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Abstract Recently, one of the most interesting topics in supply chain management (SCM) is the integrated
vendor-buyer production-inventory problem, in which the critical issue is to determine economic lot size per
shipment and deliveries. Most researches on this issue assume that products are screened and the process is
perfect; however, screening errors (including type-I and type-II) may occur with imperfect quality in practice.
In this paper we consider a simple single-vendor single-buyer supply chain system in which products are
received with defective quality, and 100% screening process is performed with possible inspection errors. The
objective of this paper is to determine the optimal number of shipments as well as the size of each shipment
in order to minimize the joint annual cost incurred by both vendor and buyer. We develop a cost model
for the supply chain system and propose a solution procedure to find the optimal solution. A numerical
example is given to illustrate the application of the model. Besides, based on the numerical example, a
sensitivity analysis is also made to investigate the effects of five important parameters (the inspection rate,
the annual demand, the defective rate, Type I error, and Type II error) on the optimal solution.
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1. Introduction

Recently, the issue of just-in-time (JIT) manufacturing has received considerable attention,
and one of the most interesting topics on this issue is the integration of vendor and buyer
in the supply chain system [4]. Many researches have shown that improved benefits can
be achieved through the coordination of vendor and buyer. In his pioneer work Goyal [9]
considered the joint optimization problem of vendor and buyer, in which he assumed that
vendor’s production rate was infinite. Banerjee [1] extended the result to the case of finite
production rate, and developed a joint economic lot size (JELS) model in which vendor made
to order under lot-for-lot policy. Goyal [10] further relaxed the lot-for-lot assumption, and
proposed a model in which each production batch was shipped to buyer in smaller batches of
equal size. Later Hill [15] established an optimal batching and shipment policy; in his work,
he showed that the successive shipment sizes of the first m shipments should be adjusted
by a fixed factor and the remaining shipments should be equal-sized. Ha and Kim [13] used
geometric programming model to integrate decisions of vendor and buyer, in which small
production lots were considered. Hoque and Goyal [16] proposed an optimal procedure to a
single-vendor, single-buyer production and inventory problem with both equal and unequal
sized shipments, in which capacity constraint of transportation equipments was considered.
Later Pan and Yang [21] investigated an integrated inventory model with controllable lead
time with normally distributed demand. Recently, Buscher and Lindner [3] presented a
lot size model to allow the simultaneous determination of production as well as rework lot
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and batches. In the same time, Ertogral et al. [8] analyzed the lot-sizing problem under
equal-sized shipment policy, in which they incorporated transportation cost explicitly into
the model.

Based on the model of equal-size sub-batches shipments to buyer, Goyal [11] proposed
the use of unequal-sized sub-batches in which he suggested that the ith shipment size to
buyer within a production batch should be adjusted accordingly. Hill [14] extended this idea
and proposed general shipment sizes that were increased by a general fixed factor, ranging
from 1 to the ratio between the production rate and demand rate. Viswanathan [27] showed
that neither the policy with equal-sized sub-batches nor the policy with unequal-sized sub-
batches dominated each other. Bogaschewsky et al. [2] presented a model for a multi stage
production/inventory system in which a uniform lot size is produce through all stages and
partial lot size may be transported to the next stages upon completion. Recently, Hoque
and Goyal [17] developed an alternative generalized model in which equal and unequal batch
shipments of a lot from the vendor to the buyer is considered.

