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Abstract In this paper, we propose a new cooperative scenario for supply chains using common replen-
ishment epochs based on the mathematical model presented in Viswanathan and Piplani’s [25] paper. In
order to solve an optimal solution for the cooperative scenario, we first conduct a theoretical analysis on
the optimal cost function of the mathematical model. Then, we propose an efficient search algorithm by
utilizing our theoretical results on the cooperative scenario. Also, we introduce a saving-sharing mechanism
that could motivate the buyers to cooperate with the vendor. Importantly, the proposed saving-sharing
mechanism assists the supply chain system to create a multi-win situation among the vendor and the buy-
ers. Using the 48 sets of data in Viswanathan and Piplani’s [25] paper, we demonstrate that the proposed
cooperative scenario could attain significant improvement on the costs for both the vendor and the buyers
in comparison to the Stackelberg-game scenario.

Keywords: Optimization, business policy, cost models, inventory control, operations
management, search procedure.

1. Introduction

In the literature, it has been advocated that cooperation is an important way for creating
win-win (or multi-win) relationships among the firms in supply chains. Researchers have
been devoting their efforts to develop new scenarios and strategies to optimally coordinate
inventory across the entire supply chain. In this study, we propose a new cooperative
scenario for two-echelon supply chains using common replenishment epochs.

Over the last two decades, many researchers have devoted their attention to show that
effective coordination could considerably reduce costs (or increase profit) for the firms in
supply chains (see, e.g., Banerjee [2], Goyal [14, 15], Parlar and Wang [20], Lu [18], Weng
[29], Viswanathan [24], Corbett and de Groote [9], Chen, Federgruen and Zheng [8], Wang
[26] and Yao and Chiou [32]).

Some studies promote that when using centralized policies for inventory control, supply
chains could become more efficient than decentralized cases. Please refer to the following
papers for further reference: Lee and Whang [17], Chen, Federgruen and Zheng [8], Abdul-
Jalbar et al. [1], Kim and Ha [16] and Chen and Chen [7]. We note that in these “centralized-
control” cases, since the vendor (or the supplier) and the buyers (or the retailers) belong
to the same firm, the firm has authority over the buyers to replenish the product with
the designated lot quantities (or time intervals). Therefore, using centralized policies, the
objective of the firm is to minimize the average total costs incurred in the whole supply
chain system.

Other studies have formulated two-echelon supply chains such as the Stackelberg games
in which the vendor(s) and the buyer(s) reside at the upper stream and the lower stream,
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respectively. Usually, the vendor plays the role of the leader and makes the first game
decision (e.g., the amount of price discount, and replenishment cycle) in these Stackelberg-
game scenarios. And then, the followers (i.e., the buyers) act on the leader’s decision
and make their own decisions (e.g., their inventory policies, namely, whether to accept the
price discount and to use the proposed replenishment cycle). Using a Stackelberg-game
scenario, Eliashberg and Steinberg [11] characterize the properties of the optimal pricing
and production policies in a production-distribution channel. However, they do not address
the issue of channel coordination. Parlar and Wang [20] studied the pricing decision of a
vendor and the subsequent ordering decisions of homogeneous buyers as a Stackelberg game.
Interestingly, they derive the conditions in which the vendor offers quantity discounts to the
buyers. Later, Wang and Wu [28] extend their work to the case with heterogeneous buyers.
In Viswanathan and Piplani’s [25] paper, they consider another Stackelberg-game scenario
in which a vendor offers a discount to buyers as an incentive to attract the buyers to
place their orders only at times specified by the vendor. Wang [26] considers another case
similar to Viswanathan and Piplani’s [25] scenario and compares the strategies using integer-
ratio and power-of-two time coordination mechanisms. He concludes that integer-ratio time
coordination provides a better coordination mechanism and power-of-two time coordination
may not be stable to provide a stable coordination equilibrium strategy. Recently, Mishra
[19] generalizes Viswanathan and Piplani’s model to allow for a selective discount policy that
could exclude some buyers in the supply chain to minimize the supplier total cost. Also,
Bylka [4] compares competitive and cooperative policies for the vendor–buyer system and
defines some conditional games. He shows that the competition scenario does not essentially
degrade the system efficiency. However, our numerical experiments show that the optimal
solution for the Stackelberg-game scenario does not necessarily lead to optimality in the
supply chain. In fact, both the vendor and the buyers have opportunities to gain even
more cost savings if they could cooperate with each other. Therefore, we are motivated
to introduce a cooperative scenario based on a Stackelberg-game scenario to improve the
performance of supply chains in this study.

Recently, researchers have paid more attention to the implementation of cooperative
scenarios in supply chains. One category of the studies focuses on developing revenue-
sharing contracts among the vendors and the buyers to improve their profit (see, e.g.,
Giannoccaro and Pontrandolfo [12], Wang, Jiang and Shen [27], Cachon and Lariviere [5]
and Chauhan and Proth [6]). Interestingly, Van der Veen and Venugopal [22] illustrate that
revenue-sharing contracts create win-win among all parties in the video industry. On the
other hand, many researchers employ price discounts as coordination mechanisms to conduct
coordination in supply chains (or distribution channels); see Parlar and Wang [20], Weng
[29], Weng and Wong [30] and Yue et al. [33], etc. Also, Viswanathan and Piplani (V&P) [25]
present two mathematical models for a supply chain where a single vendor supplies a single
product to many buyers. Under a Stackelberg-game scenario, V&P’s models coordinate
supply chain inventories through the use of common replenishment epochs (CRE) and price
discounts. Interestingly, they demonstrate it based on their numerical experiments that if
the vendor’s order processing cost exceeds a threshold value on the vendor’s order processing
cost, both the vendor and the system gain more savings as the vendor’s and the buyers’
order processing costs increase.

In this study, on the top of V&P’s model, we propose a new cooperative scenario in
which the vendor cooperates with the buyers to determine their replenishment strategies so
as to minimize the average total costs in the whole system. Importantly, we introduce a
saving-sharing mechanism to reinforce the cooperation between the vendor and the buyers
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to create a multi-win situation for supply chains using common replenishment epochs.
The organization of this paper is as follows. We first review the problem definition and

the mathematical model proposed by Viswanathan and Piplani [25] in Section 2. Then, in
Section 3, we propose a cooperative scenario based on V&P’s model. We then derive theo-
retical properties to explore the characteristics of the optimal cost function curve. Utilizing
our theoretical results, we propose an efficient search algorithm to obtain the optimal solu-
tion for the cooperative scenario. Importantly, we introduce a saving-sharing mechanism for
reinforcing the cooperation between the vendor and the buyers. Section 4 uses a numerical
example to illustrate the implementation of our search algorithm and compares the proposed
cooperative scenario and Stackelberg-game scenario using the 48 data sets in Viswanathan
and Piplani’s [25] paper. Finally, we provide some concluding remarks in Section 5.

