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Abstract A computationally improved approach is proposed for a robust semidefinite programming prob-
lem whose constraint is polynomially dependent on uncertain parameters. By exploiting sparsity, the pro-
posed approach gives an approximate problem smaller in size than the matrix-dilation approach formerly
proposed by the group of the first author. Here, the sparsity means that the constraint of a given problem
has only a small number of nonzero terms when it is expressed as a polynomial in the uncertain parameters.
This sparsity is extracted with a special graph called a rectilinear Steiner arborescence, based on which
a reduced-size approximate problem is constructed. The accuracy of the approximation can be analyzed
quantitatively. In particular, it is shown that the accuracy can be improved to any level by dividing the
parameter region into small subregions.
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1. Introduction

A robust semidefinite programming problem (robust SDP problem, in short) to be considered
in this paper is the following:

P : minimize cTx

subject to E(x) ≽ O, F (x, θ) ≽ O (∀θ ∈ Θ).

Here, c is a given vector in Rn, which is the set of n-dimensional real vectors; x =
(x1 x2 · · · xn)T ∈ Rn is a design variable; θ = (θ1 θ2 · · · θp)

T ∈ Θ is an uncertain pa-
rameter, whose domain Θ is a closed polytope (i.e., bounded polyhedron) in Rp with a
nonempty interior; E(x) is a function affine in x, whose value is an ℓ × ℓ real symmetric
matrix; F (x, θ) is a function affine in x and polynomial in θ, whose value is an m × m
real symmetric matrix. The inequalities in the constraint mean that the symmetric ma-
trices E(x) and F (x, θ) are positive semidefinite. Inequalities of this type are called linear
matrix inequalities (LMIs). The robust SDP problem has many applications in nonlinear
optimization and robust control [1, 3, 4, 7, 31].

The robust SDP problem is NP-hard [20] due to the semi-infinite constraint F (x, θ) ≽ O
(∀θ ∈ Θ). Hence, approximate approaches have been proposed [2, 5, 8, 22, 27, 30, 32]. There,
a standard and thus solvable SDP problem is constructed as an approximation of a given
robust SDP problem. The matrix-dilation approach is one of such approaches and was
proposed by the group of the first author [9, 23] based on the robust control techniques
of [18, 19, 21, 36]. An advantage of this approach is availability of an upper bound on the
approximation error, that is, the discrepancy between the optimal values of the original
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robust SDP problem and its approximate problem. This bound gives better comprehension
of the approach and an efficient method for reduction of the approximation error. On the
other hand, this approach and others share a drawback that the approximate problem tends
to have a large size when applied to practical problems. This may be a natural consequence
of the difficulty of the original problem. However, there is still a possibility that a small-sized
approximate problem is constructed for a special class of robust SDP problems of practical
importance.

In this paper, we consider reduction of the size of the approximate problem in the matrix-
dilation approach. The key idea is to exploit a sparse structure of F (x, θ) in the constraint
of P . Here, a sparse structure means that, when F (x, θ) is expanded as a polynomial in θ,
only a part of the terms is nonzero. Such a structure has a practical application as seen
in Example 5.3. This structure is captured with a special graph called a rectilinear Steiner
arborescence and is used for construction of a small-sized approximate problem. The effect
of the reduction is especially evident when the number of nonzero terms is small and the
degrees of the polynomial F (x, θ) are high. It is also notable that an upper bound on the
approximation error is still available even with the reduction.

Exploitation of sparsity has been considered in the actively investigated sum-of-squares
approach [11, 13, 14, 16, 26, 37]. (See [12, 15, 25, 32] for the approach itself.) The techniques
used there are, however, quite different from the present one. Comparison with these tech-
niques is a future research subject. Quantitative analysis of the approximation error is rarely
made in other approaches to robust SDP problems. Although related analysis is made in
[32], it is unknown whether the analysis is useful for reduction of the approximation error or
adaptable to the case where sparsity is exploited. Parts of the results of the present paper
have been reported in [10, 24].

This paper is organized as follows. In Section 2, the existing matrix-dilation approach
is outlined. Section 3 gives a reduced-size approximate problem and Section 4 provides
an upper bound on the approximation error. After numerical examples are presented in
Section 5, the paper is concluded in Section 6.

The symbol Zp
+ stands for the set of p-dimensional vectors of nonnegative integers. The

symbol T denotes the transpose of a matrix or a vector. For θ = (θ1 θ2 · · · θp)
T ∈ Rp and

α = (α1 α2 · · · αp)
T ∈ Zp

+, the symbol θα means the product θα1
1 θα2

2 · · · θαp
p . The symbols

Oq×r and Iq designate the q × r zero matrix and the q × q identity matrix, respectively.
The sizes of these matrices are omitted when they are obvious from the context. The
maximum singular value of a matrix A is written as σ(A). For a real symmetric matrix
A, the inequality A ≽ O expresses its positive semidefiniteness while A ≻ O its positive
definiteness. The inequality A ≽ B means A−B ≽ O. The Kronecker product of two (not
necessarily symmetric) matrices A = (aij) and B is defined as

A ⊗ B :=

a11B · · · a1rB
...

...
aq1B · · · aqrB

 .

There hold (A ⊗ B)T = AT ⊗ BT and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for matrices of
appropriate size. For a set S, the symbol |S| denotes its cardinality. For a minimization
problem P , its optimal value is expressed by inf P with an attention that the optimal value
may not be attained.
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2. Matrix-Dilation Approach

In this section, we present the matrix-dilation approach of [9, 23], which is for solving the
robust SDP problem P . The idea is to make a standard SDP problem by replacing the
semi-infinite constraint of P by a stronger constraint.