However, many researchers pointed out that the issue of defective items or imperfect
quality was of practical importance. Porteus [23] incorporated the effect of imperfect items
into the basic EOQ model, in which he developed a simple model to illustrate the relationship
between quality and lot size. Rosenblatt and Lee [24] assumed the defective items could
be reworked at a cost, and they found that defective items motivated smaller lot size.
Later, Schwaller [26] assumed that defective items were present in incoming lots so that
inspection costs should be incurred due to such items. Cheng [6] developed an EOQ model
with demand-dependent unit production cost and imperfect production processes; in his
work, he formulated the inventory decision problem as a geometric programming model.
Zhang and Gerchak [29] also integrated lot sizing and inspection policy in an EOQ model,
in which they assumed that a random proportion of items were defective. Later Yang
and Wee [28] employed an integrated approach to determine economic ordering policy of
deteriorated item. Under the assumption that defective items could be sold as a single
batch by the end of 100% screening process, Salameh and Jaber [25] developed an EOQ-
based model for items received with imperfect quality; in their work, they found that the
economic lot size increased as the average percentage of defective items increased. Goyal
and Cardenas-Baeeon [12] developed a simple method to determine the economic production
quantity for items with imperfect quality. Recently Huang [19] incorporated the integrated
method and the process unreliability into the production-inventory model. Based on the
work of Huang [19], Chung [7] developed a necessary and sufficient condition for the existence
of the optimal solution to complete and improve the solution procedure of Huang’s work.
Papachristors and Konstantaras [22] further discussed the issue of non-shortages in inventory
models with imperfect quality. More recently, Hsu et al. [18] developed a deteriorating
inventory replenishment model and presented an algorithm to derive both vendor’s managing
cost and buyer’s optimal replenishment cycle, shortage period, as well as order quantity; in
which they demonstrated that buyer’s profit was highly influenced by vendor’s lead time.
Chen and Kang [5] developed the integrated vendor-buyer cooperative inventory models
with the permissible delay in payments to determine the optimal replenishment time interval
and replenishment frequency. More recently, Maddah and Jaber [20] rectified a flaw in an
economic order quantity (EOQ) model with unreliable supply, characterized by a random
fraction of imperfect quality items and a screening process, developed by Salameh and
Jaber [25]. In their work, several batches of imperfect quality items to be consolidated and
shipped in one lot are also discussed.

Although the production-inventory model has received considerable attention, most re-
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searches neglect the effect of screening errors when items need to be inspected. In practice
it is often the case that, when 100% screening process is performed, inspection fails to be
perfect due to Type I and Type II errors. Type I error occurs if perfect items are mistakenly
classified as defective, and it results in unnecessarily requiring more items with extra cost;
Type II error appears if imperfect items are mistakenly identified as perfect, and it incurs
penalty cost. The objective of this paper is to extend the model developed by Huang [19] to
the case with screening errors. More specifically, we consider the production and inventory
model with imperfect quality under screening errors in which 100% screening process is
realized.

This paper is organized as follows. In section 2, notations and assumptions used in this
paper are given. Section 3 develops an integrated production and inventory model with
defective items under screening errors. Section 4 gives a numerical example and conducts
sensitivity analysis for the screening rate, annual demand, defective percentage, Type I
error, and Type II error. Conclusion is summarized in section 5.

2. Notation and Assumptions

The following notations and assumptions are adapted in developing the integrated produc-
tion and inventory model considered in this paper.

Parameters:
d unit screening cost
F transportation cost per shipment
hB buyer’s annual holding cost per item
hV vendor’s annual holding cost per item
m buyer’s penalty cost to replace one defective item returned by end-consumers
SV vendor’s setup cost per production run
SB buyer’s ordering cost of placing an order
v vendor’s unit warranty cost of defective items
D annual demand
P annual production rate, P > D
x screening rate
α Type I error, false rejection of nondefectives resulting in the necessity of

producing additional items
β Type II error, false acceptance of defectives resulting in that the products

shipped to the end-consumers
Y percentage of defective items, a random variable

f(y) probability density function of Y

Unknowns:
n total number of shipments per production lot, a positive integer
Q number of items per shipment
Qp lot size per production run, in which Qp = nQ
T time interval between successive shipments
Tc cycle time, in which Tc = nT

TCB(n,Q) buyer’s annual total cost
TCV (n,Q) vendor’s annual total cost
K(n, Q) annual integrated total cost

EK(n,Q) expected annual integrated total cost
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Assumptions:

1. the supply chain consists of a single vendor and a single buyer
2. demand for the item is constant over time
3. production rate is uniform and finite
4. successive deliveries are scheduled so that the next delivery arrives at the buyer when

the stock from previous shipment has just been used up
5. the number of perfect items is at least equal to the demand during screening time
6. shortages are not allowed
7. time horizon is assumed to be infinite
8. the vendor delivers the “true” defective items in a single batch at the end of the buyer’s

100% screening process and thus warranty cost occurs

3. Mathematical Model

In his recent paper, Huang [19] considered a single-vendor, single-buyer supply chain system
with imperfect products in the integrated production-inventory model. The inventory levels
of Huang’s model for both the vendor and buyer were depicted in Fig. 1, and the annual
total cost of the integrated model (including both the vendor and the buyer) was given by

K (n,Q) =
(SV + SB)D

n(1 − Y )Q
+

FD

(1 − Y )Q
+

D(d + vY )

(1 − Y )

+

{
Q

2
+

(n − 2)Q

2
(1 − D

(1 − Y )P
)

}
hV +

{
Q(1 − Y )

2
+

DQY

x(1 − Y )

}
hB (3.1)

where the costs in the right-hand side of Eq.(3.1) are setup cost, ordering cost, trans-
portation cost, screening cost, warranty cost, vendor’s holding cost, and buyer’s holding
cost, respectively.

In contrast to Huang’s model, we consider in this paper that 100% screening process
is performed, in which imperfect quality under inspection errors may occur. Hence, the
buyer’s inventory level of Huang’s model is modified as Q [1 − Y (1 − β) − α (1 − Y )] units.
To avoid possible shortages, we assume that during the screening time Y is restricted to the
following condition:

Y (1 − β) + α (1 − Y ) ≤ 1 − D

x
(3.2)

Furthermore, the cycle time is given by nT, where T = Q[1−α−Y (1−α−β)]
D

. Therefore, the
vendor’s annual holding cost,shown as HCV , can be written as
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2
+
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2
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]}

Let TCV (n,Q) denote the vendor’s annual total cost, then we have
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SV D
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+dD
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(3.3)
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Figure 1: Time-weighted inventory for vendor and buyer.
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where the costs in the right-hand side of Eq.(3.3) are setup cost, warranty cost for
”true” defective items, screening cost for defective items returned by buyer, and holding
cost, respectively.

Similarly, the buyer’s annual holding cost, denoted as HCB, is given by

HCB =

{

Q [1 − α − Y (1 − α − β)]
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[
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Figure 1: Time-weighted inventory for vendor and buyer.

where the costs in the right-hand side of Eq.(3.3) are setup cost, warranty cost for
“true” defective items, screening cost for defective items returned by buyer, and holding
cost, respectively.

Similarly, the buyer’s annual holding cost, denoted as HCB, is given by

HCB =

{
Q [1 − α − Y (1 − α − β)]
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Then, the buyer’s annual total cost TCB (n,Q) is given by

TCB (n,Q) =
SBD

nQ [1 − α − Y (1 − α − β)]
+
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+

{
Q [1 − α − Y (1 − α − β)]

2
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DQ

x
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]}
hB (3.4)

where the costs in the right-hand side of Eq.(3.4) are ordering cost, transportation cost,
screening cost, holding cost, and penalty cost, respectively. Therefore, by adding Eq.(3.3)
and (3.4) (i.e., the vendor’s annual total cost TCV (n,Q) and the buyer’s annual total cost
TCB(n,Q)), the annual total cost of Huang’s model can now be modified as follows:
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Let f(y) be the probability density function of random variable Y, by taking the expec-
tation of Eq.(3.6), the expected annual total cost EK(n,Q) is given by
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nQ
+

FD

Q
+

(
2d + v

(1 − α) (1 − β)

1 − α − β

)
D

}
Ω

+

{
βmD (1 − α)

(1 − α − β)
− (n − 2) QDhv

2P
+

DQhB

x

}
Ω

−dD − vD
1 − β

1 − α − β
− βmD

1 − α − β
+

(n − 1) Q

2
hV − DQ

x
hB

+
Q [1 − α − E[Y ] (1 − α − β)]

2
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[
1
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]
. (3.7)

Note that when the screening process is perfect (i.e., α=0 and β=0), Eq.(3.7) reduces
to Huang’s model; besides, when all items are perfect (i.e., no screening process is needed),
Eq.(3.7) will reduce to the model of Ha and Kim [13].