2. Review of a Stackelberg-game Scenario

In this section, we review a mathematical model for a Stackelberg-game scenario presented
in Viswanathan and Piplani’s [25] paper.

2.1. Problem definition

In such a Stackelberg-game scenario, a single vendor supplies a single product to m buy-
ers. The assumptions of the Economic Order Quantity (EOQ) model apply to each buyer.
Namely, the annual demand rate, Di and the cost parameters (e.g., the ordering cost, Ki

and the holding cost, hi) are deterministic for each buyer i. Lead times are known or can
be ignored. It is assumed that the vendor purchases the product from its upstream supplier
following a lot-for-lot policy. Therefore, the vendor does not have to carry inventory (and
no inventory holding cost incurred for the vendor consequently).

Without using the CRE strategy, each buyer i’s optimal replenishment cycle corresponds
to their EOQ, i.e., T u

i =
√

Ki/Hi where Hi = Dihi/2. The average total cost per year for
buyer i is given by

gu
i = 2

√
KiHi. (1)

Under the CRE strategy, the vendor specifies a replenishment epoch T0, and asks the
buyers to replenish at epochs that are integer multiples of T0 where T0 could be one day
or one week, etc. Denote T c

i as the replenishment interval of buyer i. Then, T c
i = niT0

where ni is a positive integer. Also, it is assumed that the vendor is the leader of the
game, and the followers’ (in this case, the buyers’) cost parameters and demand rate are
known to the vendor. In such a Stackelberg-game scenario, the vendor specifies a set of
common replenishment epochs for the buyers, then the buyer decides its associated optimal
replenishment intervals subject to the vendor’s CRE. Then, the vendor has to determine
a price discount for all the buyers so as to compensate the buyers for using the vendor’s
preferred replenishment epoch.

We may compare the costs incurred for both cases as follows. Suppose that the buyers
in a set C place their orders simultaneously when using the CRE strategy, then the vendor
will incur an order processing cost of As +

∑
i∈C Ai where As is a common setup cost for

processing the entire set of orders and Ai is the additional setup cost for processing the
order from buyer i. On the other hand, without using the CRE strategy, those buyers in the
set C place their orders independently, then the order processing cost for the vendor will be∑

i∈C(Ai + As). Therefore, by consolidating buyers’ orders, the vendor may gain significant
saving on order processing costs from adopting such a CRE mechanism. However, when
following the CRE strategy, the buyers suffer from the increase in inventory holding costs.
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In order to entice the buyers to accept the CRE strategy, the vendor not only offers a price
discount Z (which is identical to all the buyers) to compensate the buyers for any increase
in holding costs, but also provides a minimum savings of 100S percent additionally.

2.2. The mathematical model for the CRE strategy

Following the problem definition stated in Section 2.1, Viswanathan and Piplani [25] for-
mulated the mathematical model for the CRE strategy as the problem (P) as follows.

Problem (P)

Minimize gc
0 = AC(T0, Z, n1, . . . , nm) = AS/T0 +

m∑
i=1

(DiZ + (Ai/niT0)) (2)

Subject to DiZ ≥ (Ki/niT0) + HiniT0 − (1 − S)2
√

KiHi, i = 1, . . . ,m, (3)

T0 ∈ X, (4)

X ∈ {1/365, 1/52, 1/26, 1/12, 2/12, 1/4}, (5)

ni ≥ 1 and integer, i = 1, . . . ,m. (6)

Equation (2) defines the objective function where gc
0 denotes the annual total costs under

the CRE strategy. The first term in the objective function is the annual major order
processing cost. When the smallest frequency multiplier is larger than one, the so-called
empty replenishment occasions or empty epoch problems occur. Dagpunar [10] proposed a
correction factor based on the principle of inclusion and exclusion. However, in our study we
assume that at least one buyer adopts the CRE, as the basic period addressed in the joint
replenishment problem. (See Goyal [13] and Van Eijs [23]) In a real-world case, furthermore,
it might be not so reasonable to set a CRE, but no buyer adopt it. The reader can refer to
Widleman, Frenk and Dekker [31] for in-depth discussion. The second term in the objective
function includes the sum of the annual revenue reduction due to the price discount and
the average annual minor order processing cost for all buyers. Constraints (3) ensure buyer
i will accept the CRE only if the price discount offered is large enough to compensate for
the increase in inventory costs and in addition provide him with a minimum saving of 100S
percent over the total annual cost based on using his EOQ. Constraints (4) and (5) specify
the allowable set of CREs, which could be one day, one week, or one month, etc. Constraint
(6) indicates that the replenishment interval for each buyer i should be a positive integer
multiple of the CRE (i.e., T0). The decision variables for this model are Z, T0, and ni,
i = 1, . . . ,m.

In addition to CRE policy which restricts on the times at which orders may be placed, the
cooperation between the firms in the supply chain system can be implemented by specifying
a set of rules such as pricing rule, the commitment to delivery in whole or in part, return
policies, among others. (Refer to Chen, Federgruen and Zheng [8]) Obviously, the members
may accept such cooperative strategies only if they allow each member to realize a profit
increase (or cost reduction) superior to or at least equal to status quo.

Note that those annul fixed charges or costs (e.g., franchise fee, etc) are not included
in this model since they will not be involved in the process of problem solving. Also, in
Viswanathan and Piplani’s [25] paper, they presented another model that allows the vendor
to offer non-identical price discounts to the buyers. Here we focus only on problem (P) that
considers only identical discounts since non-identical discounts may violate some trade laws
(see Stern, El-Ansary and Coughlan [21]).
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2.3. Viswanathan and Piplani’s heuristic for solving the problem (P)

Viswanathan and Piplani [25] propose a heuristic for solving the problem (P) as follows.
(i) For each value of T0 = xj(∈ X), each buyer i first obtains an optimal multiplier n∗

i such
that

n∗
i (n

∗
i − 1) ≤ Ki/(HiT

2
0 ) ≤ n∗

i (n
∗
i + 1). (7)

Then, given the obtained n∗
i , each buyer i determines a minimum price discount of Zi such

that

Zi ≥
1

Di

[(Ki/n
∗
i T0) + Hin

∗
i T0 − (1 − S)2

√
KiHi]. (8)

Set

Z∗ = max {Zi} , i = 1, ...,m. (9)

Determine the objective function value given by (2), by substituting for (n∗
1, ..., n

∗
m) and

Z∗.
(ii) Among all the T0 ∈ X, choose the value that minimizes the objective function value
given by (2).