We need some preparations. In the constraint of P , we let di be the maximum degree
of F (x, θ) as a polynomial in θi for i = 1, 2, . . . , p. We assume that maxi=1,2,...,p di ≥ 1
without loss of generality. Otherwise, F (x, θ) ≽ O is independent of θ and the problem
P is easy to solve. With Vf := {α ∈ Zp

+ | 0 ≤ αi ≤ di for i = 1, 2, . . . , p}, we can write
F (x, θ) =

∑
α∈Vf

Fα(x)θα. Here, |Vf | =
∏p

i=1(di + 1). The subscript “f” stands for the “full
size” and is put for distinction from the reduced-size counterpart given in Section 3. We
number the elements of Vf as α(1), α(2), . . . , α(|Vf |) with α(1) being the origin.

We now define

F∗f(x) :=
(
Fα(2)(x) Fα(3)(x) · · · Fα(|Vf |)(x)

)
,

Gf(x) :=

(
2Fα(1)(x) F∗f(x)
F∗f(x)T O

)
,

Mf(θ) :=
(
θα(1)

Im θα(2)

Im · · · θα(|Vf |)Im

)T
.

An example is found in Example 2.1 below. The matrix Gf(x) is |Vf |m × |Vf |m and the
matrix Mf(θ) is |Vf |m × m. They satisfy 2F (x, θ) = Mf(θ)

TGf(x)Mf(θ). Furthermore, we
consider a |Vf |m × (|Vf | − 1)m matrix Hf(θ) such that the square matrix (Mf(θ) Hf(θ)) is
nonsingular and the relation Mf(θ)

THf(θ) = O holds for all θ ∈ Rp. Such Hf(θ) is called an
orthogonal complement of Mf(θ).

Example 2.1 We present explicit forms of F∗f(x), Mf(θ), and Hf(θ) on an example problem
considered in [23]: maximization of f(θ) = 9θ1θ2 − 5θ1θ

2
2 − 5θ2

1θ2 in θ ∈ Θ = [0, 1]2. Its
maximum value 1.08 is attained at θ = (0.6 0.6)T. It is formulated as the robust SDP
problem:

minimize x

subject to x − f(θ) ≥ 0 (∀θ ∈ Θ).

Hence, F (x, θ) = x − f(θ) = x − 9θ1θ2 + 5θ1θ
2
2 + 5θ2

1θ2 with n = 1, ℓ = 0, m = 1, p = 2,
d1 = 2, and d2 = 2. The required matrices are defined as

Fα(1)(x) = x, F∗f(x) = (0 0 0 − 9 5 0 5 0),

Mf(θ) =



1
θ1

θ2
1

θ2

θ1θ2

θ2
1θ2

θ2
2

θ1θ
2
2

θ2
1θ

2
2


, Hf(θ) =



−θ1 −θ2

1 −θ1 −θ2

1 −θ2

1 −θ2

1 −θ2

1 −θ2

1
1

1


for appropriate numbering of Vf = {α ∈ Z2

+ |α1, α2 = 0, 1, 2}.
The key fact is that the orthogonal complement Hf(θ) can be chosen affine in θ [23].

This establishes the following fact, which provides a basis for the present approach.
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Lemma 2.1 Let x be any point in Rn and θ(1), θ(2), . . ., θ(Q) be any Q points in Rp. Then,
F (x, θ) ≽ O holds for all θ in the convex hull of {θ(1), θ(2), . . . , θ(Q)} if there exists Wf

satisfying

Gf(x) + Hf(θ
(q))WT

f + WfHf(θ
(q))T ≽ O (∀q = 1, 2, . . . , Q). (2.1)

Proof. Choose any θ in the convex hull of {θ(1), θ(2), . . . , θ(Q)} and express it as a convex
combination. The convex combination of (2.1) with the same coefficients gives Gf(x) +
Hf(θ)W

T
f +WfHf(θ)

T ≽ O for the chosen θ because of the affinity of Hf(θ). Premultiplication
of Mf(θ)

T and postmultiplication of Mf(θ) to this inequality provide Mf(θ)
TGf(x)Mf(θ) =

2F (x, θ) ≽ O. �
We formally state the matrix-dilation approach. Let ∆ = {Θ[j]}J

j=1 be a division of
Θ, which is a family of convex polytopes with nonempty interiors such that the equality
Θ =

∪J
j=1 Θ[j] holds and the set Θ[j] ∩ Θ[k] has an empty interior whenever j ̸= k. Let

ver Θ[j] denote the set of the vertices of the convex polytope Θ[j]. For a given division
∆ = {Θ[j]}J

j=1, we consider the following approximate problem:

Pf(∆) : minimize cTx

subject to E(x) ≽ O, Gf(x) + Hf(θ)(W
[j]
f )T + W

[j]
f Hf(θ)

T ≽ O

(∀θ ∈ ver Θ[j]; ∀j = 1, 2, . . . , J),

where the design variables are x ∈ Rn and the |Vf |m × (|Vf | − 1)m matrices W
[1]
f , W

[2]
f ,

. . ., W
[J ]
f . This problem Pf(∆) is a standard SDP problem, which can be solved with

the interior-point method. From Lemma 2.1, a relationship between this problem and the
original problem can be established, which is stated in the next proposition. Here, noting
that the feasible region of Pf(∆) is in the space of (x, {W [j]

f }J
j=1), we mean its projection to

the x-space by the projected feasible region of Pf(∆).

Proposition 2.1 Let ∆ be a division of Θ. Then, the projected feasible region of the ap-
proximate problem Pf(∆) is contained in the feasible region of the original problem P . In
particular, inf P ≤ inf Pf(∆).

