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Abstract A cyclic renewal process is considered as an extension of an alternating renewal process, where
each of the underlying independently and identically distributed (i.i.d.) nonnegative random increments is
composed of multiple stages. Such a process may be appropriate for analyzing optimal preventive mainte-
nance policies for production management, where a pair of two stages representing an uptime until a minor
failure and the subsequent minimal repair time would be repeated until it is decided to conduct a complete
overhaul. In order to address economic problems in such applications, we also introduce a reward process
with jumps defined on the cyclic renewal process. When the system is running in stage j, the profit grows
linearly at the rate of ρ(j). Upon a minor failure, the subsequent minimal repair in stage (j + 1) incurs the
linear cost at the rate of ρ(j + 1). In addition, the fixed cost may be imposed whenever either a minimal
repair or a complete overhaul takes place, resulting in jumps of the reward process. The problem is then
to determine when to conduct a complete overhaul so as to maximize the total reward in the time inter-
val (0, T ]. A multivariate Markov process generated from both the cyclic renewal process and the reward
process is studied extensively, yielding various new transform results explicitly and deriving their asymp-
totic expansions. These results are used to numerically explore optimal preventive maintenance policies for
production management.
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1. Introduction

Renewal theory is the branch of probability theory concerning a variety of problems related
to the partial sums of a sequence of i.i.d. nonnegative random variables. More specifically,
let (Yn)∞n=1 be a sequence of i.i.d. nonnegative random variables and define Sn =

∑n
j=1 Yj.

The renewal process {N(t) ; t > 0} associated with (Yn)∞n=1 is a counting process defined by
N(t) = n if and only if Sn 6 t < Sn+1. Of interest are the renewal function H(t) = E[N(t)],
the renewal density h(t) = d

dt
H(t) if it exists, and other related probabilistic entities. As the

name “renewal theory” indicates, the study stemmed from a class of applications involving
successive replacements of items subject to failure. Here, Yn denotes the lifetime of the n-th
item and N(t) is the number of replacements that took place by time t.

The renewal theory has been extended in many ways. A delayed renewal process, for
example, has the distribution of Y1 different from that of Yn(n > 1), and an alternating
renewal process deals with a situation where Yn consists of two stages : the system uptime
and the system repair time, see e.g. Cox [4]. A Markov renewal process considers a case where
distributions of interfailure times are governed by a Markov chain {J(n) ; n = 0, 1, 2, · · · }
in discrete time, i.e. if J(n − 1) = i and J(n) = j, then the distribution of Yn is given by
Aij(x). The reader is referred to Keilson [12], Keilson and Rao [13, 14], and an excellent
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survey paper by Çinlar [2] for the study of Markov renewal processes. Keener [11] develops
a general renewal theory where i.i.d. increments have support on full continuum. In Kijima
and Sumita [15], the renewal theory is extended in that the distribution of Yn+1 depends on
the partial sum Sn up to the n-th increment.

The purpose of this paper is to introduce a cyclic renewal process as an extension of
an alternating renewal process, where each of the underlying i.i.d. nonnegative random
increments is composed of J stages, i.e. Yn =

∑J
j=1 Xn:j, n > 1, where Xn:j are i.i.d. with

respect to n and consequently so are Yn. Such a process may be appropriate for analyzing
optimal preventive maintenance policies for production management, where a pair of two
stages representing an uptime until a minor failure and the subsequent minimal repair time
would be repeated until it is decided to conduct a complete overhaul. In order to address
economic problems in such applications, we also introduce a reward process with jumps
defined on the cyclic renewal process. When the system is running in stage j, the profit
grows linearly at the rate of ρ(j). Upon a minor failure, the subsequent minimal repair in
stage (j +1) incurs the linear cost at the rate of ρ(j +1). In addition, the fixed cost may be
imposed whenever either a minimal repair or a complete overhaul takes place, resulting in
jumps of the reward process. The problem is then to determine when to conduct a complete
overhaul so as to maximize the total reward in the time interval (0, T ].

When the renewal aspect is suppressed, the above model is reduced to a semi-Markov
process. The study of semi-Markov processes dates back to the middle of 1950s, originated
by works of Lévy [16], Smith [25] and Takács [29]. Subsequently the scope of the study
has been expanded through a series of papers by Pyke [22, 23], Pyke and Schaufele [24],
and Moore and Pyke [21]. Since the early 1960s, the field attracted many researchers
resulting in a collection of quite extensive results. The reader is referred to two excellent
survey papers by Çinlar [1, 2] and references therein for extensive analysis of semi-Markov
and related processes. Reward processes defined on semi-Markov processes also have been
studied extensively, including the original works by Jewell [8–10] followed by Mclean and
Neuts [20], Hunter [6], Howard [5], Çinlar [3], Sumita and Masuda [27], Sumita, Kubat
and Masuda [26], Sumita, Masuda and Kubat [28], Masuda and Sumita [19] and Igaki,
Sumita and Kowada [7] to name a few. However, to the best knowledge of the authors, the
joint distribution of the cyclic renewal process, the underlying semi-Markov process and the
reward process has never been studied in the literature.

In this paper, a multivariate Markov process generated from both the cyclic renewal
process and the reward process is studied extensively, yielding various new transform results
explicitly and deriving their asymptotic expansions. These results are used to numerically
explore optimal preventive maintenance policies for production management. It is worth
noting that, while the long-term analysis can be done by combining the individual cyclic
components into a single lifetime and working out the resulting classical renewal process, this
simplified approach can offer only the approximated dynamic optimal strategy in (0, T ]. The
exact dynamic optimal strategy in (0, T ] can be derived only through the detailed analysis
of the underlying cyclic renewal process. The danger of exclusive reliance on the long-
term analysis or the classical renewal approximation will be demonstrated by exhibiting
numerically the differences between the long-term optimal strategy or the approximated
dynamic optimal strategy and the exact dynamic optimal strategy.

The structure of this paper is as follows. A cyclic renewal process {N(t) ; t > 0} is for-
mally introduced in Section 2 based on a cyclic semi-Markov process {J(t) ; t > 0} describ-
ing multiple stages to constitute system lifetimes. The associated age process {X(t) ; t > 0}
and the reward process {Z(t) ; t > 0} are also introduced so that the multivariate process
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[N(t), J(t), X(t), Z(t)] becomes Markov. Section 3 is devoted to analysis of this multivariate
process by examining its probabilistic flow in its state space, yielding various new trans-
form results. In Section 4, the asymptotic expansions of the expectation E[Z(t)] and the
correlation Cor[N(t), Z(t)] as t → ∞ are derived. We discuss the differences between the
long-term optimal strategy or the approximated dynamic optimal strategy and the exact
dynamic optimal strategy in Section 5. In Section 6, the results obtained in Section 4 are
used to numerically explore optimal preventive maintenance policies for production man-
agement. Some mathematical details are deferred to Appendix for enhancing the readability
of the paper.

2. Model Description

We consider a cyclic renewal process {N(t) ; t > 0} defined on N = {0, 1, 2, · · · } where the
underlying lifetime consists of J stages and N(t) denotes the number of failures by time t.
More specifically, let J = {1, 2, · · · , J} be the set of the stages and let the dwell time in
stage j ∈ J be a nonnegative random variable denoted by Xj. Throughout the paper, we
assume that Xj (j ∈ J ) are independent of the failure count and also mutually independent.
For each j ∈ J , it is assumed that Xj is absolutely continuous characterized by

Āj(x)
def
= P[Xj > x]; aj(x)

def
= − d

dx
Āj(x); ηj(x)

def
=

aj(x)

Āj(x)
; αj(v)

def
=

∫ ∞

0

e−vxaj(x)dx , (2.1)

where Āj(x), aj(x), ηj(x) and αj(v) are the survival function, the probability density func-
tion, the hazard function and the Laplace transform of aj(x) respectively. Here v takes
values from the complex plane satisfying Re(v) > 0 so that αj(v) is well defined. A lifetime
associated with the cyclic renewal process is given by

Y =
J∑

j=1

Xj . (2.2)

Let Yk be the lifetime of the k-th renewal cycle where Yk’s are i.i.d. with common structure
of (2.2). For k = 0, one then sees that P[N(t) = 0] = P[0 6 t < Y1] and for k > 1,
P[N(t) = k] = P[

∑k
m=1 Ym 6 t <

∑k+1
m=1 Ym].