Viswanathan and Piplani’s (V&P’s) heuristic works in the following fashion: The deci-
sion maker first finds the vector (n∗

1, ..., n
∗
m) for a given T0, then decides price discount Z∗

based on the obtained (n∗
1, ..., n

∗
m), and finally, determines the objective function value by

substituting for (n∗
1, ..., n

∗
m) and Z∗ in (2) for each T0. One may observe that following such

logic, the determination of Z∗ is surely constrained by the vector (n∗
1, ..., n

∗
m) obtained at

the beginning. Therefore, the decision making is done sequentially and independently in the
Stackelberg-game scenario.

3. A Cooperative Scenario

Intuitively, if the vendor establishes a cooperative relationship with the buyers, the vendor
may coordinate the replenishments from the buyers to achieve even more cost savings.
Therefore, we are motivated to suggest a cooperative scenario to improve the collaboration
between the vendor and the buyers.

In the following discussions, we fist introduce the problem definition of the proposed
cooperative scenario in Section 3.1. Then, we propose a heuristic for solving an optimal
solution for the cooperative scenario in Section 3.2. Finally, Section 3.3 presents a saving-
sharing mechanism to create a multi-win situation among the vendor and the buyers in the
cooperative scenario.

3.1. The problem definition

In our cooperative scenario, we drop the leader-follower relationship in the Stackelberg-game
scenario. But, we keep the vendor’s incentive policies to entice the buyers to cooperate
with the vendor. Therefore, in the proposed cooperative scenario, the vendor still offers
an identical price discount Z to all the buyers to compensate any of their increases in
inventory holding costs and additionally provides a minimum savings of 100S percent (as
the Stackelberg-game scenario does).

The proposed cooperative scenario is to entice the buyers to cooperate with the vendor
especially when they have long term business relationship. We assume that the vendor
knows the buyers’ historical ordering pattern and the buyers’ cost and demand parameters
are known to the vendor. Hence the vendor’s CRE and the buyers’ cost and demand
information are available before the vendor announces the amount of price discounts. The
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major characteristics of the cooperative scenario show in the decision-making process. In
the cooperative scenario, the vendor not only decides a common replenishment epoch and a
price discount, but also determines the replenishment intervals for the buyers. The vendor
optimizes the replenishment policies for all the members in the supply chain simultaneously,
and all the buyers are willing to cooperate with the vendor. (The proposed saving-sharing
mechanism in Section 3.3 provides the buyers with on enticement to cooperate with the
vendor.) We note that the decision makings are done sequentially and independently in the
Stackelberg-game scenario which is significantly different from the cooperative scenario.

3.2. The proposed search algorithm for the cooperative scenario

We note that our cooperative scenario also utilizes Viswanathan and Piplani’s [25] mathe-
matical model presented in Section 2.2. (Only the decision-making process is different from
the Stackelberg-game scenario.) In this subsection, we first conduct a theoretical analysis
to explore the optimality properties of the model. Then, utilizing our theoretical results,
we propose an efficient search algorithm to obtain an optimal solution for the cooperative
scenario.

3.2.1. Theoretical analysis

In fact, problem (P) is a complex nonlinear integer programming problem which is very
difficult to solve optimally. Before presenting the details, we discuss the rationale of our
search algorithm. First, instead of directly attacking problem (P), we explore its optimality
structure. We will show that the optimal-cost curve (with respect to the value of Z ) is
piece-wise linear. Furthermore, we conduct a theoretical analysis on the piece-wise linear
curve (e.g., to derive the closed form formula for the location of the break points, etc).
These theoretical properties allow us to devise an efficient algorithm to obtain an optimal
solution for problem (P). In the following sub-sections, we will present the details of these
topics, respectively.

First, we explore the optimality structure of problem (P) for a given value of . Here, we
treat the optimal value of the objective function as a single-variable function with respect
to price discount Z. That is, for each value of Z=z’ on the Z -axis, we solve the vector of
optimal multipliers (n∗

1(z
′), ..., n∗

m(z′)), and keep track of the associated optimal objective
value of problem (P) as a function of Z.

We denote AC(Z |T0) as the optimal objective function value for problem (P) given
T0 where AC(Z |T0) is a function of Z. Then, AC(Z |T0)=AC(Z, n∗

1(z
′), ..., n∗

m(z′) |T0) is
actually obtained by solving

min
(n1,...,nm)

AC(T0, Z = z′, n1(z
′), ..., nm(z′)) for all Z=z’. By using the data in Section 4, one

may plot the AC(Z |T0) curve using a small step-size of ∆Z as shown in Figure 1. Figure
1 illustrates an interesting property of AC(Z |T0) , namely, it is a piece-wise linear function
in Z. Let us formalize this observation by the following theoretical results.
Lemma 1 For a given value of T0, the optimal objective function value for the following
problem (Pi), denoted by min

ni

gc
i (Z |T0 ), is a piece-wise linear function with respect to Z.

Problem (Pi)

min
ni

gc
i (Z |T0 ) = DiZ + (Ai/niT0) (10)

Subject to DiZ ≥ (Ki/niT0) + HiniT0 − (1 − S)2
√

KiHi (11)

where ni ≥ 1 : integer. (12)

[Proof] For each (integer) value of ni, there exists a feasible set of Z for (Pi), and such a
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Figure 1: The AC(Z |T0) curve of the problem (P)

feasible set is an interval on the Z -axis defined by constraint (11). On the other hand, for
each Z=z’, its optimal multiplier n∗

i for (Pi), i.e.,n∗
i (z

′ |T0) , is obviously the largest value
of positive integer that satisfies constraint (11). So, the set of Z=z’ such that n∗

i (z
′ |T0)

is optimal for (Pi) forms an interval on the Z -axis. Also, when ni remains the same, the
first term in the objective function, i.e.,DiZ, will increase linearly as Z increases while the
second term, i.e.,(Ai/niT0), is a constant given any value of T0. Therefore, we conclude
that the optimal objective function value of (Pi) is a piece-wise linear function with respect
to Z.
Theorem 1 AC(Z |T0) is a piece-wise linear function of Z for a given value of T0.
[Proof] For a given value of T0, one may rewrite problem (P) by (2) as

Minimize gc
0 (Z |T0 ) = AS/T0 +

m∑
i=1

gc
i (Z |T0 ) (13)

Subject to (3) − (6).

Obviously, problem (P) can be divided into m independent (Pi), and AC(Z |T0) is a
sum of m piece-wise linear functions. Clearly, AC(Z |T0) is also a piece-wise linear function.