In the matrix-dilation approach, we solve the approximate problem Pf(∆) in place of
the original problem P . Although there is a nonzero approximation error inf Pf(∆) − inf P
in general, we can make it smaller by subdividing the polytopes in ∆ and considering the
corresponding approximate problem. Indeed, the approximation error is known to have an
upper bound proportional to the maximum radius of the division [23]. Here, the radius of a
subregion Θ[j] is rad Θ[j] := minθ∈Θ[j] maxθ′∈Θ[j] maxi=1,2,...,p |θi − θ′i|, where a θ that attains
the minimum is called a center of Θ[j]. The maximum radius of a division ∆ = {Θ[j]}J

j=1 is

defined as rad ∆ := maxj=1,2,...,J rad Θ[j].
From a computational point of view, the approximate problem is desired to have a small

size. Unfortunately, the size of the approximate problem tends to be large for a practical
problem even with a coarse division. Sometimes it exceeds the capability of the currently
available SDP solvers. One major reason is that |Vf | =

∏p
i=1(di +1) increases rapidly as the

degrees di increase.
In the next section, we assume a kind of sparsity in the given problem P and reduce

the sizes of Gf(x), Mf(θ), and Hf(θ). This leads us to a reduced-size approximate problem.
Even with this improvement, an upper bound on the approximation error remains available,
whose derivation is a task of Section 4.
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Figure 1: The directed graph (Vf , Af) (gray) in the case of p = 2, d1 = 2, and d2 = 2
together with a rectilinear Steiner arborescence (V, A) (black) for the set S whose elements
are shown by the large circles

3. A Reduced-Size Approximate Problem

In this section, we construct a reduced-size approximate problem. The idea is to exploit
sparsity in the given robust SDP problem P and to consider matrices smaller in size than
Gf(x), Mf(θ), and Hf(θ), which will be denoted by G(x), M(θ), and H(θ) without the
subscript “f.” Let us review the requirements on these matrices: 2F (x, θ) has to be equal
to M(θ)TG(x)M(θ); H(θ) has to be an orthogonal complement of M(θ) and be affine in θ.

Recall that F (x, θ) =
∑

α∈Vf
Fα(x)θα. We assume a kind of sparsity that the coefficient

matrices Fα(x) are nonzero for a small number of α’s. We let S be the support of F (x, θ)
defined as S := {α ∈ Vf ⊂ Zp

+ |Fα(x) ̸≡ O}. Since F (x, θ) is not independent of θ, the
support S contains at least one element other than the origin.

In order to exploit this sparsity, we first embed Vf ⊂ Zp
+ into Rp in a natural way. We

consider the directed graph (Vf , Af) in Rp with the set of vertices being Vf and with the set
of arcs being Af = {(α, β) |α, β ∈ Vf , αi + 1 = βi for some i = 1, 2, . . . , p, and αj = βj for
all j ̸= i}. In a word, the arcs are the line segments of length one connecting two vertices
and directed away from the origin. When an arc (α, β) satisfies αi + 1 = βi, it is said to be
parallel to the ith axis.

For the support S, we consider a subgraph (V, A) of (Vf , Af) having the following prop-
erties: (i) V contains any vertex in S as well as the origin; (ii) any vertex in V is reachable
from the origin through a unique path in (V,A). Here, a vertex α is said to be reachable
from a vertex β if either α = β or there is a path connecting β to α through the arcs in
the directed way. Such a graph (V, A) is referred to as a rectilinear Steiner arborescence
for S (see [29] and the references therein). For a given S, a rectilinear Steiner arborescence
always exists though not unique. Figure 1 gives an example in the case of Example 2.1,
where p = 2, d1 = 2, and d2 = 2. There, the directed graph (Vf , Af) is presented in gray.
Since F (x, θ) = x−9θ1θ2+5θ1θ

2
2 +5θ2

1θ2, the support S is {(0 0)T, (1 1)T, (1 2)T, (2 1)T},
whose elements are expressed by the large circles. A rectilinear Steiner arborescence for this
S is shown in black.

With these preparations, we now construct the desired matrices G(x), M(θ), and H(θ).
Let the vertices in V be α(1), α(2), . . ., α(|V |). The numbering is arbitrary as far as α(1) is
the origin. For technical convenience, however, we choose the numbering to be consistent
with the partial order defined by (V,A). That is, the vertex α(r) is reachable from α(q)

only if q ≤ r. This is consistent with α(1) being the origin. Figure 1 is an example of this
numbering. With this notation, we define

F∗(x) :=
(
Fα(2)(x) Fα(3)(x) · · · Fα(|V |)(x)

)
,

c⃝ Operations Research Society of JapanJORSJ (2009) 52-3
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G(x) :=

(
2Fα(1)(x) F∗(x)
F∗(x)T O

)
, (3.1)

M(θ) :=
(
θα(1)

Im θα(2)

Im · · · θα(|V |)
Im

)T
.

See Example 3.1 below for an example. It is easy to see that 2F (x, θ) = M(θ)TG(x)M(θ).
We next define

H(θ) := H̃(θ) ⊗ Im (3.2)

with the (q, r)-element of H̃(θ) being

H̃(θ)qr =


−θi, if the arc (α(q), α(r+1)) belongs to A and is parallel to the ith axis;

1, if q = r + 1;

0, otherwise

for q = 1, 2, . . . , |V | and r = 1, 2, . . . , |V | − 1. Obviously, H(θ) is affine in θ. The size of
G(x) is |V |m × |V |m, that of M(θ) is |V |m × m, and that of H(θ) is |V |m × (|V | − 1)m.
Since |V | ≤ |Vf |, the matrices G(x), M(θ), and H(θ) have the sizes smaller than or equal to
those of Gf(x), Mf(θ), and Hf(θ).

Example 3.1 We consider the problem of Example 2.1. With the rectilinear Steiner ar-
borescence and the numbering of Figure 1, we obtain the matrices

Fα(1)(x) = x, F∗(x) = (0 − 9 5 5),

M(θ) =


1
θ1

θ1θ2

θ2
1θ2

θ1θ
2
2

 , H(θ) =


−θ1

1 −θ2

1 −θ1 −θ2

1
1

 .