Let {J(t) ; t > 0} be a stochastic process describing the stage at time t. We note that
J(t) is a cyclic semi-Markov process on J = {1, · · · , J} governed by the matrix distribution
function A(x) where

A(x)
def
=


0 A1(x) 0 · · · 0
0 0 A2(x) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 AJ−1(x)
AJ(x) 0 · · · 0 0

 ; Aj(x)
def
= 1 − Āj(x) . (2.3)

Since the bivariate process [N(t), J(t)] is not Markov, we introduce an additional process
{X(t) ; t > 0} on R+ denoting the elapsed time since the last entry into the current stage
at time t, where R+ is the set of nonnegative real numbers. This process is called the age
process. The trivariate process [N(t), J(t), X(t)] then becomes Markov. A typical sample
path of [N(t), J(t), X(t)] is depicted in Figure 2.1 where N(0) = 0, J(0) = i and X(0) = 0.

From an application point of view, of particular interest is a reward process {Z(t) ; t > 0}
with jumps defined on [N(t), J(t), X(t)]. We assume that the reward increases or decreases
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Figure 2.1: Typical sample path of [N(t),
J(t), X(t)]

・・・

Figure 2.2: Typical sample path of
[X(t), Z(t), J(t)] with jumps

linearly at the rate of ρ(j) when J(t) is in state j ∈ J . Furthermore, the reward process
jumps in the random amount of Dj when J(t) moves from j to j + 1 for j ∈ J \ {J}, and
DJ for a transition from J to 1. Accordingly, Z(t) takes a value from R where R is the set
of real numbers. As for Xj (j ∈ J ), it is assumed that Dj (j ∈ J ) are independent of the
failure count, mutually independent, and absolutely continuous having

B̄j(z)
def
= P[Dj > z] ; bj(z)

def
= − d

dz
B̄j(z) ; βj(w)

def
=

∫ ∞

−∞
e−wzbj(z)dz , (2.4)

where w takes values on the unit circle on the complex plane so that βj(w) is well defined.
In order to describe the reward process {Z(t) ; t > 0} more formally, let {Mj(t) ; t > 0}

be the stochastic process counting the number of transitions of J(t) from j to j + 1 by time
t for j ∈ J \{J}. The stochastic process {MJ(t) ; t > 0} is defined similarly for transitions
of J(t) from J to 1. One then has

Z(t) =

∫ t

0

ρ(J(τ))dτ +
J∑

j=1

Mj(t)∑
m=1

Dj:m , (2.5)

where Dj:m denotes the jump amount associated with the m-th transition from j to j + 1
for j ∈ J \ {J}, and from J to 1 for j = J . Following the mathematical convention, we
define

∑b
m=a cm = 0 whenever a > b. It should be noted that, by the assumptions discussed

above, Dj:m(m = 1, · · · ,Mj(t)) are i.i.d. with respect to m. When J(t) is a general semi-
Markov process, the expectation of the semi-Markov reward process with jumps is given in
Howard [5]. The transform results of [J(t), Z(t)] are derived in McLean and Neuts [20]. The
trivariate Markov process [J(t), X(t), Z(t)] is also studied in detail in Sumita and Masuda
[26, 27] and Masuda [18]. The thrust of this paper is to analyze the multivariate process
[N(t), J(t), X(t), Z(t)] where the cyclic renewal process N(t) is incorporated together with
[J(t), X(t), Z(t)], which is new. The results are then used to numerically explore optimal
preventive maintenance policies for production management.

3. Dynamic Analysis of Multivariate Process [N(t), J(t), X(t), Z(t)]

In this section, we analyze the multivariate process [N(t), J(t), X(t), Z(t)] by describing its
probabilistic flow in the state space N ×J ×R+ ×R. For this purpose, let Fk:ij(x, z, t) be
the joint distribution function of [N(t), J(t), X(t), Z(t)] given J(0) = i, X(0) = Z(0) = 0.
More formally, we define

Fk:ij(x, z, t)
def
= P[N(t) = k, J(t) = j,X(t) 6 x, Z(t) 6 z|J(0) = i, X(0) = Z(0) = 0] . (3.1)
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The corresponding joint probability density function is given by

fk:ij(x, z, t)
def
=

∂2

∂x∂z
Fk:ij(x, z, t) . (3.2)

For the process [N(t), J(t), X(t), Z(t)] to be at (0, j, x, z) at time t > 0 given J(0) = i,
either no transition of J(t) has occurred in the time interval [0, t] with j = i, or at least one
transition of J(t) from J(0) = i occurred in [0, t), the process entered the state (0, j, 0+, z−
ρ(j)x) at time t−x, and no transition of J(t) has occurred since then. Accordingly, one has

f0:ij(x, z, t) = δ{j=i}δ(z − ρ(j)t)δ(t − x)Āj(x)

+ δ{j>i}f0:ij(0+, z − ρ(j)x, t − x)Āj(x) , x > 0 , j = i, · · · , J . (3.3)

Here, δ{P} = 1 if the statement P holds true, δ{P} = 0 otherwise, and δ(t) is the delta
function defined as the unit function associated with the convolution operation, i.e., f(x) =∫

f(y)δ(x − y)dy for any integrable function f . Similarly, for k > 0, to be at (k, j, x, z) at
time t > 0, the process should have entered the state (k, j, 0+, z − ρ(j)x) at time t− x and
no transition of J(t) has occurred since then. This then yields

fk:ij(x, z, t) = fk:ij(0+, z − ρ(j)x, t − x)Āj(x) , x > 0 , k > 1 . (3.4)

In order to determine the boundary conditions fk:ij(0+, z, t) associated with the age
process X(t), we first consider the case that k = 0, z = 0+ and t = 0+. One then sees that
f0:ij(0+, 0+, 0+) = δ{j=i}δ(z)δ(t). For t > 0 and j > i, the process [N(t), J(t), X(t), Z(t)]
just enters the state (0, j, 0+, z) at time t only if the dwell time of J(t) in state j−1 expires
at time t with the reward at z − Dj−1 followed by the instantaneous jump of size Dj−1 so
that Z(t) = z. Combining the two cases, one observes that

f0:ij(0+, z, t) = δ{j=i}δ(z)δ(t)

+ δ{j>i}

∫ ∞

0

∫ ∞

−∞
f0:i,j−1(x, z − z

′
, t)ηj−1(x)bj−1(z

′
)dz

′
dx , j = i, · · · , J . (3.5)

For k > 1, similar arguments lead to

fk:ij(0+, z, t) =

{∫ ∞
0

∫ ∞
−∞ fk−1:iJ(x, z − z

′
, t)ηJ(x)bJ(z

′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ fk:i,j−1(x, z − z

′
, t)ηj−1(x)bj−1(z

′
)dz

′
dx , 2 6 j 6 J

. (3.6)

We are now in a position to prove the key theorem of this paper. For notational convenience,
the following matrix Laplace-Fourier transforms are introduced.