The following property is needed in the derivation of the optimal solution for the expected
annual total cost EK(n,Q).
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Property 1 For fixed n, EK(n,Q) is convex in Q.

Proof. See Appendix A1.

According to Property 1, the optimal value of Q can be determined by letting ∂EK(n,Q)
∂Q

=
0, which yields

Q∗(n) =

√√√√√ 2DΩ
(

SV +SB

n
+ F

)
(n − 1)hV − 2DhB

x
+ hB[1 − α − E[Y ](1 − α − β)] + Ω

[
2DhB

x
− (n−2)DhV

P

] (3.8)

Thus, the procedure of determining the optimal number of shipments n∗ and lot size Q∗

is summarized in the following theorem:

Theorm 1 (1−DΩ/P ) > 0 holds if and only if the optimal solution (n∗, Q∗) of EK(n,Q)
exists. Furthermore, if (1−DΩ/P ) > 0 holds, the optimal solution (n∗, Q∗) can be expressed
as follows:

(1) If ∆ =
{

2DΩhB

x
+ 2DΩhV

P
− hV − 2DhB

x
+ hB [1 − α − E [Y ] (1 − α − β)]

}
≥ 0, the

optimal shipments from the vendor to the buyer must satisfy as follows.

(n∗ − 1) n∗ ≤ (SV + SB) ∆

(1 − DΩ/P ) hV F
≤ n∗ (n∗ + 1) (3.9)

Also, Q∗ = Q∗(n∗) which can be determined by Eq.(3.8).

(2) If ∆ =
{

2DΩhB

x
+ 2DΩhV

P
− hV − 2DhB

x
+ hB [1 − α − E [Y ] (1 − α − β)]

}
< 0, the

optimal solution of (n∗, Q∗) can be expressed as n∗=1 and Q∗ = Q∗(1).

Proof. See Appendix A2.

4. Numerical Example and Sensitivity Analysis

In this section, we use the example given by Huang [19] to illustrate the effectiveness of our
modified model developed in the previous section. The parameters are as follows:

Production rate P = 160, 000 units/year
Demand rate D = 50, 000 units/year
Setup cost for vendor SV = $300/cycle
Ordering cost for buyer SB = $100/cycle
Holding cost for vendor hV = $2/unit/year
Holding cost for buyer hB = $5/unit/year
Transportation cost F = $25/delivery
Screening rate x = 175, 200 units/year
Screening cost d = $0.5/unit
Warranty cost of “true” imperfect quality items v = $30/unit

In addition, we set the penalty cost m = $50/unit, Type I error α = 0.01, and Type II
error β = 0.02.

Due to the property of uncertainty and the lack of sufficient data for the defective rate,
we can not properly determine the distribution of defective rate. Therefore, in this paper,
we follow the previous researchers (such as Huang [19], Maddah and Jaber [20], Papachristos
and Konstantaras [22], Salameh and Jaber [25], etc.) by employing the uniform distribution
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as the form of defective rate. That is, we assume that the percentage defective random
variable Y is uniformly distributed with p.d.f. as f(y) = 20, 0 ≤ y ≤ 0.05. Then, one has

E [Y ] =
∫ 0.05
0 20ydy = 0.025 and

Ω = E
[

1
1−α−Y (1−α−β)

]
=
∫ 0.05
0

20
1−α−y(1−α−β)

dy = 1.035682.