These matrices are smaller in size than their counterparts in Example 2.1. This is a conse-
quence that the rectilinear Steiner arborescence has only |V | = 5 vertices while the original
graph has |Vf | = 9.

The matrix H(θ) in (3.2) has the following required property.

Lemma 3.1 The matrix H(θ) is an orthogonal complement of M(θ).

Proof. By the definition, the matrix H̃(θ) is upper triangular in the sense that H̃(θ)qr ̸= 0

only if q ≤ r + 1. Moreover, H̃(θ)qr = 1 if q = r + 1. Hence, the matrix H̃(θ) is of column
full rank and, thus, so is H(θ). Since M(θ) is clearly of column full rank, the nonsingularity
of (M(θ) H(θ)) follows when the orthogonality M(θ)TH(θ) = O holds. Let us show the

orthogonality. Write M(θ) = M̃(θ) ⊗ Im with M̃(θ) = (θα(1)
θα(2) · · · θα(|V |)

)T. Noting

that M(θ)TH(θ) = [M̃(θ)TH̃(θ)]⊗ Im, we consider the product between M̃(θ)T and the rth

column vector of H̃(θ). Since (V, A) is an arborescence, there is one and only one q such
that the arc (α(q), α(r+1)) belongs to A. Let us write this q as q̂ and suppose that the arc

(α(q̂), α(r+1)) is parallel to the ith axis. Then, H̃(θ)qr is equal to −θi for q = q̂, equal to
unity for q = r + 1, and equal to zero otherwise. Hence, the considered product is equal to
θα(q̂)

(−θi) + θα(r+1)
, which is equal to zero. Repeating this reasoning for each r, we arrive at

the desired orthogonality. �

c⃝ Operations Research Society of JapanJORSJ (2009) 52-3
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Because the matrices G(x), M(θ), and H(θ) have the required properties, they can be
used in the matrix-dilation approach. Namely, with ∆ = {Θ[j]}J

j=1 being a division of Θ,
we consider a reduced-size approximate problem:

P (∆) : minimize cTx

subject to E(x) ≽ O, G(x) + H(θ)(W [j])T + W [j]H(θ)T ≽ O

(∀θ ∈ ver Θ[j]; ∀j = 1, 2, . . . , J).

Then, Proposition 2.1 holds on this problem with necessary modification. As is mentioned
in Section 2, we can decrease the approximation error by subdividing ∆.

We close this section by discussing when the discrepancy between |V | and |Vf | becomes
large.

Proposition 3.1 For a given support S, there exists a rectilinear Steiner arborescence
(V, A) with |V | ≤ |S|

∑p
i=1 di + 1.

Proof. For each α = (α1 α2 · · · αp)
T ∈ S, consider a directed path connecting

(0 0 · · · 0)T, (1 0 · · · 0)T, . . ., (α1 0 · · · 0)T, (α1 1 · · · 0)T, . . ., (α1 α2 · · · 0)T,
. . ., (α1 α2 · · · αp)

T in this order. The length of this path is less than or equal to
∑p

i=1 di.
The union of these |S| paths forms a rectilinear Steiner arborescence for S. It is clear that
this arborescence (V, A) satisfies |V | ≤ |S|

∑p
i=1 di + 1. �

Recall that |Vf | =
∏p

i=1(di + 1). When |S| is small and di’s are large, |V | in the proposition
is much smaller than |Vf |.

It is NP-hard to find a rectilinear Steiner arborescence with the smallest |V | for a given
S [33]. Fortunately, what we need is not an arborescence with the smallest |V | but an
arborescence with a small |V |. A heuristic algorithm for this purpose is given in [29].

Remark 3.1 Suppose that the support S is equal to the whole vertex set Vf . If we construct
a rectilinear Steiner arborescence for this S as the proof of Proposition 3.1, we obtain the
full-size matrices Gf(x), Mf(θ), and Hf(θ), which were considered in [23]. In this sense, the
present approach is a generalization of the conventional approach in [23].

Remark 3.2 The optimal value of the reduced-size approximate problem may be different
from that of the full-size approximate problem. Although no quantitative result is known
on this effect, computational experience tells that it is not as evident as the profit of the
size reduction. See Section 5.

4. An Upper Bound on the Approximation Error

In this section, we give an upper bound on the approximation error of the reduced-size
approximate problem P (∆) to know its quantitative properties.

The key idea is to relate P (∆) with the following auxiliary problem:

Pϵ : minimize cTx

subject to E(x) ≽ O, F (x, θ) ≽ ϵI (∀θ ∈ Θ),

where ϵ is a nonnegative number. Note that P0 is identical with the original problem P .
Moreover, inf Pϵ is convex as a function in ϵ. To see this, suppose that x1 is feasible in Pϵ1 and
so is x2 in Pϵ2 . Then, (x1 +x2)/2 is feasible in P(ϵ1+ϵ2)/2, which implies (inf Pϵ1 +inf Pϵ2)/2 ≥
inf P(ϵ1+ϵ2)/2. We will show below that ϵ can be chosen so that inf P ≤ inf P (∆) ≤ inf Pϵ.
We then have 0 ≤ inf Pϵ − inf P ≤ gϵ with g being an upper bound on a subgradient of
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inf Pϵ. This implies 0 ≤ inf P (∆) − inf P ≤ gϵ to give the desired upper bound on the
approximation error. This basic idea is the same as the full-size case [23]. A difference is
that the technique used in [23] for the establishment of inf P ≤ inf Pf(∆) ≤ inf Pϵ is not
applicable to the reduced-size approximate problem P (∆) because the whole set of Fα(x),
α ∈ Vf , is not used this time. We hence introduce a different technique with a coordinate
transformation matrix L(θ).

We need the following assumption to have the result. A corresponding assumption is
common in the context of the interior-point method for linear programming [28, Section 5.7].