φ̂
k
(x, z, s)

def
= [φ̂k:ij(x, z, s)] ; φ̂k:ij(x, z, s)

def
=

∫ ∞

0

e−stfk:ij(x, z, t)dt , (3.7)

ˆ̂φ
k
(x,w, s)

def
= [ ˆ̂φk:ij(x,w, s)] ; ˆ̂φk:ij(x, w, s)

def
=

∫ ∞

−∞
e−wzφ̂k:ij(x, z, s)dz , (3.8)

ˆ̂
φ̂

k
(v, w, s)

def
= [

ˆ̂
φ̂k:ij(v, w, s)] ;

ˆ̂
φ̂k:ij(v, w, s)

def
=

∫ ∞

0

e−vx ˆ̂φk:ij(x,w, s)dx , (3.9)

ξ̂
k
(0+, z, s)

def
= [ξ̂k:ij(0+, z, s)] ; ξ̂k:ij(0+, z, s)

def
=

∫ ∞

0

e−stfk:ij(0+, z, t)dt , (3.10)

ˆ̂
ξ

k
(0+, w, s)

def
= [

ˆ̂
ξk:ij(0+, w, s)] ;

ˆ̂
ξk:ij(0+, w, s)

def
=

∫ ∞

−∞
e−wz ξ̂k:ij(0+, z, s)dz ,(3.11)
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β
D
(w, s)

def
=

[
δ{i=j}

1 − αj(s + ρ(j)w)

s + ρ(j)w

]
, (3.12)

ζij(w, s)
def
=

j∏
n=i

αn(s + ρ(n)w)βn(w) ; ζij(w, s) = 1 for i > j , (3.13)

α∗(w, s)
def
=


0 ζ11(w, s) 0 · · · 0
0 0 ζ22(w, s) · · · 0
... · · · · · · · · · ζJ−1,J−1(w, s)
0 · · · · · · · · · 0

 , (3.14)

α∗
D
(w, s)

def
=


ζ1J(w, s) 0

ζ2J(w, s)
. . .

0 ζJJ(w, s)

 . (3.15)

Here, it should be noted that the diagonal components of β
D
(w, s) in (3.12) are the Laplace

transforms of the survival function Āj(x) from the fact that

1 − αj(s + ρ(j)w)

s + ρ(j)w
=

∫ ∞

0

e−{s+ρ(j)w}xĀj(x)dx .

We also define the following matrices.

1
def
=

1 · · · 1
... · · · ...
1 · · · 1

 , I
def
=

1 0
. . .

0 1

 . (3.16)

A few preliminary lemmas are needed.

Lemma 3.1 For
ˆ̂
ξ

k
(0+, w, s) defined in (3.11), one has

ˆ̂
ξ

k
(0+, w, s) =

{
[I − α∗(w, s)]−1 , k = 0{
ζ1J(w, s)

}k
α∗

D
(w, s)1 α∗−1

D
(w, s) , k > 1

. (3.17)

Proof

Substituting (3.3) into (3.5), it can be seen that

f0:ij(0+, z, t)

= δ{j=i}δ(z)δ(t) + δ{j>i}

∫ ∞

0

∫ ∞

−∞

{
δ{j−1=i}δ(z − z

′ − ρ(j − 1)t)δ(t − x)Āj−1(x)

+ δ{j−1>i}f0:i,j−1(0+, z − z
′ − ρ(j − 1)x, t − x)Āj−1(x)

}
ηj−1(x)bj−1(z

′
)dz

′
dx . (3.18)

Similarly, substitution of (3.4) into (3.6) yields

fk:ij(0+, z, t)

=

{∫ ∞
0

∫ ∞
−∞ fk−1:iJ(0+, z − z

′ − ρ(J)x, t − x)aJ(x)bJ(z
′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ fk:i,j−1(0+, z − z

′ − ρ(j − 1)x, t − x)aj−1(x)bj−1(z
′
)dz

′
dx , 2 6 j 6 J

.

(3.19)
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By taking Laplace transforms with respect to t in (3.18) and (3.19), it then follows that

ξ̂0:ij(0+, z, s)

= δ{j=i}δ(z) + δ{j>i}

∫ ∞

0

e−sx
[ ∫ ∞

−∞

{
δ{j−1=i}δ(z − z

′ − ρ(j − 1)x)

+ δ{j−1>i}ξ̂0:i,j−1(0+, z − z
′ − ρ(j − 1)x, s)

}
aj−1(x)bj−1(z

′
)dz

′
]
dx , (3.20)

and

ξ̂k:ij(0+, z, s)

=

{∫ ∞
0

∫ ∞
−∞ e−sxξ̂k−1:iJ(0+, z − z

′ − ρ(J)x, s)aJ(x)bJ(z
′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ e−sxξ̂k:i,j−1(0+, z − z

′ − ρ(j − 1)x, s)aj−1(x)bj−1(z
′
)dz

′
dx , 2 6 j 6 J

.

(3.21)

If we again take Laplace-Fourier transforms with respect to z in (3.20) and (3.21), one has

ˆ̂
ξ0:ij(0+, w, s) = δ{j=i} +

{
δ{j−1=i} + δ{j−1>i}

ˆ̂
ξ0:i,j−1(0+, w, s)

}
ζj−1,j−1(w, s) (3.22)

and

ˆ̂
ξk:ij(0+, w, s) =

{ ˆ̂
ξk−1:iJ(0+, w, s)ζJJ(w, s) , j = 1
ˆ̂
ξk:i,j−1(0+, w, s)ζj−1,j−1(w, s) , 2 6 j 6 J

(3.23)

since ζjj(w, s) = αj(s + ρ(j)w)βj(w).

Equations in (3.22) and (3.23) can be rewritten in matrix form using
ˆ̂
ξ

k
(0+, w, s) defined

in (3.11) in the following manner. We first note that

ˆ̂
ξ

0
(0+, w, s) =


1

ˆ̂
ξ0:12(0+, w, s) · · · ˆ̂

ξ0:1J(0+, w, s)

1 · · · ˆ̂
ξ0:2J(0+, w, s)

. . .
...

0 1

 . (3.24)

From (3.22), this then leads to

ˆ̂
ξ

0
(0+, w, s) =


1 ζ11(w, s)

ˆ̂
ξ0:12(0+, w, s)ζ22(w, s) · · · ˆ̂

ξ0:1,J−1(0+, w, s)ζJ−1,J−1(w, s)

1 ζ22(w, s) · · · ˆ̂
ξ0:2,J−1(0+, w, s)ζJ−1,J−1(w, s)

1
. . .

...
0 1

 .

(3.25)

The matrix on the right hand side of (3.25) can be rewritten from (3.14) as I+
ˆ̂
ξ

0
(0+, w, s)α∗(w, s),

so that

ˆ̂
ξ

0
(0+, w, s) = [I − α∗(w, s)]−1 =


1 ζ11(w, s) ζ12(w, s) · · · ζ1,J−1(w, s)

1 ζ22(w, s) · · · ζ2,J−1(w, s)
1 · · · ζ3,J−1(w, s)

0
. . .

...
1

 , (3.26)
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proving the case for k = 0.
For k > 1, we prove by induction. When k = 1, one sees that

ˆ̂
ξ

1
(0+, w, s)

=


ˆ̂
ξ1:11(0+, w, s) · · · ˆ̂

ξ1:1J(0+, w, s)
... · · · ...

ˆ̂
ξ1:J1(0+, w, s) · · · ˆ̂

ξ1:JJ(0+, w, s)



=


ˆ̂
ξ0:1J(0+, w, s)ζJJ(w, s)

ˆ̂
ξ1:11(0+, w, s)ζ11(w, s) · · · ˆ̂

ξ1:1,J−1(0+, w, s)ζJ−1,J−1(w, s)
...

... · · · ...
ˆ̂
ξ0:JJ(0+, w, s)ζJJ(w, s)

ˆ̂
ξ1:J1(0+, w, s)ζ11(w, s) · · · ˆ̂

ξ1:J,J−1(0+, w, s)ζJ−1,J−1(w, s)

 .

By employing (3.22) and (3.23) in the above expression, it follows that

ˆ̂
ξ

1
(0+, w, s) =


ζ1J(w, s) ζ1J(w, s)ζ11(w, s) · · · ζ1J(w, s)ζ1,J−1(w, s)
ζ2J(w, s) ζ2J(w, s)ζ11(w, s) · · · ζ2J(w, s)ζ1,J−1(w, s)

...
... · · · ...