Naively, one can obtain an optimal solution for the problem (P) by a small-step search
algorithm which enumerates a “reasonable” range of Z using a very small step-size ∆Z → 0.
But this is neither efficient nor accurate since the step-size of the search algorithm determines
its performance. Obviously, such a search algorithm could become very time-consuming.

In order to propose an efficient solution approach, we must utilize our theoretical results
on the optimality structure, especially, the breakpoints on the piece-wise linear curve of
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gc
0(Z|T0). Before locating the breakpoints, we first derive the upper and the lower bounds

to define the search range.

3.2.2. The bounds for the search range

It is a critical issue to set a “reasonable” range of Z in devising a search algorithm for
solving problem (P). Importantly, the search range of Z must include the optimal solution
of problem (P).
Lower bound
First, we focus on deriving a lower bound for the search range. One may observe that there
exists a lower bound for the value of Z in Figure 1. Denote by Z lb the lower bound value of
Z. The following proposition indicates the location of Z lb for a given value of T0.
Proposition 1 For a given value of T0, a lower bound for Z, is given by

Z lb = Max{Z ′

i} (14)

where Z
′

i =
((Ki/n

s
iT0) + Hin

s
iT0) − (1 − S)2

√
KiHi

Di

(15)

and ns
i =

⌈
−1

2
+

1

2

√
1 +

4Ki

HiT 2
0

⌉
, (16)

for i = 1, . . . ,m.
[Proof] By (3), for each buyer i, the minimum feasible value of Zi, denoted by Z

′
i , is given

by Z
′
i =Min

ni

[
((Ki/niT0) + HiniT0) − (1 − S)2

√
KiHi

]
/Di , i = 1, . . . ,m. As shown in

Wildeman, Frenk and Dekker [31],Min((Ki/niT0) + HiniT0) is (Ki/n
s
iT0) + Hin

s
iT0, where

ns
i =

⌈
−1

2
+ 1

2

√
1 + 4Ki

HiT 2
0

⌉
, i = 1, . . . ,m. Therefore, the minimum Z value, which satisfies

the constraints for all the buyers, is Z lb = Max{Z ′
i}, which is exact (14).

We note that the proposed search algorithm searches from the lower bound toward
larger values of Z until it meets the upper bound. Therefore, Proposition 1 also provides
the starting point for the proposed search algorithm. From another point of view, one may
interpret Z lb as the minimum price discount that the vendor needs to offer to sufficiently
compensate the buyers’ cost increase in inventory so as to induce their continued business.
Upper bound
The following proposition provides us with an easy way to obtain the vector of optimal
multipliers (n∗

1(Z), . . . , n∗
m(Z)) for the given values of T0 and Z. Also, it assists to locate an

upper bound for the search range.
Proposition 2 For the given values of T0 and Z, the optimal value of n∗

i (Z), (i = 1, . . . ,m),
is given by

n∗
i (Z) =

⌊
Pi +

√
P 2

i − 4QiRi

2Ri

⌋
(17)

where Pi = DiZ + (1 − S)2
√

KiHi, Qi = (Ki/T0), and Ri = HiT0.
[Proof] Recall that AC(T0, Z, n1, ..., nm) = AS/T0 +

∑m
i=1(DiZ + (Ai/niT0)), i.e., eq. (2).

By (10)- (13), problem (P) can be divided into m independent problems (Pi) when T0 and Z
are given. The objective function value of each (Pi) decreases as ni increases. Also from con-

straint (11), one may obtain the feasible range for ni as

(⌊
Pi−

√
P 2

i −4QiRi

2Ri

⌋
,

⌊
Pi+

√
P 2

i −4QiRi

2Ri

⌋)
.
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Thus the minimum objective function value is achieved at n∗
i (Z)=

⌊
Pi+

√
P 2

i −4QiRi

2Ri

⌋
.

To locate an upper bound, denoted by Zub, for the search range, we employ a relaxation
of problem (P), denoted as problem (R). The first step in formulating the problem (R) is
to plug the optimal n∗

i (Z) from (17) into the objective function of the problem (P), which
leads to

Minimize
Z

gc
0(Z |T0 ) = AS/T0 +

m∑
i=1

(
DiZ + Ai

/[⌊
Pi +

√
P 2

i − 4QiRi

2Ri

⌋
T0

])
. (18)

Next, we replace the optimal n∗
i (Z) in (18) with its continuous relaxation to derive the

objective value of the problem (R) as follows.
Problem (R)

Minimize gR
0 (Z |T0 ) = AS/T0 +

m∑
i=1

(
DiZ + Ai

/[(
Pi +

√
P 2

i − 4QiRi

2Ri

)
T0

])
. (19)

where Pi = DiZ + (1 − S)2
√

KiHi, Qi = (Ki/T0), and Ri = HiT0.
Clearly, it holds that gc

0(Z |T0 ) ≥ gR
0 (Z |T0 ), i.e., the objective value of the problem (P)

is bounded from below by that of the problem (R) for all Z=z’ on the Z -axis. The following
lemma will be used to prove another proposition later.
Lemma 2 For any given T0, the function gR

0 (Z |T0 ) is a convex function with respect to Z.
[Proof] The proof is easily accomplished by showing d2gR

0

/
dZ2 > 0 for all Z > 0.

Recall that without adopting the CRE strategy, it is assumed that the vendor purchases
the product from its upstream supplier following a lot-for-lot policy, and each buyer i’s op-
timal replenishment cycle corresponds to their EOQ, i.e., TU

i =
√

2Ki/ (hidi). No inventory
holding cost is incurred for the vendor since the vendor does not keep any inventory. The
average annual total cost (i.e., total ordering costs) for the vendor is given by

gU
0 =

m∑
i=1

(As + Ai)
/
TU

i . (20)

Obviously, gU
0 provides a ceiling for the optimal objective function value of the problem

(P) since it does not make sense to implement the CRE coordination strategy if it results
in a higher cost than gU

0 . Define

Zub = max{arg[gR
0 (Z |T0 ) = gU

0 ]}. (21)

Proposition 3 concludes that Zub provides an upper bound on the search range for the
optimal value of Z.
Proposition 3 For any given T0, one obtains no better objective value than gU

0 for all
Z>Zub using the CRE strategy.
[Proof] By Lemma 2, the objective function of the function gR

0 (Z |T0 ) is convex. By
eq.(21), gU

0 provides a ceiling for the optimal objective function value of the problem (P)
since it does not make sense to implement the CRE coordination strategy if it results in a
higher cost than gU

0 . Note that gU
0 , obtained from eq.(20), is not a function of Z. If we set

Zub = max{arg[gR
0 (Z |T0 ) = gU

0 ]}, then it holds that gR
0 (Z |T0 ) > gU

0 for all Z>Zub. Since
gR
0 (Z |T0 ) is a continuous relaxation of gc

0(Z |T0 ), it holds that gc
0(Z |T0 ) ≥ gR

0 (Z |T0 ), for
all Z > 0 and any given T0.
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In summary, because gc
0(Z) ≥ gR

0 (Z), for all Z > 0 and gR
0 (Z) > gU

0 for all Z>Zub, we
conclude that gc

0(Z) ≥ gR
0 (Z) > gU

0 , for all Z>Zub.
One may obtain the value of Zub by using some line search algorithm (e.g., bisection

search, or quadratic fit search, see Bazarra, Sherali and Shetty [3]).
Next, we will show how to efficiently locate all the breakpoints and the corresponding

vector of optimal multipliers between two consecutive breakpoints.