Assumption 4.1

(a) The robust SDP problem P is strictly feasible, that is, there exists x ∈ Rn such that
E(x) ≻ O and F (x, θ) ≻ O (∀θ ∈ Θ).

(b) For any v ∈ R, the level set
{
x ∈ Rn | cTx ≤ v, E(x) ≽ O, and F (x, θ) ≽ O (∀θ ∈ Θ)

}
is bounded.

We now present the main result of this section, which provides the desired upper bound.

Theorem 4.1 Suppose that Assumption 4.1 holds. Then, the reduced-size approximate
problem P (∆) satisfies

0 ≤ inf P (∆) − inf P ≤ C rad ∆. (4.1)

for any division ∆ with rad ∆ ≤ C ′, where C and C ′ are positive numbers independent of
∆.

The specific forms of C and C ′ will be given in (4.6) and (4.7), respectively.
The bound (4.1) reveals quantitative properties of our matrix-dilation approach. First,

it implies the asymptotic exactness. Namely, the approximation error of the reduced-size
approximate problem converges to zero as the maximum radius of the division goes to zero.
The bound also gives the convergence rate, which is at most a linear order of the maximum
radius. Evaluation of C and C ′ is possible as in [23], though often conservative.

The bound (4.1) is useful for complexity analysis of the approach. For reduction of the
approximation error, decrease of the maximum radius is required, which results in increase
of the number of subregions in the order of O((rad ∆)−p). Especially when the parameter
dimension p is high, this increase is rapid and makes it difficult to solve the approximate
problem. It is possible to partially address this issue by improvement of the bound. In fact,
the maximum radius in (4.1) can be replaced by the maximum active radius, which is the
maximum radius only over the subregions having active constraints. This means that we do
not need to make a uniform division but need to divide only an important area. This idea
leads us to adaptive construction of an efficient division. The discussion is parallel to that
in [23]. The details are omitted.

In the rest of this section, we prove Theorem 4.1. We first prepare the |V |m×|V |m matrix
L(θ) for simplification of the dilated LMI constraint G(x) + H(θ)(W [j])T + W [j]H(θ)T ≽ O.
This matrix is defined as

L(θ) := L̃(θ) ⊗ Im (4.2)

with

L̃(θ)qr =

{
θα(q)−α(r)

, if α(q) is reachable from α(r) in (V, A);

0, otherwise.

The matrix L̃(θ) is lower triangular, i.e., L̃(θ)qr ̸= 0 only if q ≥ r due to the numbering
consistent with (V, A). Moreover, its diagonal elements are all equal to unity. A consequence
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is nonsingularity of L̃(θ) and also of L(θ). For example,

L(θ) =


1
θ1 1

θ1θ2 θ2 1
θ2
1θ2 θ1θ2 θ1 1

θ1θ
2
2 θ2

2 θ2 1


in the case of Example 3.1.

The product L(θ)TG(x)L(θ) has the following form.

Lemma 4.1 For the matrices G(x) and L(θ) in (3.1) and (4.2), respectively, we can write

L(θ)TG(x)L(θ) =

(
2F (x, θ) F∗∗(x, θ)

F∗∗(x, θ)T O

)
with

F∗∗(x, θ) =
( ∑

α∈V (2)

Fα(x)θα−α(2)
∑

α∈V (3)

Fα(x)θα−α(3) · · ·
∑

α∈V (|V |)

Fα(x)θα−α(|V |)
)
,

where V (r) is the set of vertices reachable from α(r) in (V, A) for r = 2, 3, . . . , |V |.
Proof. Direct calculation gives the lemma. �

We next consider the product L(θ)TH(θ′) for θ, θ′ ∈ Rp.

Lemma 4.2 For the matrices H(θ) and L(θ) in (3.2) and (4.2), respectively, we can write

L(θ)TH(θ′) =


∗ ∗ · · · ∗
1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1

 ⊗ Im,

where the elements expressed by ∗ are either equal to zero or expressed as θα(θi − θ′i) for
some α ∈ Zp

+ and i = 1, 2, . . . , p. When θ = θ′ in particular, all the elements expressed by
∗ are equal to zero.

Proof. Noting that L(θ)TH(θ′) = [L̃(θ)TH̃(θ′)] ⊗ Im, we will evaluate the (s, r)-element

of L̃(θ)TH̃(θ′), which is the inner product between the sth column of L̃(θ) and the rth

column of H̃(θ′), where s = 1, 2, . . . , |V | and r = 1, 2, . . . , |V | − 1. As in the proof of

Lemma 3.1, the element H̃(θ′)qr is equal to −θ′i if q = q̂, equal to unity if q = r + 1, and
equal to zero otherwise. Here, the unique arc ending at α(r+1) is supposed to be (α(q̂), α(r+1))
and be parallel to the ith axis. The value of the considered (s, r)-element depends on the
reachability of the vertices α(q̂) and α(r+1) from α(s) in (V, A). Namely, there are three
possible cases.

(Case 1) Both α(q̂) and α(r+1) are reachable from α(s). This occurs only when s ≤ q̂ <
r + 1. In this case, the considered value is equal to

θα(q̂)−α(s)

(−θ′i) + θα(r+1)−α(s)

= θα(q̂)−α(s)

(θi − θ′i).

Note that α(q̂) − α(s) ∈ Zp
+.
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(Case 2) The vertex α(r+1) coincides with α(s), i.e., s = r + 1. In this case, the quantity
is equal to unity.

(Case 3) Neither α(q̂) nor α(r+1) is reachable from α(s). In this case, the quantity is equal
to zero.
Summarizing these results, we obtain the lemma. �

With these preparations, we relate P (∆) and Pϵ. By Assumption 4.1 (a), there exists
ϵ0 > 0 such that, for any 0 ≤ ϵ ≤ ϵ0, the auxiliary problem Pϵ is strictly feasible. Let v0 be
a number with inf Pϵ0 ≤ v0 and define the level set

X :=
{
x ∈ Rn | cTx ≤ v0, E(x) ≽ O, and F (x, θ) ≽ O (∀θ ∈ Θ)

}
.