ζJJ(w, s) ζJJ(w, s)ζ11(w, s) · · · ζJJ(w, s)ζ1,J−1(w, s)

 ,

where the last column results from (3.13), (3.22) and (3.23). From (3.15) and (3.16), this
then leads to

ˆ̂
ξ

1
(0+, w, s) = α∗

D
(w, s)1


1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 . (3.27)

It should be noted from (3.13) and (3.15) that

α∗
D
(w, s)


1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 = ζ1J(w, s)I ,

so that one has 
1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 = ζ1J(w, s)α∗−1

D
(w, s) , (3.28)

where α∗−1
D

(w, s) is given from (3.15) as

α∗−1

D
(w, s) =


1

ζ1J (w,s)
0

1
ζ2J (w,s)

. . .

0 1
ζJJ (w,s)

 . (3.29)
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Substituting (3.28) into (3.27), one concludes that

ˆ̂
ξ

1
(0+, w, s) = ζ1J(w, s)α∗

D
(w, s)1 α∗−1

D
(w, s) , (3.30)

completing the proof for k = 1.
Suppose the statement holds true for k − 1 and consider the case for k. It can be seen

from (3.23) that

ˆ̂
ξ

k
(0+, w, s)

=


ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1J(0+, w, s)
ˆ̂
ξk:21(0+, w, s) · · · ˆ̂

ξk:2J(0+, w, s)
...

...
...

ˆ̂
ξk:J1(0+, w, s) · · · ˆ̂

ξk:JJ(0+, w, s)



=


ˆ̂
ξk−1:1J(0+, w, s)ζJJ(w, s)

ˆ̂
ξk:11(0+, w, s)ζ11(w, s) · · · ˆ̂

ξk:1,J−1(0+, w, s)ζJ−1,J−1(w, s)
ˆ̂
ξk−1:2J(0+, w, s)ζJJ(w, s)

ˆ̂
ξk:21(0+, w, s)ζ11(w, s) · · · ˆ̂

ξk:2,J−1(0+, w, s)ζJ−1,J−1(w, s)
... · · · · · · ...

ˆ̂
ξk−1:JJ(0+, w, s)ζJJ(w, s)

ˆ̂
ξk:J1(0+, w, s)ζ11(w, s) · · · ˆ̂

ξk:J,J−1(0+, w, s)ζJ−1,J−1(w, s)

 .

The last matrix in the above expression can be rewritten in matrix product form as

ˆ̂
ξ

k
(0+, w, s) =


ˆ̂
ξk−1:1J(0+, w, s)

ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1,J−1(0+, w, s)
ˆ̂
ξk−1:2J(0+, w, s)

ˆ̂
ξk:21(0+, w, s) · · · ˆ̂

ξk:2,J−1(0+, w, s)
... · · · ...

...
ˆ̂
ξk−1:JJ(0+, w, s)

ˆ̂
ξk:J1(0+, w, s) · · · ˆ̂

ξk:J,J−1(0+, w, s)



·


ζJJ(w, s) 0

ζ11(w, s)
. . .

0 ζJ−1,J−1(w, s)

 .

By applying (3.23) to the first matrix in the above expression, one sees that

ˆ̂
ξ
k
(0+, w, s)

=


ˆ̂
ξk−1:1,J−1(0+, w, s) ˆ̂

ξk−1:1J(0+, w, s) ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1,J−2(0+, w, s)
ˆ̂
ξk−1:2,J−1(0+, w, s) ˆ̂

ξk−1:2J(0+, w, s) ˆ̂
ξk:12(0+, w, s) · · · ˆ̂

ξk:2,J−2(0+, w, s)
... · · ·

...
...

...
ˆ̂
ξk−1:J,J−1(0+, w, s) ˆ̂

ξk−1:JJ(0+, w, s) ˆ̂
ξk:1J(0+, w, s) · · · ˆ̂

ξk:J,J−2(0+, w, s)



·


ζJ−1,J−1(w, s) 0

ζJJ(w, s)
. . .

0 ζJ−2,J−2(w, s)

 ·


ζJJ(w, s) 0

ζ11(w, s)
. . .

0 ζJ−1,J−1(w, s)

 .
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By repeating this procedure, it follows that

ˆ̂
ξ

k
(0+, w, s) = ζ1J(w, s)

ˆ̂
ξ

k−1
(0+, w, s) , (3.31)

where ζ1J(w, s) =
∏J

j=1 ζjj(w, s) is employed from (3.13). The lemma now follows from the
induction hypothesis. 2

Lemma 3.2 For the multivariate process [N(t), J(t), X(t), Z(t)] with N(0) = X(0) =

Z(0) = 0 and J(0) = i, let
ˆ̂
φ̂

k
(v, w, s) be defined as in (3.9). Then

ˆ̂
φ̂

k
(v, w, s) =

[I − α∗(w, s)]−1β
D
(w, v + s) , k = 0{

ζ1J(w, s)
}k

α∗
D
(w, s)1 α∗−1

D
(w, s)β

D
(w, v + s) , k > 1

. (3.32)

Proof

By taking Laplace transforms of (3.3) and (3.4) with respect to t, one sees that

φ̂k:ij(x, z, s) =


δ{j=i}δ(z − ρ(j)x)e−sxĀj(x)

+δ{j>i}e
−sxξ̂0:ij(0+, z − ρ(j)x, s)Āj(x) , k = 0

e−sxξ̂k:ij(0+, z − ρ(j)x, s)Āj(x) , k > 1

. (3.33)

If Laplace-Fourier transforms are taken again with respect to z in (3.33), one has

ˆ̂φk:ij(x,w, s) =


[
δ{j=i} + δ{j>i}

ˆ̂
ξ0:ij(0+, w, s)

]
e−(s+ρ(j)w)xĀj(x) , k = 0

ˆ̂
ξk:ij(0+, w, s)e−(s+ρ(j)w)xĀj(x) , k > 1

. (3.34)

By taking Laplace transforms one more time with respect to x in (3.34), it follows that

ˆ̂
φ̂k:ij(v, w, s) =


[
δ{j=i} + δ{j>i}

ˆ̂
ξ0:ij(0+, w, s)

]
1−αj(v+ρ(j)w+s)

v+ρ(j)w+s
, k = 0

ˆ̂
ξk:ij(0+, w, s) · 1−αj(v+ρ(j)w+s)

v+ρ(j)w+s
, k > 1

. (3.35)

Noting (3.24) for k = 0, the above two cases can be combined for k > 0 in matrix form as

ˆ̂
φ̂

k
(v, w, s) =

ˆ̂
ξ

k
(0+, w, s)β

D
(w, v + s) , k > 0 . (3.36)

Substituting (3.17) of Lemma 3.1 into (3.36), the lemma follows. 2

Lemma 3.3 Let

χ(w, s, u)
def
= [I − ζ(w, s, u)]−1, (3.37)

where

ζ(w, s, u)
def
=


0 ζ11(w, s) 0 · · · 0
0 0 ζ22(w, s) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 ζJ−1,J−1(w, s)
uζJJ(w, s) 0 · · · 0 0

 . (3.38)

Then one has

χ(w, s, u) = [I − α∗(w, s)]−1 +
uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s) . (3.39)
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Proof

From (3.15), (3.16) and (3.29), one finds that

α∗
D
(w, s)1 α∗−1

D
(w, s) =


1 ζ1J (w,s)

ζ2J (w,s)
· · · ζ1J (w,s)

ζJJ (w,s)
ζ2J (w,s)
ζ1J (w,s)

1 · · · ζ2J (w,s)
ζJJ (w,s)

...
...

. . .
...

ζJJ (w,s)
ζ1J (w,s)

ζJJ (w,s)
ζ2J (w,s)

· · · 1

 . (3.40)

For m,n ∈ J , it should be noted from (3.13) that

ζmJ(w, s)

ζnJ(w, s)
=


ζm,n−1(w, s) if m < n

1 if m = n
1

ζn,m−1(w,s)
if m > n

. (3.41)

Substituting (3.41) into (3.40) then yields

α∗
D
(w, s)1 α∗−1

D
(w, s) =


1 ζ11(w, s) · · · ζ1,J−1(w, s)
1

ζ11(w,s)
1 · · · ζ2,J−1(w, s)

...
...