Further, we have ∆ = 4.225185 ≥ 0. Since
(
1 − DΩ

P

)
= 0.67635 > 0 and ∆ = 4.225185 ≥

0, from Theorem 1, we have (SV +SB)∆
(1−DΩ/P )FhV

= 49.97638. Thus, by Eq.(3.9), the optimal number

of shipments is given by n∗ = 7. Furthermore, setting n∗ = 7 into Eq.(3.8), we have the
optimal lot size per shipment Q∗ ≈ 788. Hence, the expected annual total cost is $77207.6.
Compared with Huang [19], the number of shipments of our model is the same as that of
Huang [19]; while the lot size of each shipment and the expected annual total cost of our
model are larger than those of Huang [19].

Obviously, the optimal policy (including Q∗, N∗, and EK∗) for the proposed supply
chain system is dependent on the parameters P,D, SV , SB, hV , hB, F, x, d, v, m, α, and β. A
complete investigation of the effect of these parameters on the optimal solution would be a
laborious computational work. To reduce the computational labor, we take only x,D, U, α,
and β into account. All of the five parameters are set at two levels. Their values are
summarized as follows: x (1) 175200 (2) 350400 ; D (1) 50000 (2) 80000 ; U (1) 0.05 (2)
0.10 ; α (1) 0.01 (2) 0.03 ; β (1) 0.02 (2) 0.04 .

Except these five parameters, the other parameters are set as stated above. Table 1 lists
the optimal solutions under 32 combinations of x,D, U, α, and β. From the table, we can
get some findings described as follows:

1. Q∗ is increasing with x; while N∗ and EK∗ are decreasing with x. As to the increasing of
Q∗ with x, this is rather intuitive because a higher inspection rate leads to fast removal
of defective items, which reduces the inventory holding cost and allows ordering more
quantity. This result agrees with Maddah and Jaber’s work [20]. Consequently, the
increasing of lot size in each shipment will lead directly to the increasing in the lengths
of the time intervals between successive shipments. Hence, the number of shipments in
each cycle will decrease. Finally, due to the decreases of the receiving and transportation
costs resulting from the decrease of N∗, we have that EK∗ will decrease as x increases.

2. Q∗, N∗, and EK∗ are all increasing with D. This is similar to the case in the traditional
EOQ model.

3. Q∗, N∗, and EK∗ are increasing in U . That is, the higher the defective rate, the higher
the order quantities, the number of shipments, and the expected annual total cost are.
Obviously, as the defective rate increases, the buyer needs more quantity per shipment
to satisfy the demand. This result consists with the Salameh and Jaber’s [25] work.
This increment in lot size will lead to extra shipments and costs. In contrast, the effect
of the defective rate on the expected annual total cost is higher than those on the lot
size per shipment and the number of shipments.

4. As expected, Q∗, N∗, and EK∗ are also increasing in α. This is because type I error
will “reduce” the quantity of non-defectives in the lot size per shipment and then result
in the necessity of increasing the lot size per shipment and/or the number of shipments
to satisfy the demand.

5. Q∗ and N∗ are decreasing in β; while EK∗ is increasing in β. This can be understood
by noting that false acceptance of defectives will inflate the quantity of non-defectives in
the lot size per shipment, and hence decrease the lot size per shipment and the number
of shipments. Next, naturally, false acceptance of defectives will incur much penalty
cost and then decrease the expected annual total cost.
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Table 1: The values of Q∗ , N∗ , and EK∗ corresponding to 32 combinations of x, D, U , α,
and β