This set is nonempty and bounded by Assumption 4.1 (b). For each 0 ≤ ϵ ≤ ϵ0, the infimum
of Pϵ is attained in X and only in X.

We begin by the special case that Θ ⊆ [−1, 1]p. In this case, |θi| ≤ 1 for any θ ∈ Θ and
any i = 1, 2, . . . , p. Let F be a number such that

max
x∈X

max
θ∈Θ

σ[F∗∗(x, θ)] ≤ F

with the maximum singular value σ.

Lemma 4.3 Suppose that Θ ⊆ [−1, 1]p and

rad ∆ ≤ min
{ 2ϵ0

(F +
√

|V |m)2
,

1

|V |

}
.

Then, we have inf P ≤ inf P (∆) ≤ inf Pϵ for

ϵ =
(F +

√
|V |m)2

2
rad ∆.

Proof. Since inf P ≤ inf P (∆) as noticed in Section 3, we will show inf P (∆) ≤ inf Pϵ. Let
∆ be {Θ[j]}J

j=1. The ϵ given in the lemma satisfies 0 ≤ ϵ ≤ ϵ0. Hence, the infimum of Pϵ is
attained at a point in X. Let such a minimizing point be x∗ ∈ X. The proof is complete
if this x∗ is contained in the projected feasible region of P (∆), that is, there exists W [j] for
each j = 1, 2, . . . , J such that

G(x∗) + H(θ)(W [j])T + W [j]H(θ)T ≽ O (∀θ ∈ ver Θ[j]). (4.3)

We show that this inequality holds with W [j] := (1/rad Θ[j])H(θc) for each j, where θc is a
center of Θ[j].

In order to show the inequality (4.3) for a fixed j, we premultiply L(θc)T and postmul-
tiply L(θc) to its left-hand-side matrix. Lemmas 4.1 and 4.2 give the concrete forms of
L(θc)TG(x∗)L(θc) and (W [j])TL(θc) = (1/rad Θ[j])H(θc)TL(θc). By Lemma 4.2 again, the
product L(θc)TH(θ) divided by rad Θ[j] has the form

∗ ∗ · · · ∗
1/rad Θ[j] ∗ · · · ∗

0 1/rad Θ[j] · · · ∗
...

...
. . .

...
0 0 · · · 1/rad Θ[j]

 ⊗ Im,
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where the elements expressed by ∗ are either equal to zero or of the form

(θc)α(θc
i − θi)

rad Θ[j]
,

whose magnitude is at most one since |θc
i | ≤ 1 and |θc

i − θi| ≤ rad Θ[j] for i = 1, 2, . . . , p. Let
us write the product (1/rad Θ[j])L(θc)TH(θ) as [HT

1 HT
2 ]T with the m× (|V | − 1)m matrix

H1 and the (|V | − 1)m × (|V | − 1)m matrix H2. Then, we have

L(θc)TH(θ)(W [j])TL(θc) =

(
Om×m H1

O(|V |−1)m×m H2

)
.

Since H1 has at most (|V |−1)m nonzero elements whose magnitude is at most one, we have
σ(H1) ≤

√
(|V | − 1)m. On the other hand, H2 is upper triangular and each of its rows has

the diagonal element 1/rad Θ[j] and at most |V | − 2 nonzero off-diagonal elements, whose
magnitude is at most one. Hence, we have

H2 + HT
2 ≽

( 2

rad Θ[j]
− |V | + 2

)
I.

Now, the left-hand side of (4.3) multiplied by L(θc)T and L(θc) has the upper-left m × m
block equal to 2F (x∗, θc), which satisfies 2F (x∗, θc) ≽ 2ϵI due to the feasibility of x∗ in Pϵ.
The Schur complement of this upper-left block is

H2 + HT
2 − [F∗∗(x

∗, θc) + H1]
T[2F (x∗, θc)]−1[F∗∗(x

∗, θc) + H1]

≽
( 2

rad Θ[j]
− |V | + 2

)
I −

{
σ[F∗∗(x

∗, θc)] +
√

(|V | − 1)m
}2 1

2ϵ
I.

Noting that 2/rad Θ[j] − |V | + 2 ≥ 1/rad Θ[j] and σ[F∗∗(x
∗, θc)] ≤ F , we see the positive

semidefiniteness of the right-hand-side matrix. This completes the proof. �
The general case that not necessarily Θ ⊆ [−1, 1]p can be reduced to the special case.

Let us write
θ := max{1, max

θ∈Θ
max

i=1,2,...,p
|θi|} (4.4)

and ⟨α⟩ := α1 + α2 + · · · + αp. Since

F (x, θ) =
∑
α∈V

Fα(x)θα =
∑
α∈V

Fα(x)θ
⟨α⟩

(θ

θ

)α

,

we can regard Fα(x)θ
⟨α⟩

as a coefficient and θ/θ as a parameter. The problems P and
Pϵ essentially remain the same with this replacement. Since θ/θ moves in [−1, 1]p, the
discussion in the special case can be applied. To state the result, we define

F ′
∗∗(x, θ) :=

( ∑
α∈V (2)

Fα(x)θ
⟨α⟩

(θ

θ

)α−α(2) ∑
α∈V (3)

Fα(x)θ
⟨α⟩

(θ

θ

)α−α(3)

· · ·

∑
α∈V (|V |)

Fα(x)θ
⟨α⟩

(θ

θ

)α−α(|V |))
and

F ′ := max
x∈X

max
θ∈Θ

σ[F ′
∗∗(x, θ)]. (4.5)
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Lemma 4.4 Suppose that

rad ∆ ≤ min
{ 2θϵ0

(F ′ +
√

|V |m)2
,

θ

|V |

}
.