. . .
...

1
ζ1,J−1(w,s)

1
ζ2,J−1(w,s)

· · · 1

 . (3.42)

From (3.42) and (3.26), it can be seen that

[I − α∗(w, s)]−1 +
uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s) =

1
1 − uζ1J(w, s)


1 ζ11(w, s) ζ12(w, s) · · · ζ1,J−1(w, s)

uζ2J(w, s) 1 ζ22(w, s) · · · ζ2,J−1(w, s)
uζ3J(w, s) uζ11(w, s)ζ3J(w, s) 1 · · · ζ3,J−1(w, s)

...
...

...
. . .

...
uζJJ(w, s) uζ11(w, s)ζJJ(w, s) uζ12(w, s)ζJJ(w, s) · · · 1

 .

(3.43)

By multiplying χ−1(w, s, u) from the right in (3.43), one concludes that[
[I − α∗(w, s)]−1 +

uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s)

]
χ−1(w, s, u) = I ,

completing the proof. 2

By taking the generating function of
ˆ̂
φ̂

k
(v, w, s) in (3.32) with respect to k (k = 0, 1, 2 · · · ),

the joint transform of [N(t), J(t), X(t), Z(t)] can be obtained.

Theorem 3.4 Let
ˆ̂
φ̂(v, w, s, u) be the matrix generating function of

ˆ̂
φ̂

k
(v, w, s) in (3.32)

defined by

ˆ̂
φ̂(v, w, s, u)

def
= [

ˆ̂
φ̂ij(v, w, s, u)] ;

ˆ̂
φ̂ij(v, w, s, u)

def
=

∞∑
k=0

ˆ̂
φ̂k:ij(v, w, s)uk . (3.44)

Then one has
ˆ̂
φ̂(v, w, s, u) = χ(w, s, u)β

D
(w, v + s) , (3.45)

where β
D
(w, v + s) is as given in (3.12).
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Proof

Multiplying uk to both sides of (3.32) and then summing from k = 0 to ∞, one finds that

ˆ̂
φ̂(v, w, s, u) = [I − α∗(w, s)]−1β

D
(w, v + s)

+ uζ1J(w, s)
∞∑

k=1

{
uζ1J(w, s)

}k−1

α∗
D
(w, s)1 α∗−1

D
(w, s)β

D
(w, v + s)

=
[
[I − α∗(w, s)]−1 +

uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s)

]
· β

D
(w, v + s) . (3.46)

Substituting (3.39) into (3.46) then yields (3.45), completing the proof. 2

Remark 3.5 By setting u = 1 in (3.45), Theorem 3.4 is reduced to a special case of The-
orem 2.8.1 of Masuda [17] and (2.3) of Masuda [18]. Indeed, ζ(w, s, 1) is the bivariate

transform of J(t) and Z(t), where α∗∗(w, s) of Masuda [17] and the matrix [Q∗
ij(w, s)] of

Masuda [18] are equal to ζ(w, s, 1).

4. Asymptotic Expansion of E[Z(t)] and Cor[N(t), Z(t)]

The purpose of this section is to establish the asymptotic expansions of E[Z(t)] and Cor[N(t),Z(t)]
as t → ∞. In order to accomplish this, we introduce Theorem 1 of Keilson [12]. Let Aj:k

be the k-th moment of Xj. More formally, we define

Aj:k
def
=

∫ ∞

0

xkaj(x)dx . (4.1)

The following matrix is also employed.

A
k

def
=


0 A1:k 0 · · · 0
0 0 A2:k · · · 0

0 0 · · · . . .
...

0 0 · · · 0 AJ−1:k

AJ :k 0 · · · 0 0

 . (4.2)

If
∫ ∞

0
x2dAj(x) < 0 for all j and Aj(x) are not lattice distribution with a common span,

one has

χ(0, s, 1) =
1

s
H

1
+ H

0
+ o(1) (4.3)

as s → 0+, where, for e⊤d = e⊤d A
0
, the two matrices H

0
and H

1
are given as

H
1

def
=

1

m1

J ; J
def
= 1 e⊤d ; m1

def
= e⊤d A

1
1 (4.4)

and

H
0

def
= H

1

(
− A

1
+

1

2
A

2
H

1

)
+

(
Z − H

1
A

1
Z

)(
A

0
− A

1
H

1

)
+ I . (4.5)
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Here, Z is the fundamental matrix associated with the Markov chain governed by A
0
, i.e.

Z
def
=

[
I − A

0
+ J

]−1
. (4.6)

Using Lemmas A.1 and A.2 in Appendix, the following theorem holds.

Theorem 4.1 For the matrices in Lemmas A.1 and A.2, let

X
1

def
= H

1
(A

D:1
ρ# + D#

1
)H

1
A

D:1
and X

0

def
=

1

2
V

2
A

D:2
− V

1
A

D:1
+

1

2
H

1
ρ

D
A

D:2
. (4.7)

a) As t → ∞, one has

E[Z(t)|J(0) = i]
def
= [E[Z(t), J(t) = 1|J(0) = i] · · · E[Z(t), J(t) = J |J(0) = i]]⊤

= u⊤
i (X

1
t + X

0
) + o(1) ,

where ui is the i-th unit vector.

b) Given the initial probability vector p⊤(0) of J(t), one has

E[Z(t)] = p⊤(0)(X
1
t + X

0
)1 + o(1) .

Proof

Setting v = 0 and u = 1 in (3.45) leads to
ˆ̂
φ̂(0, w, s, 1) = χ(w, s, 1)β

D
(w, s). By differenti-

ating this expression with respect to w and setting w = 0, it can be seen that

∂

∂w

{
ˆ̂
φ̂(0, w, s, 1)

}∣∣∣∣∣
w=0

=
{ ∂

∂w
χ(w, s, 1)

}∣∣∣∣∣
w=0

β
D
(0, s) + χ(0, s, 1)

{ ∂

∂w
β

D
(w, s)

}∣∣∣∣∣
w=0

. (4.8)

Applying (4.3), Lemmas A.1 c), d) and A.2 e) to (4.8), it then follows that

∂

∂w

{
ˆ̂
φ̂(0, w, s, 1)

}∣∣∣∣∣
w=0

=
{ 1

s2
V

2
+

1

s
V

1
+ o

(1

s

)}{
A

D:1
− 1

2
sA

D:2
+ o(s)

}
+

{1

s
H

1
+ H

0
+ o(1)

}{
− 1

2
ρ

D
A

D:2
+ o(1)

}
= −

( 1

s2
X

1
+

1

s
X

0

)
+ o

(1

s

)
.

Hence one has

E[Z(t)|J(0) = i] = −u⊤
i L−1

{ ∂

∂w
ˆ̂
φ̂(0, w, s, 1)

∣∣∣∣∣
w=0

}
= u⊤

i (X
1
t + X

0
) + o(1) as t → ∞ ,

where L−1 means the inversion of the Laplace transform, i.e., L−1{α(s)} = a(t) with α(s) =
L{a(t)} =

∫ ∞
0

e−sta(t)dt. Part b) is immediate from Part a), proving the theorem. 2

We next turn our attention to the asymptotic expansion of Cor[N(t), Z(t)].
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Theorem 4.2 As t → ∞, one has

Cor[N(t), Z(t)] =
Co2t

2 + Co1t + o(t)√
n2z2t4 + (n2z1 + n1z2)t3 + n1z1t2 + o(t2)

, (4.9)

where

n2
def
= p⊤(0)S

2
1 − (p⊤(0)L

1
1)2 ; n1

def
= p⊤(0)S

1
1 − 2p⊤(0)L

1
1p⊤(0)L

0
1 ;

z2
def
= p⊤(0)T

2
1 − (p⊤(0)X

1
1)2 ; z1

def
= p⊤(0)T

1
1 − 2p⊤(0)X

1
1p⊤(0)X

0
1 ;

Co2
def
= p⊤(0)U

2
1 − p⊤(0)L

1
1p⊤(0)X

1
1 ; and

Co1
def
= p⊤(0)U

1
1 − p⊤(0)L

1
1p⊤(0)X

0
1 − p⊤(0)L

0
1p⊤(0)X

1
1 .