3.2.3. The breakpoints and the vector of optimal multipliers

We define as Z=δi (k) a breakpoint for a Pi where the optimal n∗
i changes from ns

i + k to
ns

i + (k + 1) where ns
i is expressed in (16). The following formula indicates the location of

a breakpoint for (Pi).

δi (k) =
((Ki/n̂iT0) + Hin̂iT0) − (1 − S)2

√
KiHi

Di

(22)

where n̂i = ns
i + k and k : integer, k ≥ 0.

Hence the relation between the lower bound (Z lb) and the breakpoints can be expressed
as Z lb = max

i
{δi(0)}. The following corollary, which is an immediate result of Theorem 1,

lays an important foundation for our proposed search algorithm.
Corollary 1 For any given T0, all the breakpoints for (Pi) will be inherited by the piece-wise
linear function AC(Z |T0) .

In other words, if a breakpoint δi (k) shows on one piece-wise linear curve for (Pi),
then, δi (k) must also show on the piece-wise linear curve of the AC(Z |T0) function as a
breakpoint.

Also, Corollary 2 provides an easier (than V&P’s heuristic proposed in [25]) way to
obtain the vector of optimal multipliers (n∗

1(Z), ..., n∗
m(Z)) for any given Z. (For clarity, we

assume that Z is greater than the lower bound for the search range.) The relation between
the lower bound (Z lb) and the breakpoints can be expressed as Z lb = max

i
{δi(0)}.

Corollary 2 For any given Z, one can obtain n∗
i for each buyer i by

n∗
i =

{
ns

i , if Z ∈ [δi(0), δi(1)].
ns

i + k, if Z ∈ [δi(k), δi(k + 1)].
(23)

[Proof] It is an immediate result from Propositions 2 and Corollary 1.
Corollaries 1 and 2 indicate that the sorted (ascending) sequence of all the break-

points,i.e., {δi (k) : i = 0, · · · ,m} serves as the backbone of our search algorithm since each
breakpoint specifies the location where to update one of the multipliers n∗

i when searching
along the Z -axis (from Z lb toward Zub).

3.2.4. The proposed search algorithm

We are now ready to state the proposed search algorithm. Recall that the algorithm searches
from Z lb toward larger values of Z until it meets the upper bound Zub. In the search process,
we use a sequence of (sorted) breakpoints as the backbone, obtain the objective values for
all the breakpoints, and pick the one with the minimum value as the optimal solution.

For any given T0, denote as AC∗ = AC(T0, Z
∗, n∗), the optimal objective function value

of the optimal solution for the problem (P) where Z* and n = (n∗
1(Z

∗), ..., n∗
m(Z∗)) are

the corresponding optimal price discount and the vector of optimal multipliers, respectively.
Let Zc be the breakpoint that the search algorithm currently visits. We summarize the
step-by-step procedure of the proposed search algorithm as follows:
i) For each T0 ∈ X:
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1. Obtain the lower bound Z lb by (14) – (16).
2. Compute gU

0 by (20) and use a line search algorithm to secure the upper bound Zub by
solving (21).

3. Compute the breakpoints within the search range for each buyer i, i.e., {δi (k)} ∈[
Z lb, Zub

]
by (22). Sort all the breakpoints (of all the buyers) in an ascending order and

record the corresponding changed n∗
i for each breakpoint for this sorted sequence.

4. Use Corollary 2 to obtain the vector of optimal multipliers at Z lb, i.e.,
(
n∗

1(Z
lb), ..., n∗

m(Z lb)
)
.

Then, set Z*= Z lb, n∗ =
(
n∗

1(Z
lb), ..., n∗

m(Z lb)
)
, AC∗ = AC(T0, Z

lb, n∗
1(Z

lb), ..., n∗
m(Z lb)),

and Zc = Z lb.
5. If all the breakpoints in the sorted sequence are visited, stop. Otherwise, move to the

next breakpoint by setting Zc = min {δi (k) : δi (k) > Zc} and do the following items at
new Zc:

(a) Update the vector of optimal multipliers (n∗
1(Z

c), ..., n∗
m(Zc)) according to Corollary

2.
(b) Compute AC(T0, Z

c, n∗
1(Z

c), ..., n∗
m(Zc)), i.e., the optimal objective value at Zc.

(c) If AC(T0, Z
c, n∗

1(Z
c), ..., n∗

m(Zc))<AC∗, then set Z∗ = Zc, n∗ = (n∗
1(Z

c), ..., n∗
m(Zc)),

and AC∗ = AC(T0, Z
c, n∗

1(Z
c), ..., n∗

m(Zc)).
(d) Go to Step 5.

ii) Among all the T0 ∈ X, choose the value that minimizes the objective function value
given by (2).

3.3. A saving-sharing mechanism between the vendor and the buyers

One may observe that the problem definition stated in Section 3.1 and the proposed algo-
rithm presented in Section 3.2 works impeccably for so-called “centralized-control” cases.
In these cases, the vendor and the buyers belong to the same firm. Since the firm should
pay for the average total costs incurred in the whole supply chain, the firm surely intends
to minimize the objective function value in eq. (2). Therefore, it makes perfect sense to
authorize the vendor to coordinate the replenishments from the buyers by simultaneously
determining the optimal values of , Z and the vector of optimal multipliers (n∗

1, ..., n
∗
m).

The readers may be more interested in the answers of the following questions. What if
the vendor and the buyers do not belong to the same firm? How could the vendor ask the
buyers to follow the designated replenishment intervals (obtained by the proposed search
algorithm in Section 3.2) in such a case?