Then, we have inf P ≤ inf P (∆) ≤ inf Pϵ for

ϵ =
(F ′ +

√
|V |m)2

2θ
rad ∆.

Proof. We observed that the replacement of Fα(x) by Fα(x)θ
⟨α⟩

and θ by θ/θ does not
change the problems P and Pϵ. As is shown below, this replacement does not change either
the approximate problem P (∆). The parameter after the replacement, i.e., θ/θ, moves
in [−1, 1]p. Hence, the result of Lemma 4.3 is valid with F replaced by F ′ and rad ∆ by
rad ∆/θ. This completes the proof.

We show that the approximate problem P (∆) does not change by the replacement above.
Let G′(x) and H ′(θ) be the matrices obtained from G(x) and H(θ), respectively, by the
mentioned replacement. It is routine to confirm that

G′(x) = diag{Im, T}G(x)diag{Im, T},
H ′(θ) = diag{Im, T}H(θ)T−1,

where T := diag{θ⟨α
(2)⟩

, θ
⟨α(3)⟩

, . . . , θ
⟨α(|V |)⟩} ⊗ Im and diag denotes a (block-)diagonal

matrix. Therefore, the existence of W satisfying

G(x) + H(θ)WT + WH(θ)T ≽ O

is equivalent to the existence of W ′ satisfying

G′(x) + H ′(θ)(W ′)T + W ′H ′(θ)T ≽ O

with the correspondence W ′ = diag{Im, T}WT . This means that the approximate problem
P (∆) does not change essentially by the replacement. �

We now take the final step for the proof of Theorem 4.1. We assume Assumption 4.1. The
number ϵ0 is chosen so that the auxiliary problem Pϵ is strictly feasible for any 0 ≤ ϵ ≤ ϵ0.
The numbers θ and F ′ are as in (4.4) and (4.5), respectively. Finally, let g be an upper
bound on a subgradient of inf Pϵ at ϵ = ϵ0. Then, with

C =
g(F ′ +

√
|V |m)2

2θ
, (4.6)

C ′ = min
{ 2θϵ0

(F ′ +
√

|V |m)2
,

θ

|V |

}
, (4.7)

we can prove the theorem.

Proof of Theorem 4.1. Lemma 4.4 implies that, when rad ∆ ≤ C ′, we have inf P ≤
inf P (∆) ≤ inf Pϵ for ϵ = [(F ′ +

√
|V |m)2/2θ]rad ∆. Owing to the convexity of inf Pϵ,

the number g serves as an upper bound on a subgradient of inf Pϵ also at this ϵ. Hence, the
convexity of inf Pϵ again implies inf P ≥ inf Pϵ − gϵ, from which 0 ≤ inf P (∆) − inf P ≤
inf Pϵ − inf P ≤ gϵ. Substitution of the concrete form of ϵ gives the theorem. �
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0

θ2

1

0 θ1 1

Θ

Optimal values:
reduced-size 1.09002 1.08632 1.08252 1.08000
full-size 1.09002 1.08632 1.08252 1.08000

Computational time (s):
reduced-size 0.45 0.50 0.58 1.03
full-size 0.63 0.79 1.23 1.01

Figure 2: Comparison between the reduced-size and the full-size approximate problems in
maximization of f(θ) = 9θ1θ2 − 5θ1θ

2
2 − 5θ2

1θ2 (θ ∈ [0, 1]2). Four different divisions were
used.

5. Numerical Examples

We compare the proposed reduced-size approximate problem with the full-size approximate
problem. Three numerical examples show the superiority of the former.

Example 5.1 This is a continuation of Examples 2.1 and 3.1, where the maximization of
f(θ) = 9θ1θ2−5θ1θ

2
2−5θ2

1θ2 was considered in θ ∈ Θ = [0, 1]2. We constructed and solved the
reduced-size and the full-size approximate problems with the coarsest division ∆ = {Θ}.
The problem size measured by the number of rows and columns of G(x) was |V |m =
5 in the reduced-size approximate problem while |Vf |m = 9 in the full-size approximate
problem. Solving the reduced-size approximate problem, we obtained the optimal value
1.08000, which was very close to the exact value 1.08. The computational time was 0.43
seconds. With the full-size approximate problem, on the other hand, we obtained a worse
approximation 1.09002 after longer computational time 0.63 seconds. The reduced-size
approximate problem was hence more useful. For the computation, the SDP solver SeDuMi
[34] was used with the modeling language YALMIP [17]. The computer was equipped with
Pentium 4 of 2.4GHz and 2GByte memory.

The results may change with a different rectilinear Steiner arborescence. We next used
the arborescence constructed as the proof of Proposition 3.1. In this case, the size of the
reduced-size approximate problem was |V |m = 6. We used the four different divisions of
Θ adaptively constructed in [23]. The results are summarized in Figure 2. The obtained
optimal values showed almost no difference between the reduced-size and the full-size ap-
proximate problems. As the resolution became higher, they approached the exact value
1.08. On the other hand, the computational time was generally smaller in the reduced-size
approximate problem. In this case, we obtained C = 102.038 and C ′ = 0.166667. Since the
used divisions have larger maximum radii (and also larger maximum active radii) than this
C ′, the upper bound in Theorem 4.1 is not directly applicable. We can see however that
the actual approximation error is much smaller than the theoretical upper bound C rad ∆.