Proof

By differentiating
ˆ̂
φ̂(0, w, s, u) with respect to u and w, and letting u = 1 and w = 0, one

sees that

E[N(t)Z(t)] = −p⊤(0)L−1
{ ∂2

∂u∂w
ˆ̂
φ̂(0, w, s, u)

∣∣∣∣∣
u=1,w=0

}
1 .

The asymptotic expansion of the above expression is given in Lemma A.3 d), which in turn
yields that of

Cov[N(t), Z(t)] = E[N(t)Z(t)] − E[N(t)]E[Z(t)] .

More specifically, using Theorem 4.1 b), Lemma A.3 a) and d), one finds that

Cov[N(t), Z(t)] = Co2t
2 + Co1t + o(t) . (4.10)

One also sees from Lemma A.3 that

V[N(t)] = n2t
2 + n1t + o(t) , (4.11)

V[Z(t)] = z2t
2 + z1t + o(t) . (4.12)

The theorem then follows from (4.10), (4.11) and (4.12) since Cor[N(t),Z(t)]=Cov[N(t),Z(t)]/√
V[N(t)]V[Z(t)] . 2

In the next section, we investigate the optimal preventive maintenance policy for the
production system discussed in Section 1 based on Theorem 4.1 b). In order to highlight
the importance of the dynamic analysis of the cyclic renewal process, a simplified classical
renewal model is introduced. Although the long-term optimal policy for the cyclic renewal
model coincides with that for the simplified classical renewal model, dynamic optimal poli-
cies of the two models could significantly differ from each other when the planning horizon
T is not sufficiently large. This point will be illustrated numerically in Section 6.
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5. Long-term and Dynamic Optimal Preventive Maintenance Policies for Pro-
duction Management

Within the context of the preventive maintenance model discussed in Section 1, we now
consider the problem of determining when to conduct a complete overhaul so as to maximize
the reward rate per unit time in the time interval (0, T ]. This means that J , representing the
number of minimal repairs before the complete overhaul, should be determined optimally.
Since limT→∞ E[Z(T )]/T = p⊤(0)X

1
1 from Theorem 4.1 b), given the initial probability

vector p⊤(0), let the long-term optimal policy J∗ be defined by

J∗ def
= arg max

J
{p⊤(0)X

1
1} . (5.1)

Exploiting the second dominating term as T → ∞ in Theorem 4.1 b), the dynamic optimal
policy J∗∗ can be defined similarly as

J∗∗ def
= arg max

J
{p⊤(0)(X

1
+

X
0

T
)1} . (5.2)

As far as the long-term optimal policy is concerned, one may work with the following
simplified model. Let {NRen(T ) ; T > 0} be a renewal process associated with a sequence
of i.i.d. random variables Yi where Yi are as specified in (2.2). Namely, one has NRen(T ) = n

if and only if Sn 6 T < Sn+1, where Sn
def
=

∑n
i=1 Yi. The classical renewal theory, see e.g.

Cox [4], states that the asymptotic expansion of E[NRen(T )] is given by

E[NRen(T )] =
T

Ã1

+
Ã2 − 2Ã2

1

2Ã2
1

+ o(1) , (5.3)

where Ãk
def
=

∑J
j=1 Aj:k for k = 1, 2 with Aj:k as defined in (4.1). Let Wi be the reward within

the i-th renewal period. The simplified reward process ZSimp(T ) may then be defined as

ZSimp(T )
def
=

NRen(T )∑
i=1

Wi . (5.4)

Since Wi are i.i.d. and independent of NRen(T ) with

E[W ] =
J∑

j=1

{E[Dj] + ρ(j)Aj:1} , (5.5)

the asymptotic expansion of E[ZSimp(T )] is obtained from (5.3) and (5.4) as

E[ZSimp(T )] = E[NRen(T )]E[W ] =
E[W ]

Ã1

T +
E[W ]

2Ã2
1

(Ã2 − 2Ã2
1) + o(1) . (5.6)

Assuming that J(0) = 1 and J(T ) = j < J , the simplified reward process ZSimp(T ) differs
from the original process Z(T ) in that

E[ZSimp(T )|J(T ) = j] = E[Z(T )|J(T ) = j] + ρ(j)E[XRes:j(T )]

+
J∑

m=j+1

ρ(m)E[Xm] +
J∑

m=j

E[Dm] , (5.7)
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where XRes:j(T ) is the residual dwell time of J(T ) in state j at time T .
From (5.7), the expected reward rate per unit time under ZSimp(T ) and that under Z(T )

should coincide each other as T → ∞. Consequently, the long-term optimal policy under
ZSimp(T ) should be the same as that under Z(T ). When the planning horizon T is not
sufficiently large, however, the optimal policy under ZSimp(T ) may be quite different from
that under Z(T ), as we will see in the next section. In order to highlight these points, in
parallel with (5.1) and (5.2), we define J∗

Simp and J∗∗
Simp as

J∗
Simp

def
= arg max

J

{E[W ]

Ã1

}
(5.8)

and

J∗∗
Simp

def
= arg max

J

{E[W ]

Ã1

+
E[W ]

2Ã2
1T

(Ã2 − 2Ã2
1)

}
. (5.9)

Theorem 5.1 Let J∗ and J∗
Simp be as in (5.1) and (5.8) respectively. One then has

J∗ = J∗
Simp.

Proof

From (4.2), A
0

is a permutation matrix and therefore doubly stochastic. Consequently e⊤d
satisfying e⊤d = e⊤d A

0
is given as e⊤d = 1⊤. It follows from (4.4) that m1 = Ã1, J = 1 and

H
1

= 1

Ã1
1. For X

1
given in Theorem 4.1 together with E[W ] in (5.5), these observations

then lead to

p⊤(0)X
1
1 = p⊤(0)

{ 1

Ã1

1(A
D:1

ρ# + D#

1
) · 1

Ã1

1 A
D:1

}
1

=
1

Ã2
1

[AJ :1ρ(J)+E[DJ ], A1:1ρ(1)+E[D1], · · · , AJ−1:1ρ(J − 1)+E[DJ−1]] · Ã11

=
E[W ]

Ã1

,

and the theorem follows from (5.1) and (5.8). 2

6. Danger of Exclusive Reliance on Long-term Analysis: Numerical Results

We consider a production system where the system down cost is huge. A typical example
may be the production of semi-conductor chips because the production machines are ex-
tremely expensive and the repair takes a long time since vendor engineers often have to be
called in once the system fails. In such a situation, preventive maintenance is widely prac-
ticed where minimal repairs take place as minor problems occur, which can be addressed
by on-site engineers. A complete overhaul demanding the presence of vendor engineers is
conducted only after minimal repairs are repeated certain many times, as depicted in Fig-
ure 6.1. Here, we note that J = 2K + 2 and X2, X4, · · · , X2K represent minimal repairs
while X2K+2 describes the time required for conducting a complete overhaul. The question
then is to determine when to conduct a complete overhaul. The reward process defined on
the cyclic renewal process proposed in this paper provides a useful computational vehicle
for numerically exploring optimal preventive maintenance policies of this sort in a dynamic
environment. In this section, we demonstrate this claim using Theorem 4.1 b).
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Figure 6.1: Typical sample path of [N(t), J(t)] for preventive maintenance model

The idea behind minimal repairs is to prolong the availability of the system in the time
interval (0, T ] by accommodating a partial system adjustment from time to time. This
approach can be effective since minimal repairs can be done at much lower cost and in much
shorter time in comparison with a complete overhaul. Starting with a fresh system lifetime,
it is natural to assume that the time until the next minimal repair becomes shorter while
the subsequent minimal repair time becomes longer as this alternating process is repeated.
When it is decided to conduct a complete overhaul, the system is brought back to its original
fresh state upon completion of the overhaul.