x D U α β Q∗ N∗ EK∗

0.01 0.02 782.8172 7.069398 77263
0.05 0.04 782.5868 7.068728 77727.9

0.03 0.02 791.7713 7.096176 79217.1
50000 0.04 791.5426 7.095379 79690.4

0.01 0.02 793.9324 7.107127 121219
0.1 0.04 793.4767 7.105358 122117

0.03 0.02 802.5564 7.139456 124076
175200 0.04 802.1057 7.137408 124988

0.01 0.02 904.5598 9.165496 118926
0.05 0.04 904.4181 9.16193 119671

0.03 0.02 910.0086 9.307588 122000
80000 0.04 909.8735 9.303668 122759

0.01 0.02 911.1846 9.352195 189188
0.1 0.04 910.9213 9.343932 190627

0.03 0.02 916.1687 9.508366 193704
0.04 915.9197 9.499302 195166

0.01 0.02 787.577 7.026673 77243
0.05 0.04 787.2716 7.026664 77708.2

0.03 0.02 799.5259 7.02735 79184.7
50000 0.04 799.2164 7.027252 79658.4

0.01 0.02 802.5444 7.030861 121184
0.1 0.04 801.9214 7.030534 122081

0.03 0.02 814.3655 7.035927 124027
0.04 813.7354 7.035402 124940

350400 0.01 0.02 911.9262 9.091458 118889
0.05 0.04 911.671 9.089041 119635

0.03 0.02 921.8378 9.18815 121940
80000 0.04 921.5839 9.185449 122700

0.01 0.02 924.2713 9.219777 189122
0.1 0.04 923.7637 9.214031 190562

0.03 0.02 933.8555 9.328282 193614
0.04 933.3515 9.321887 195078
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6. Wholly, from Table 1, it is also observed that none of the second order interactions of
x,D, U, α, and β is significant. That is, it seems that an additive model is appropriate to
model the relationship between Q∗ (N∗ and EK∗) and the five parameters (x,D, U, α,
and β).

5. Conclusion

In practice, based on the vendor-buyer coordination focusing on item flows with an objec-
tive of minimizing supply chain costs, the vendor is usually required to deliver the items
by lot-splitting shipments so as to minimize inventory holding cost for the buyer, as done
in a long-term purchase agreement of a JIT manufacturing environment. In this paper,
we propose a generalized production-inventory model in which items may be received with
imperfect quality, screening errors and lot-splitting shipments. An analytic solution proce-
dure is developed to compute the optimal total number of shipments and the size of each
shipment. The works of Huang [19] and Ha and Kim [13] are two special cases of our model,
associated with the cases with the screening process being perfect and all items being per-
fect, respectively. An investigation of the effects of five important parameters (the inspection
rate, the annual demand, the defective rate, Type I error, and Type II error) on the optimal
solution is also made. Numerical results shows that (1) as the inspection rate increases, the
optimal lot size per shipment increases; while the number of deliveries and the expected
annual total cost decrease. (2) the higher the annual demand, the higher the optimal lot
size per shipment, the number of deliveries and the expected annual total cost. (3) as the
defective rate increases, the values of optimal lot size per shipment, number of deliveries
and expected annual total cost increase. Besides, in contrast to the quantities per shipment
and the number of deliveries, the defective rate has a larger effect on the expected annual
total cost. (4) the higher the Type I error, the higher the optimal lot size per shipment,
the number of deliveries and the expected annual total cost. (5) if Type II error increases,
the value of optimal lot size per shipment and the number of deliveries decrease; while the
expected annual total cost increases. Besides, the optimal quantities per shipment and the
number of deliveries are rather robust to the moderate changes in type II error.

Appendix A1
Proof of Property 1.

Taking the first and second partial derivatives of EK(n,Q) with respect to Q, we have

∂EK (n,Q)

∂Q
=

{
− (SV + SB) D

nQ2
− FD

Q2
− (n − 2) DhV

2P
+

DhB

x

}
Ω

+
(n − 1)

2
hV − DhB

x
+

hB [1 − α − E [Y ] (1 − α − β)]

2
, (5.1)

and

∂2EK (n,Q)

∂2Q
=

{
2D (SV + SB)

nQ3
+

2FD

Q3

}
Ω > 0 (5.2)

Therefore, for fixed n, EK(n,Q) is convex in Q. This completes the proof of Property 1.

Appendix A2
Proof of Theorem 1.

