and so FP i,k
1 , FP i,k

2 · · · , FP i,k
ni,k

di-

vide boundaries of Ak into line segments where maximizer ℓ ∈ {1, 2, . . . , N} such that
dA(p,Qℓ) + kℓ ≥ dA(p,Qi) + ki, ℓ ̸= i, i = 1, 2, . . . , N from a point on each line seg-
ment is same. Further dA(p,Qℓ) is determined some neighboring pair of A-directions, say,
αj, αj+1 for each line segment. That is, for Qℓ = (qℓ

1, q
ℓ
2) and p = (x, y), dA(p,Qℓ) =

M1|m2(q
ℓ
1−x)−(qℓ

2−y)|+M2|m1(q
ℓ
1−x)−(qℓ

2−y)| where m1 = max(tan αj, tan αj+1),m2 =

min(tan αj, tan αj+1),M1 =

√
1+m2

1

m1−m2
,M2 =

√
1+m2

2

m1−m2
as is shown in Section 1.Then minimum of

dA(p,Qℓ)+ki with respect to point on this line segment is attained at either end point of this
line segment since dA(p,Qℓ) includes two absolute values with linear functions of x,y inside
and its minimum is attained at the points with coordinates making either absolute value
zero (corresponding point is one of FP i,k

1 , FP i,k
2 · · · , FP i,k

ni,k
, i = 1, 2, . . . , N) or the terminal

points of corresponding line segment (FP i,k
ni,k+1, FP i,k

ni,k+2 · · · , FP i,k
ni,k+bi,k

, i = 1, 2, . . . , N ).

Q.E.D.

Since we solve all P tK and check non-domination of optimal solutions for P tK in order to
solve this special case, we only show the solution procedure for P tK .

Solution Procedure for P tk

Step 1: Check whether p0 ∈ Ak or not. If p0 /∈ Ak , then go to Step 2. Otherwise, terminate
with p0 as an optimal solution of P tk .

Step 2: Based on Theorem 5, we obtain
FP i,k

1 , FP i,k
2 · · · , FP i,k

ni,k
, FP i,k

ni,k+1, FP i,k
ni,k+2 · · · , FP i,k

ni,k+bi,k
i = 1, 2, . . . , N and

seek the minimizer FP (k) among
FP i,k

1 , FP i,k
2 · · · , FP i,k

ni,k
, FP i,k

ni,k+1, FP i,k
ni,k+2 · · · , FP i,k

ni,k+bi,k
i = 1, 2, . . . , N

with respect to min[min{dA(FP i,k
j , Qi)|j = 1, 2, . . . , ni,k + bi,k}+ ki|i = 1, 2, . . . , N ].

Terminate with FP (k) as an optimal solution of P tk .

In this special case, non-dominated solutions are found in at most O({a·max(n,m)3+EB}·q)
computational time based on the result of Theorem 5 where EB is the maximum vertices
number of polygon Ak, k = 1, 2, . . . q since of course, only nearest edge of boundary on
Ak ∩ Xi should be considered as an intersection point between boundary and A-half lines
from Qi, that is, at most one edge of boundary for each A-half line from Qi.

An example
We consider the following toy example in this case to illustrate the solution procedure.

We setw1 = w2, A = {0◦, 45◦, 90◦, 135◦} (see Figure 8). Data of this example is shown in
Figure 9. X is a hexagon determined by vertices sited at (0,0), (60,0), (100,30), (60,60)
and (0,60). There are two hospitals H1, H2 sited at (40,40) and (60,20) respectively and
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Figure 8: A = {0◦, 45◦, 90◦, 135◦}

two blocks A1A2 with preferences 0.8 and 0.3 respectively. The line segment connecting
with boundary points sited at (20, 0) and (71.43, 51.43) is a Voronoi edge. Applying our
method, results are illustrated in Figure 10. Small bold A-circles are centered one at Qi.
Dotted A-circle centered at (37.72, 37.72) and covering all small A-circles corresponds to
a solution minimizing weighted sum of distances. Big bold A-circle centered at (20, 20)
denotes optimal covering circle where construction site is restricted toA1. Therefore non-
dominated sites are (37.72, 37.72) and (20,20) respectively. Their weighted sum of distance
and preference are (109.92, 0.3) and (134.14, 0.8).

Figure 9: Data of the example
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Figure 10: An illustration of the result applying our method to this toy example

4. Conclusion

We have proposed a model about ambulance facility location including the preference of
the candidate sites, which is not explicitly considered so far in spite of importance from the
actual point of view. Since we have used A-distance, solution procedure is complicated a
little bit, we have endeavored to find non-dominated solutions in order to give information
to decision makers. But as further research problems, followings are left.

(1) Our solution method for our model is straightforward and so refinement should be done
in order to find non-dominated sites efficiently.

(2) Though our model includes both benefits of citizens and local government since it takes
preference on the construction site into account, actual possibility of accident occurrence
is not uniform with respect to sites in X.

(3) Preference function reflecting on actual conditions about construction of an ambu-
lance station is not necessary simple as is considered in this paper. So more realistic
assumptions about preference function should be considered.
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