From our numerical experiments, we have observed that the vendor actually gains most of
the cost savings in the supply chain for both the cooperative and Stackelberg-game scenarios.
Recall that in Stackelberg-game scenario, the vendor not only offers a price discount Z to
compensate the buyers for any increase in holding costs, but also provides a minimum savings
of 100S percent additionally so as to entice the buyers to accept the CRE strategy (i.e., to
ask the buyers to replenish at epochs that are integer multiples of some CRE T0). Provided
that the vendor enjoys most of the cost savings from the cooperative scenario, the vendor
should offer more incentives to motivate the buyers to take the designated replenishment
intervals. In this section, we propose a “saving-sharing mechanism” to attain this purpose.
Later, our numerical example in Section 4.1 will show that the proposed saving-sharing
mechanism assists to create a multi-win situation among the vendor and the buyers in the
cooperative scenario.

The vendor and the buyers would like to pursue for lower average total costs even
if they do not belong to the same firm. Once ensuring that the vendor’s saving-sharing
mechanism could lead to further reduction in the average total costs, the buyer will take
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the replenishment intervals designated by the vendor. Since the vendor enjoys most of the
cost savings from adopting the cooperative scenario, the vendor should share part of its cost
savings to the buyers who are willing to change from the Stackelberg-game scenario to the
cooperative scenario, provided that such a move brings more cost savings to the vendor. In
practice, the vendor may realize the saving-sharing mechanism to return part of the cost
savings to the buyer(s) by waiving some annul fixed charge (or cost), e.g., franchise fee, etc.

Such a saving-sharing opportunity may be offered to a buyer only when the vendor’s cost
saving results from altering the Stackelberg-game scenario to the cooperative scenario and
will be more than the buyer’s cost increase. Proposition 4 provides an easy, but a necessary,
condition for the change from the Stackelberg-game scenario to the cooperative scenario.
Proposition 4 Given a CRE T0, the vendor will offer the buyer i a saving-sharing oppor-
tunity (to change from Stackelberg-game scenario to the cooperative scenario) only if the
following condition holds: √

Ai + Ki

2Hi

≥ T0. (24)

[Proof] Please refer to Appendix A for the proof of Proposition 4.
Note that when the condition in (24) holds, if buyer i changes from the Stackelberg-game

scenario to the cooperative scenario, the vendor’s cost saving will be more than the buyer
i ’s cost increase. In such a case, the vendor could have sufficient cost savings to realize
the saving-sharing mechanism to encourage the buyer i to follow the replenishment interval
suggested by the vendor.

4. Numerical Study

In this section, we first present a numerical example to demonstrate the implementation of
both, the Stackelberg-game scenario and the proposed cooperative scenario. Then, we show
that the cooperative scenario outperforms the Stackelberg-game scenario using 48 sets of
data presented in Viswanathan and Piplani’s [25].

4.1. A demonstrative example

Here, we demonstrate an example in which a vendor supplies a product to 10 buyers, i.e.,
m=10. The demand rate and the ordering cost of each buyer i, i.e., Di and Ki are given
in Table 1. The setup costs for the vendor and each buyer i, are As=$200 and Ai=$500,
respectively. The rate of the holding cost h is 0.1. The minimum buyer cost saving required
(100S) is set to 10%.

In the following discussions, we first solve the solutions for the Stackelberg-game scenario
by V&P’s heuristic; then we obtain an optimal solution for the cooperative scenario using
the proposed search algorithm; finally, we will verify the necessary condition for changing
from the Stackelberg-game scenario to the cooperative scenario.

4.1.1. Stackelberg-game scenario

For each value of T0, we obtain its corresponding solution for the Stackelberg-game scenario
by V&P’s heuristic. Part (a) of Table 3 presents our solutions solved by V&P’s heuristic.
Clearly, the best-obtained objective value obtained by V&P’s heuristic is gc

0(Z)=$188,905
with T0=1/26, Z∗=0.001587 and n∗ = (1, 3, 1, 4, 1, 2, 1, 3, 1, 1) (where T0=1/26 is ap-
proximately a planning period of two weeks).

4.1.2. The cooperative scenario

Here, we show only the case for T0=1/26 since it obtains the optimal solution for this
example. The other values of T0 repeat the same procedure.
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Table 1: The ordering cost and the demand rate data of the buyers in the example
Buyer index i Ordering cost

Ki

Annual demand Di

1 $100 1,000,000
2 1,000 2,000,000
3 100 3,000,000
4 5,000 4,000,000
5 100 5,000,000
6 2,000 6,000,000
7 100 7,000,000
8 5,000 8,000,000
9 100 9,000,000
10 1,000 10,000,000

We first obtain a lower bound Z lb by 0.001587. And, we compute gU
0 as $208,047 and

use a line search procedure to get Zub by Zub=0.00295. Next, we find a total of 12 break-
points in the search range [Z lb,Zub]. After sorting the breakpoints in ascending order,
we record the corresponding n∗

i for each. By Corollary 1, the vector of optimal multipliers(
n∗

1(Z
lb), ..., n∗

m(Z lb)
)

corresponding to Z lb is given by (2, 3, 1, 4, 1, 3, 1, 3, 1, 2). Also, we
set Z∗ = Zc = Z lb, n∗ =

(
n∗

1(Z
lb), ..., n∗

m(Z lb)
)
, and AC∗ = AC(T0, Z

lb, n∗
1(Z

lb), ..., n∗
m(Z lb))

= $173, 738.

Then, the search algorithm goes through the 12 breakpoints in the search range from
Z lb in an ascending order by Step 5. Table 2 summarizes the search process of the proposed
search algorithm.

Table 2: The vector of optimal multipliers for the 12 breakpoints in the search process
Breakpoint n∗

1 n∗
2 n∗

3 n∗
4 n∗

5 n∗
6 n∗

7 n∗
8 n∗

9 n∗
10 gc

0

0.001587= Z lb 2 3 1 4 1 3 1 3 1 2 $173,738
0.001693 2 3 1 4 1 3 1 ↓4 1 2 179,537
0.001885 2 3 1 ↓5 1 3 1 4 1 2 188,399
0.001942 2 ↓4 1 5 1 3 1 4 1 2 191,544
0.001956 2 4 ↓2 5 1 3 1 4 1 2 184,697
0.002306 2 4 2 5 ↓2 3 1 4 1 2 197,472
0.0025105 2 4 2 5 2 ↓4 1 4 1 2 207,628
0.0025106 2 4 2 5 2 4 ↓2 4 1 2 201,132
0.002611 2 4 2 5 2 4 2 4 1 ↓3 202,320
0.002649 2 4 2 5 2 4 2 4 ↓2 3 197,909
0.002725 2 4 2 5 2 4 2 ↓5 2 3 202,085
0.002803 2 4 2 ↓6 2 4 2 5 2 3 205,303

The proposed search algorithm obtains the same value of Z∗(Z∗=0.001587) as the
Stackelberg-game scenario. But, the cooperative scenario secures a different vector of op-
timal multipliers n∗ = (n∗

1, ..., n
∗
m), namely (2, 3, 1, 4, 1, 3, 1, 3, 1, 2). (Please refer to

Part (b) of Table 3 for the optimal solutions of all values of CRE obtained by the proposed
search algorithm.)
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Table 3 compares the solutions of the Stackelberg-game scenario and the cooperative
scenario. The optimal objective function value for the cooperative scenario is obtained by
$173,738 which is 8.73% less than the Stackelberg-game scenario.