Substituting Eq.(3.8) into Eq.(3.7) and rearranging the result lead to
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EK(n) =

√
2D

(
SV + SB

n
+ F

)
Ω φ (n) +

[
2d + v

(1 − α) (1 − β)

1 − α − β

]
D Ω

+
βmD (1 − α)

1 − α − β
Ω − dD − vD

(1 − β)

1 − α − β
− βmD

1 − α − β
(5.3)

where φ (n) =
[

2DhB

x
− (n − 2) DhV

P

]
Ω+(n − 1) hV −2DhB

x
+hB [1 − α − E [Y ] (1 − α − β)]

By ignoring the terms that are independent of n, taking square of EK(n), and then
dividing by 2DΩ, we have

EK (n) = nhV F
(
1 − DΩ

P

)
+

(SV + SB) ∆

n
(5.4)

where ∆ = 2DΩhB

x
+ 2DΩhV

P
− hV − 2DhB

x
+ hB [1 − α − E [Y ] (1 − α − β)]

Taking the first derivative of EK(n) with respect to n, we get

dEK (n)

dn
= hV F

(
1 − DΩ

P

)
− (SV + SB) ∆

n2
(5.5)

There are three cases, similar to Chung [7], to be discussed:
• Case 1: (1 − ΩD/P ) > 0

Taking the derivative of φ (n) with respect n, we have

dφ (n)

dn
= hV

(
1 − DΩ

P

)
> 0 (5.6)

Thus, φ (n) is increasing on [1,∞) and for all n ≥ 1, we have

φ (n) > φ (1) =
2DhB (Ω − 1)

x
+

DΩhV

P
+ hB [1 − α − E [Y ] (1 − α − β)] > 0 (5.7)

Furthermore, two scenarios may occur:

Scenario 1 : ∆ ≥ 0

We here let

n̂ =

√√√√ (SV + SB) ∆

(1 − ΩD/P ) hV F
(5.8)

Thus, one has

dEK (n)

dn


< 0, if 0 < n < n̂
= 0, if n = n̂
> 0, if n > n̂

(5.9)
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Eq.(5.9) implies EK(n) is decreasing on (0,n̂] and increasing on [n̂,∞). Since n is a
positive integer, the optimal value n∗ is obtained when

EK (ni
∗) ≤ EK (ni

∗ − 1) and EK (ni
∗) ≤ EK (ni

∗ + 1) (5.10)

From Eqs.(5.4) and (5.10), n∗ satisfies the following condition:

(n∗ − 1) n∗ ≤ (SV + SB) ∆

(1 − ΩD/P ) FhV

≤ n∗ (n∗ + 1) (5.11)

Scenario 2 : ∆ < 0

From Eq.(5.5), when ∆ < 0 , we have dEK(n)
dn

> 0. This implies EK(n) is increasing on
[1,∞). Furthermore, by Eq.(5.7), the optimal solution (n∗, Q∗) of EK(n,Q) is given by
n∗ = 1 and Q∗= Q∗(1) which is determined by Eq.(3.8).

• Case 2: (1 − ΩD/P ) = 0

In this case, we have

∆ =
2DhB (Ω − 1)

x
+

DΩhV

P
+ hB [1 − α − E [Y ] (1 − α − β)] > 0 (5.12)

Eqs.(5.5) and (5.12) imply dEK(n)
dn

< 0. That means EK(n) is decreasing on [1,∞).
Therefore, the optimal solution does not exist.

• Case 3: (1 − ΩD/P ) < 0

Here are still two scenarios to be discussed:

Scenario 3 : ∆ ≥ 0

This case leads to dEK(n)
dn

< 0 and EK(n) is decreasing on [1,∞).

Thus, the optimal solution does not exist, either.

Scenario 4 : ∆ < 0

In this scenario, we can easily obtain

dEK (n)

dn


> 0, if 0 < n < n̂
= 0, if n = n̂
< 0, if n > n̂

(5.13)

This implies EK(n) is increasing on (0,n̂] and decreasing on [n̂,∞). By Eq.(5.4), we
further have limn→∞ EK (n) = −∞. Thus the optimal solution does not exist.

Based on the above discussion, we complete the proof.
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