In order to incorporate this probabilistic structure, we employ Gamma variates. More
specifically, let {X̂i}∞i=1 and {X̃i}∞i=1 be sequences of i.i.d. exponential random variables with
parameters λ and µ respectively, where the former is used to construct system lifetimes while
the latter is employed to structure repair times. The system lifetime X1 when it is in the
fresh state is assumed to be a Gamma variate of integral order K(0) with scaling parameter
λ, i.e.,

X1 =

K(0)∑
i=1

X̂i . (6.1)

We also assume that the time required for conducting a complete overhaul is a Gamma
variate of integral order K(1) with scaling parameter µ. Assuming that K minimal repairs
would take place, one has

X2(K+1) =

K(1)∑
i=1

X̃i . (6.2)

So as to reflect the fact that the time until the next minimal repair becomes shorter while
the subsequent minimal repair time becomes longer as this cycle is repeated, we define

Xj =

{
X̂1 + X̂2 + · · · + X̂K(2)+2−(j+1)/2 if j = 3, 5, · · · , 2K + 1

X̃1 + X̃2 + · · · + X̃j/2 if j = 2, 4, · · · , 2K
, (6.3)

where K(2) is a parameter satisfying K 6 K(2) 6 K(0). For j odd, Xj is the time until
the next minimal repair which decreases stochastically with respect to j. For j even, Xj is
the subsequent minor repair time which increases stochastically in j.

Let αj(s) be the Laplace transform of the p.d.f of Xj. From (6.1), (6.2) and (6.3), it can
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be seen that

αj(s) =



( λ

s + λ

)K(0)

if j = 1( µ

s + µ

)K(1)

if j = 2(K + 1)( λ

s + λ

)K(2)+2− j+1
2

if j = 3, 5, · · · , 2K + 1( µ

s + µ

) j
2

if j = 2, 4, · · · , 2K

. (6.4)

By differentiating (6.4) with respect to s once or twice and setting s = 0, one finds that

E[Xj] =



K(0)

λ
if j = 1

K(1)

µ
if j = 2(K + 1)

1

λ

(
K(2) + 2 − j + 1

2

)
if j = 3, 5, · · · , 2K + 1

j

2µ
if j = 2, 4, · · · , 2K

, (6.5)

and

E[X2
j ] =



1

λ
K(0)(K(0) + 1) if j = 1

1

µ
K(1)(K(1) + 1) if j = 2(K + 1)

1

λ

(
K(2) + 2 − j + 1

2

)(
K(2) + 3 − j + 1

2

)
if j = 3, 5, · · · , 2K + 1

j

2µ

(j

2
+ 1

)
if j = 2, 4, · · · , 2K

. (6.6)

We next turn our attention to the reward structure. The reward rate function ρ(j) is
defined as

ρ(j) =

{
ρUP if j = 1, 3, · · · , 2K + 1

−ρDOWN if j = 2, 4, · · · , 2K + 2
, (6.7)

where ρUP and ρDOWN are parameters satisfying ρUP > 0 and ρDOWN > 0. The fixed cost for
calling in on-site engineers for a minimal repair and that for calling in vendor engineers for
a complete overhaul can be expressed in terms of random reward jumps Dj. The associated
means are defined as

E[Dj] =


−D if j = 1, 3, · · · , 2K + 1

0 if j = 2, 4, · · · , 2K

−10D if j = 2K + 2

. (6.8)

In what follows, a set of parameter values for λ, ρDOWN, D, i, K(0), K(1) and K(2) as
well as p⊤(0) would be fixed as specified in Table 6.1 below. In order to demonstrate the
danger of exclusive reliance on the long-term reward rate, we first define
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Table 6.1: Parameter values for λ, ρDOWN, D, i, K(0), K(1), K(2) and p⊤(0)

λ ρDOWN D i K(0) K(1) K(2) p⊤(0)

3 10 100 1 100 100 50 [1 0 · · · 0]

E[Z(T )]

T
= LTR + DR(T ) + o

( 1

T

)
(6.9)

where the long-term rate LTR and the dynamic rate DR(T ) are given from Theorem 4.1
b) as

LTR = p⊤(0)X
1
1 ; DR(T ) =

p⊤(0)X
0
1

T
. (6.10)

Figure 6.2 illustrates that the convergence of DR(T ) to 0 as T → ∞ is not necessarily fast
and therefore it is dangerous to exclusively rely upon LTR to devise the optimal preventive
maintenance policy when the planning horizon T is not sufficiently large.
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Figure 6.2: E[Z(T )]/T , E[ZSimp(T )]/T and LTR for µ = 3, 5, ρUP = 15, 20 and K = 10, 20

The above danger can be observed more directly by exploring the impact of DR(T ) on
the optimal preventive maintenance policies. For this purpose, corresponding to (5.1), (5.2),
(5.8) and (5.9), we define

K∗ def
= arg max

K
{LTR} , (6.11)

K∗∗
T

def
= arg max

K
{LTR + DR(T )} , (6.12)

K∗
Simp

def
= arg max

K

{
E[W ]

Ã1

}
, (6.13)

K∗∗
T :Simp

def
= arg max

K
E[ZSimp(T )]/T = arg max

K

{
E[W ]

Ã1

+
E[W ]

2Ã2
1T

(Ã2 − 2Ã2
1)

}
, (6.14)

where it should be noted from Theorem 5.1 that K∗ = K∗
Simp. Numerical experiments are

conducted to explore K∗, K∗∗
T and K∗∗

T :Simp as µ, ρUP and T are varied, where the results
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are summarized in Table 6.2. It can be seen that K∗∗
T could be quite different from K∗ and

K∗∗
T :Simp when T is small and µ or ρUP are large, demonstrating the necessity of the detailed

analysis of the cyclic renewal process under such parameter values.

Table 6.2: K∗∗
T , K∗∗

T :Simp and K∗ for each pair of µ = 3, 5, 15 and ρUP = 15, 20 for T =
500, 1000, · · · , 3000 (K∗∗

T \K∗∗
T :Simp)

(µ, ρUP) \ T 500 1000 1500 2000 2500 3000 K∗ = K∗
Simp

(3, 15) 18\13 17\15 16\15 16\15 16\15 16\15 16
(3, 20) 17\10 16\12 15\13 15\13 15\14 15\14 15
(5, 15) 19\12 18\15 17\15 17\16 17\16 17\16 17
(5, 20) 18\10 17\12 17\13 16\14 16\14 16\15 16
(15, 15) 22\12 20\15 20\17 19\17 19\17 19\18 19
(15, 20) 21\9 19\13 19\14 19\15 19\14 19\16 18

We next turn our attention to Cor[N(T ), Z(T )] for capturing the time-dependent cor-
relation structure numerically based on Theorem 4.2. Parameter values for λ, ρDOWN, D, i,
K(0), K(1) and K(2) are again as in Table 6.1. Figure 6.3 illustrates Cor[N(T ), Z(T )] for
each pair of µ = 3, 5, 15 and ρUP = 15, 20 as functions of K. For these parameter values, one
finds that Cor[N(T ), Z(T )] is unimodal with respect to K. When ρUP = 20, it can be seen
that Cor[N(T ), Z(T )] increases as µ increases. For T = 500 and ρUP = 20, Cor[N(T ), Z(T )]
is monotonically increasing as a function of K for all values of µ = 3, 5, 15.
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Figure 6.3: Cor[N(T ), Z(T )] for each pair of µ = 3, 5, 15 and ρUP = 15, 20 for T = 500,
1000, · · · , 3000
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A.Appendix

In this appendix, we establish various lemmas concerning the asymptotic expansions of the
transform results obtained in Section 3. These lemmas can be proven from (4.3) combined
with appropriate differentiation in a straightforward manner, and the proofs are omitted.
The asymptotic theorems needed for numerically exploring the underlying reward and cor-
relation structure are derived in Section 4 using these lemmas.