Table 3: The optimal solutions for the Stackelberg-game and the cooperative scenarios
Part (a) Stackelberg-game scenario
T0 n∗

i Z* gc
0

1/365 16 37 9 58 7 0.001581 $314,665.35
30 6 41 5 16

1/52 2 5 1 8 1 0.001587 246,971.53
4 1 6 1 2

1/26 1 3 1 4 1 0.001587 188,904.86
2 1 3 1 1

1/12 1 1 1 2 1 0.002951 222,109.76
1 1 1 1 1

1/6 1 1 1 1 1 0.007058 419,409.76
1 1 1 1 1

1/4 1 1 1 1 1 0.011204 63,6954.21
1 1 1 1 1

Part (b) The cooperative scenario
T0 n∗

i Z* gc
0

1/365 32 51 24 57 22 0.001581 $220,224.95
45 20 54 19 32

1/52 4 7 3 8 3 0.001592 178,033.44
6 2 7 2 4

1/26 2 3 1 4 1 0.001587 173,738.20
3 1 3 1 2

1/12 1 2 1 2 1 0.002951 216,109.76
1 1 2 1 1

1/6 1 1 1 2 1 0.007055 417,909.76
1 1 1 1 1

1/4 1 1 1 1 1 0.011204 63,6954.21
1 1 1 1 1

Based on Viswanathan and Piplani’s experimental results, they comment that the vendor
may obtain very significant cost saving by changing from independent replenishments to
the Stackelberg-game scenario when the vendor’]s order processing costs is relatively larger.
(An example in their numerical study achieved more than 50% cost savings by adopting
the Stackelberg-game scenario.) It will be interesting to observe the performance of the
cooperative scenario in such cases. For this purpose, we replace the order processing costs
for the vendor and each buyer i with As=$5,000 and Ai=$5,000, respectively, in the following
discussions.

Again, we solve the optimal solutions for both the Stackelberg-game and the cooperative
scenarios by V&P’s heuristic and the proposed search algorithm, respectively. Table 4
presents the optimal solutions for the case with As=$5,000 and Ai=$5,000. The total
cost savings for the whole supply chain system is $141,940. One may observe that the
vendor and the whole supply chain system achieve more significant cost savings in the
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cooperative scenario than in the Stackelberg-game scenario. In the example, the vendor
and the whole supply chain system enjoys a cost saving of 65.35% and 61.02% by changing
from independent replenishments to the cooperative scenario. We present our discussions
on the implementation of the proposed saving-sharing mechanism next.

Table 4: A comparison between the Stackelberg-game and the cooperative scenarios for the
case with As=$5,000 and Ai=$5,000

Independent Stackelberg
-game (S)

Saving
(%)

Cooperative
(C)

Saving
(%)

Improvement
(S - C)

Buyers’ cost $313,866 $241,057 23.19 $250,783 20.09 -$9,726
Vendor’s cost 2,972,103 1,181,454 60.24 1,029,788 65.35 151,666
System cost 3,285,969 1,422,511 56.70 1,280,571 61.02 141,940

4.1.3. The saving-sharing mechanism

For the case with As=$5,000 and Ai=$5,000, we observe that the buyers’ cost is increased
by $9,726 (as shown in Table 4) when changing from the Stackelberg-game scenario to the
cooperative scenario. Although the buyers’ cost is increased in this case, the cost of the
buyers in cooperative scenario is still 20.09% superior to that of the independent way. In
order to entice the buyers to join the cooperative scenario, the vendor should not only
compensate the buyers’ cost increase, but also share part of the net saving ($141,940) with
the buyers. For instance, if the vendor and the buyers evenly share the net saving (i.e.,
$70,970 for each party), the vendor and the buyers obtain cost savings of 2.38% and 22.61%
respectively in comparison with the Stackelberg-game scenario. Basically, once the setup
cost is over a threshold value, the effectiveness of the cooperative scenario is significant
compared to the EOQ results, In fact, the proposed cooperative scenario can guarantee
that the buyers’ cost will not exceed their EOQ status quo. Therefore the vendor can entice
the buyers to join the cooperative scenario instead of their EOQ comparison baseline. If
the buyer wants to share the vendor’s net saving in a justifiable way, then a contract or
agreement between the vendor and the buyers is need. Regarding the splitting the net
saving, it depends on the negotiation power in the supply chain system. In our paper
just propose an easy example to split the saving evenly. In such a case, the buyers will
be glad to join the cooperative scenario. Importantly, the cooperative scenario creates a
multi-win situation where both the vendor and the buyers enjoy more cost saving than the
Stackelberg-game scenario.

Next, we use this example with As=$200 and Ai=$500 to verify the necessary condition
for the change from the Stackelberg-game scenario to the cooperative scenario in Proposition
4. (For the case with As=$5,000 and Ai=$5,000, the condition in (24) can be satisfied for
each buyer since the values of Ai are relatively large. Since the condition in (24), will become
insignificant for the readers in such a case, we would return to the case with As=$200 and
Ai=$500.)

Recall that in this example, the optimal solution for the Stackelberg-game scenario is
given by n∗ = (1, 3, 1, 4, 1, 2, 1, 3, 1, 1), Z∗=0.001587 , and T0=1/26=0.385 with the
optimal objective function value being gc

0(Z)=$188,905. On the other hand, the optimal
solution for the cooperative scenario uses the same values of T0 and Z∗, but a different
vector of optimal multiplier n∗ = (2, 3, 1, 4, 1, 3, 1, 3, 1, 2) with gc

0(Z)= $173,738. Table
5 summarizes the results if the 10 buyers satisfy the condition in (24).

From Table 5, one may observe that the buyers 5, 7 and 9 fail the condition in (24).
Therefore, it is impossible for the vendor to offer these buyers a saving-sharing opportunity
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Table 5: A summary of the results if the 10 buyers satisfy the condition in Proposition 4
Buyer 1 2 3 4 5 6 7 8 9 10√

Ai+Ki

2Hi
0.0775 0.0866 0.0447 0.1173 0.0346 0.0645 0.0293 0.0829 0.0258 0.0387

Satisfy the
condition?