Example 5.2 We next consider maximization of two-dimensional random polynomials with
the degrees d1 = d2 = µ, where µ is an integer not less than three. Each polynomial has ten
nonzero terms: one is the maximum-degree term θµ

1 θµ
2 and the remaining nine are randomly

chosen from {θα1
1 θα2

2 |α1, α2 = 0, 1, . . . , µ, (α1, α2) ̸= (µ, µ)}. The coefficient of each term
is randomly chosen from [−1, 1]. For each of µ = 3, 4, . . . , 8, we generated 100 random
polynomials and computed their maxima over θ ∈ Θ = [0, 1]2 with the reduced-size and the
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Figure 3: Comparison between the reduced-size (the solid lines) and the full-size (the broken
lines) approximate problems in maximization of random polynomials
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Figure 4: A crane model, for which a controller was designed

full-size approximate problems. The used division was the coarsest one ∆ = {Θ}. As µ
increases, the degrees d1 and d2 grow up while the size of the support |S| does not. Hence,
the superiority of the reduced-size approximate problem should become clearer according
to Proposition 3.1.

The averaged computational time is presented in Figure 3 (a). The environment of the
computation was the same as the previous example. We can see in the figure that the
reduced-size approximate problem had much smaller computational time than the full-size
approximate problem. Indeed, for µ = 8, the full-size approximate problems could not
be solved due to the crash of the solver. Figure 3 (b) shows the averaged sizes of the
approximate problems measured by |V |m or |Vf |m. The reduced-size approximate problem
had a smaller size, which explains its small computational time.

The accuracy of approximation was reasonably good if the coarseness of the division is
taken into account. Indeed, the obtained value, which was an upper bound on the true
maximum, differed from a lower bound by 0.01 or less for 80.3% of the polynomials and by
10−6 or less for 53.0% of the polynomials. Here, a lower bound was computed by evaluating
a polynomial at 2500 grid points in Θ and taking the maximum. The averaged value of the
upper bound was 0.945 while that of the lower bound was 0.932.

Example 5.3 As the last example, we consider a more realistic problem: design of a state-
feedback controller for an uncertain system. Figure 4 shows a schematic view of the system
to be considered, which is a simplification of a crane model investigated in [35]. Here, g
denotes the acceleration of gravity, 9.8 m/s2; L the length of the boom, 0.71 m; W the weight
of the boom, 0.205 kg; w the weight of the load, 0.3 kg; ℓ the length of the rope, which can
take any value between 1 m and 1.5 m. We want to stabilize the system at a given angle of
the boom, ν0, which can take any value between 40 degrees and 50 degrees. The dynamics
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of the system linearized at ν = ν0 and ϕ = 0, which is the angle of the rope, is

d

dt


ν(t) − ν0

ϕ(t)
ν̇(t)

ϕ̇(t)

 =


0 0 1 0
0 0 0 1

g(W/2+w)
La cos ν0

gw cos ν0

La
0 0

−g(W/2+w)
ℓa

−g(W/3+w)
ℓa

0 0




ν(t) − ν0

ϕ(t)
ν̇(t)

ϕ̇(t)

 +


0
0

− cos ν0

La
cos2 ν0

ℓa

 (u(t) − u0).

Here, a is W/3+w−w cos2 ν0 and u0 is the force to make ν = ν0 and θ = 0 equilibrium. We
write this equation as (d/dt)ξ(t) = A(ν0, ℓ)ξ(t)+B(ν0, ℓ)ũ(t) making explicit the dependence
on the uncertain parameters ν0 and ℓ.

We design a state-feedback controller ũ(t) = Kξ(t) to stabilize this system for all the
possible values of ν0 and ℓ. This type of problems is called robust control. A robust con-
trol problem has been difficult to solve when a given system has nonlinear dependence on
uncertain parameters like our problem. In that case, it has been common to adopt conser-
vative design. We tackle our robust control problem by formulating it into an optimization
problem:

minimize x

subject to I − Y ≽ O,

(
1 Z

ZT I

)
≽ O, Y + xI ≽ O,

− A(ν0, ℓ)Y − B(ν0, ℓ)Z − Y A(ν0, ℓ)
T − ZTB(ν0, ℓ)

T + xI ≽ O

(for all possible values of ν0 and ℓ).

If the optimal x is negative, the optimal Y and Z give a robustly stabilizing controller by
K = ZY −1 [3, 6].

To write this problem in the form of P , multiply a cos ν0 to both sides of the last con-
straint and set θ1 = cos ν0 and θ2 = 1/ℓ. The resulting constraint is a polynomial in the
parameters θ1 and θ2, whose degrees are d1 = 3 and d2 = 1. Although the number of possi-
ble terms is (d1 + 1)(d2 + 1) = 8, two terms θ2 and θ2

1θ2 have zero coefficients. In this sense,
our problem has sparsity. The parameter set Θ is written as [θ1, θ1] × [θ2, θ2], where θi and
θi (i = 1, 2) are the possible minimum and maximum values of the parameters, respectively.

We solved this problem with the reduced-size and the full-size approximate problems.
We chose the division ∆ to consist of [θ1, θ1]× [θ2, (θ2 + θ2)/2] and [θ1, θ1]× [(θ2 + θ2)/2, θ2].
The reduced-size approximate problem had the optimal value −0.0127419, which was an
upper bound on the true minimum. This upper bound was accurate because a lower bound
computed from 2500 grid points was −0.0127419. The size of the approximate problem
was |V |m = 24 and the computational time was 11.11 seconds. Although the full-size
approximate problem gave almost the same optimal value, the size of the approximate
problem was larger with |Vf |m = 32, which resulted in larger computational time, 50.48
seconds.

6. Conclusion

A reduced-size approximate problem is proposed in the matrix-dilation approach to robust
SDP. This reduction results from exploitation of sparsity of a given robust SDP problem.
Its effect is especially evident when the LMI constraint of the given problem has a small
support and high degrees. Even with this improvement, a good property of the matrix-
dilation approach is still kept. Namely, a quantitative relationship is derived between the
approximation error and the maximum radius of the division. This relationship implies the
asymptotic exactness of the approach.
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