Let α#(s) and 1# be the matrices defined by

α#(s)
def
=


0 α1(s) 0 · · · 0
0 0 α2(s) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 αJ−1(s)
αJ(s) 0 · · · 0 0

 , 1# def
=


0 1 0 · · · 0
0 0 1 · · · 0

0 0 · · · . . .
...

0 0 · · · 0 1
1 0 · · · 0 0

 .

Lemma A.1 For Aj:k defined in (4.1), we define A
D:k

def
= diag[Aj:k] and ρ

D

def
= diag[ρ(j)]

(j = 1, · · · , J, k = 1, 2). As s → 0+, the following expressions hold true.

a) α#(s) = 1# − sA
1
+

1

2
s2A

2
+ o(s2)

b)
d

ds
α#(s) = −A

1
+ sA

2
+ o(s) ;

( d

ds

)2

α#(s) = A
2
+ o(1)

c) β
D
(0, s) = A

D:1
− 1

2
sA

D:2
+ o(s)

d)
∂

∂w
β

D
(w, s)

∣∣∣∣∣
w=0

= −1

2
ρ

D
A

D:2
+ o(1) ;

∂2

∂w2
β

D
(w, s)

∣∣∣∣∣
w=0

= o
(1

s

)
Lemma A.2 As s → 0+, the following statements hold.

a)
{ ∂

∂u
χ(0, s, u)

}∣∣∣∣∣
u=1

=
1

s2
Q

2
+

1

s
Q

1
+ o

(1

s

)
b)

{ ∂2

∂u2
χ(0, s, u)

}∣∣∣∣∣
u=1

=
1

s3
K

3
+

1

s2
K

2
+ o

( 1

s2

)
c)

{ ∂

∂w
ζ(w, s, 1)

}∣∣∣∣∣
w=0

= −(A
D:1

ρ# + D#

1
) + s(A

D:2
ρ# + A

D:1
D#

1
) + o(s)

d)
{ ∂2

∂w2
ζ(w, s, 1)

}∣∣∣∣∣
w=0

= A
D:2

ρ
D
ρ# + 2A

D:1
ρ

D
D#

1
+ D#

2
+ o(1)

e)
{ ∂

∂w
χ(w, s, 1)

}∣∣∣∣∣
w=0

=
1

s2
V

2
+

1

s
V

1
+ o

(1

s

)
f)

{ ∂2

∂w2
χ(w, s, 1)

}∣∣∣∣∣
w=0

=
1

s3
W

3
+

1

s2
W

2
+ o

( 1

s2

)
g)

{ ∂2

∂u∂w
χ(w, s, u)

}∣∣∣∣∣
u=1,w=0

=
1

s3
R

3
+

1

s2
R

2
+ o

( 1

s2

)
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where

ρ# def
=


0 ρ(1) 0 · · · 0
0 0 ρ(2) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 ρ(J − 1)
ρ(J) 0 · · · 0 0

 ,

D#

1

def
=


0 E[D1] 0 · · · 0
0 0 E[D2] · · · 0

0 0 · · · . . .
...

0 0 · · · 0 E[DJ−1]
E[DJ ] 0 · · · 0 0

 ,

D#

2

def
=


0 E[D2

1] 0 · · · 0
0 0 E[D2

2] · · · 0

0 0 · · · . . .
...

0 0 · · · 0 E[D2
J−1]

E[D2
J ] 0 · · · 0 0

 , 1̂
def
=


0
... 0
0
1

 ,

Q
2

def
= H

1
1̂ H

1
, Q

1

def
= H

1
1̂ H

0
+ (H

0
− AJ :1H1

)1̂ H
1

,

K
3

def
= 2Q

2
1̂ H

1
, K

2

def
= 2Q

2
1̂ H

0
+ (Q

1
− AJ :1Q

2
)1̂ H

1
,

V
2

def
= −H

1
(A

D:1
ρ# + D#

1
)H

1
,

V
1

def
= {H

1
(A

D:2
ρ# + A

D:1
D#

1
) − H

0
(A

D:1
ρ# + D#

1
)}H

1
− H

1
(A

D:1
ρ# + D#

1
)H

0
,

W
3

def
= −2H

1
(A

D:1
ρ# + D#

1
)V

2
,

W
2

def
= −2H

0
(A

D:1
ρ# + D#

1
)V

2
+ H

1
{−2(A

D:1
ρ# + D#

1
)V

1
+ 2(A

D:2
ρ# + A

D:1
D#

1
)V

2

+(A
D:2

ρ
D
ρ# + 2A

D:1
ρ

D
D#

1
+ D#

2
)H

1
} ,

R
3

def
= V

2
1̂ H

1
+ H

1
1̂ V

2
,

R
2

def
= (V

2
1̂ H

0
+ H

0
1̂ V

2
) + (V

1
1̂ H

1
+ H

1
1̂ V

1
) − AJ :1(V 2

1̂ H
1
+ H

1
1̂ V

2
)

−{ρ(J)AJ :1 + E[DJ ]}H
1
1̂ H

1
.

Lemma A.3 As t → ∞,

a) E[N(t)] = p⊤(0)(L
1
t + L

0
)1 + o(1) b) E[N2(t)] = p⊤(0)(S

2
t2 + S

1
t)1 + o(t)

c) E[Z2(t)] = p⊤(0)(T
2
t2 + T

1
t)1 + o(t) d) E[N(t)Z(t)] = p⊤(0)(U

2
t2 + U

1
t)1 + o(t)

where

L
1

def
= Q

2
A

D:1
, L

0

def
= Q

1
A

D:1
− 1

2
Q

2
A

D:2
,

S
2

def
= K

3
A

D:1
, S

1

def
= (K

2
+ Q

2
)A

D:1
− 1

2
K

3
A

D:2
,
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T
2

def
= W

3
A

D:1
, T

1

def
= W

2
A

D:1
− 1

2
W

3
A

D:2
− V

2
ρ

D
A

D:2
,

U
2

def
= −R

3
A

D:1
, U

1

def
= −R

2
A

D:1
+

1

2
R

3
A

D:2
+

1

2
Q

2
ρ

D
A

D:2
.
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[3] E. Çinlar: Introduction to Stochastic Processes (Prentice–Hall, 1975).

[4] D.R. Cox: Renewal Theory (Methuen, 1962).

[5] R. Howard: Dynamic Probabilistic Systems Vol I, II (Wiley, 1971).

[6] J.J. Hunter: The moments of Markov renewal processes. Advances in Applied Proba-
bility, 1 (1969), 188–210.

[7] N. Igaki, U. Sumita and M. Kowada: Analysis of Markov renewal shock models. Journal
of Applied Probability, 32 (1995), 821–831.

[8] W.S. Jewell: Markov renewal programming, I, formulation, finite return model. Oper-
ations Research, 11 (1963), 938–948.

[9] W.S. Jewell: Limiting Covariance in Markov Renewal Processes (ORC 64–16, Univ.
California, Berkeley, 1964).

[10] W.S. Jewell: Fluctuations of a renewal reward process. SIAM Journal on Mathematical
Analysis, 19 (1967), 309–329.

[11] R.W. Keener: Renewal theory for Markov chains on the real line. The Annals of Prob-
ability, 10–4 (1982), 942–954.

[12] J. Keilson: On the matrix renewal function for Markov renewal processes. The Annals
of Mathematical Statistics, 40 (1969), 1901–1907.

[13] J. Keilson and S.S. Rao: A process with chain dependent growth rate. Journal of
Applied Probability, 3 (1970), 699–711.

[14] J. Keilson and S.S. Rao: A process with chain dependent growth rate. part II : the ruin
and ergodic problems. Advances in Applied Probability, 3 (1971), 315–338.

[15] M. Kijima and U. Sumita: A useful generalization of renewal theory : counting pro-
cesses governed by non-negative Markovian increments. Journal of Applied Probability,
23 (1986), 71–88.
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