Yes Yes Yes Yes No Yes No Yes No Yes

(to change from the Stackelberg-game scenario to the cooperative scenario). However, since
the condition in (24) is not a sufficient condition, we are not able to assert if the other seven
buyers will change to the cooperative scenario. In fact, in this example, changing only the
buyers 1, 6 and 10 from the Stackelberg-game scenario to the cooperative scenario brings
the vendor further cost savings.

4.2. Comparison with Stackelberg-game Scenario

In this subsection, we use the 48 sets of data in Viswanathan and Piplani’s [25] paper to
compare the performance (i.e., the average total costs) of the whole supply chain system of
both, the Stackelberg-game and the cooperative scenarios.

We note that among these 48 sets of data, both scenarios obtain the same solutions for
the Data Sets 17 to 32. Changing from the Stackelberg-game scenario to the cooperative
scenario achieves an average of 2.67% improvement in the average total costs of the whole
supply chain system for these 16 data sets. And, impressively, 19 (out of the rest 32 data
sets) examples gain an improvement of more than 5%. One may observe that the cooperative
scenario outperforms that in the Stackelberg-game scenario for these 32 data sets in their
solution quality. Also, the proposed search algorithm for the cooperative scenario (coded
in Matlab 5.3) solves each instance with 10 buyers in only a fraction of a second (less than
0.08 seconds) on a PC with Pentium IV-1.6GHz processor. Therefore, the proposed search
algorithm is very efficient for decision support.

5. Concluding Remarks

In this paper, we propose a new cooperative scenario for supply chains using common
replenishment epochs based on the mathematical model presented in Viswanathan and
Piplani’s [25] paper. We summarize our contributions of this study as follows. First, we
conduct a theoretical analysis on the optimal cost function of the mathematical model,
and show that it is piece-wise linear with respect to Z (i.e., the value of price discount).
Second, utilizing our theoretical results, we propose an efficient search algorithm to solve
an optimal solution for the cooperative scenario. Third, we introduce a saving-sharing
mechanism that could motivate the buyers to cooperate with the vendor. Also, importantly,
the saving-sharing mechanism assists the supply chain system to create a multi-win situation
among the vendor and the buyers. Finally, using the 48 sets of data in Viswanathan and
Piplani’s [25] paper, we demonstrate that the proposed cooperative scenario could attain
significant improvement on the costs for both the vendor and the buyers in comparison to
the Stackelberg-game scenario. Also, our numerical results show that the proposed search
algorithm is efficient since it solves the optimal solution for the cooperative scenario within
a very short run time.

According to our literature review in Section 1, it is well-known that cooperation among
the firms provides opportunities to create multi-win situations in supply chains. In this
study, we advocate the adoption of a new cooperative scenario to replace the Stackelberg-
game scenario supply chains using common replenishment epochs. The authors are currently

c© Operations Research Society of JapanJORSJ (2009) 52-3



A Cooperative Scenario for Supply Chains 279

working on extending the mathematical model to more general cases. For instances, we will
consider multi-echelon supply chains rather than two-echelon ones studied in this paper.
Also, recall that the vendor merely plays a role of a distributor in this study. By regarding
the vendor as a manufacturer, we are revising the mathematical model to take into account
the vendor’s capacity constraints and the scheduling of the replenishment lots from the
buyers.
Acknowledgements This research was supported by the National Science Council of Tai-
wan, ROC under Grant No. NSC 92-2213-E-029-015 and NSC 93-2213-E-252-002.
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Appendix A. The Proof of Proposition 4

Given the values of CRE T0 and Z, the vectors of optimal multipliers for the Stackelberg-
game scenario and the cooperative scenario are n̂ =(n̂1, ..., n̂m) and n∗ =(n∗

1, ..., n
∗
m), re-

spectively. Recall that the average total cost function for the vendor is given by gc
0 =

c© Operations Research Society of JapanJORSJ (2009) 52-3
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AC(T0, Z, n1, ..., nm) = AS/T0 +
∑m

i=1(DiZ + (Ai/niT0)), and the cost function for buyer i
is given by gc

i = (Ki/niT0) + HiniT0.
When changing from the Stackelberg-game scenario to the cooperative scenario, the cost

increase for buyer i is (Ki/n
∗
i T0)+Hin

∗
i T0− [(Ki/n̂iT0) − Hin̂iT0], and the vendor may have

a cost saving of AS/T0 + DiZ + (Ai/n̂iT0) − [AS/T0 + DiZ + (Ai/n
∗
i T0)]. Therefore, only

when the vendor could get a cost saving which is larger than the buyer’s cost increase,
the vendor would like to offer a saving-sharing opportunity. In such a case, it leads to the
following condition:

Ai + Ki

T0

(
1

n̂i

− 1

n∗
i

) > HiT0(n
∗
i − n̂i) (25)

We define Wi ≡ Ai+Ki

HiT 2
0

to simplify the notation in our presentation. The inequality in

(25) gives Wi(
1
n̂i

− 1
n∗

i
) > (n∗

i − n̂i), or equivalently,

n∗
i +

Wi

n∗
i

< n̂i +
Wi

n̂i

. (26)

Again, let Ui = n̂i + Wi

n̂i
. Then, from (26), it holds that

n∗
i ∈

[
Ui −

√
U2

i − 4Wi

2
,
Ui +

√
U2

i − 4Wi

2

]
. (27)

Obviously, one could have an opportunity to obtain n∗
i which is different from n̂i only

when the following condition on the upper bound of n∗
i holds:

Ui +
√

U2
i − 4Wi

2
≥ n̂i + 1 (28)

Then, from (28), we have

U2
i − 4Wi ≥ (2 (n̂i + 1) − Ui)

2 = U2
i − 4 (n̂i + 1) Ui + 4 (n̂i + 1)2 . (29)

Or, equivalently,

(n̂i + 1)2 − (n̂i + 1) Ui + Wi ≤ 0. (30)

By plugging Ui = n̂i + Wi

n̂i
into (30), we will reach the following condition:

n̂i + 1 − Wi

n̂i

≤ 0 (31)

We assert that n̂2
i + n̂i − Wi ≤ 0 since n̂i ≥ 1. And, it gives

n̂i ∈
[
0,

−1 +
√

1 + 4Wi

2

]
. (32)

Since n̂i is a positive integer, the following condition holds for the upper bound on n̂i.

−1 +
√

1 + 4Wi

2
≥ 1 (33)

It gives
√

1 + 4Wi ≥ 3 or Wi ≥ 2.

By plugging Wi = Ai+Ki

HiT 2
0

into (33), we have
√

Ai+Ki

2Hi
≥ T0 which is exact (24).
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