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Abstract In this paper we show that the weighted least square (WLS) and the logarithmic least square
(LLS) of various methods to solve the mutual evaluation network (MEN) system including the Analytic
Hierarchy Process (AHP) and the Analytic Network Process (ANP), are superior to others. Both methods
can solve MEN problems without any restrictions of the structure matrix of MEN. We also show that the
WLS always gives positive solutions, which generalize the proof by Blankmeyer. We establish the error
analysis of WLS and LLS. Especially, we give solving methods of MEN problems with different variances of
errors by the WLS and the LLS.
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1. Introduction

The evaluation systems such as the Analytic Hierarchy Process (AHP) and the Analytic
Network Process (ANP) are unified to the mutual evaluation network (MEN) system. The
structure of MEN is the following;
There is a set N of objects 1, 2, · · · , n. An object i has its own weight ui(> 0) (i = 1, · · · , n).
They are to be evaluated mutually. Let sij(> 0) be the evaluation value of an object i
evaluated by an object j, which is represented by the formula

ui ; sijuj. (1.1)

Another representation of the above fact is

ui/uj ; sij, (1.2)

where sij corresponds to the paired comparison value in the AHP [5].
We have the data sij for (j, i) ∈ E, where E is a set of ordered pairs of the objects

belonging to N . The analysis of MEN is to estimate u1, · · · , un by the given data {sij|(j, i) ∈
E} based on (1.1) or (1.2).

The structure of MEN is well represented by a directed graph G called the graph of MEN,
whose node corresponds to an object and directed arc (j, i) corresponds to an ordered pair
(j, i) ∈ E of objects. Here we assume that the graph G is connected.

The MEN with E = {(i, j)|i, j = 1, · · · , n, i 6= j} is considered to be the ordinary AHP
(with complete information) [13]. But for the AHP there is the special restriction

sji = 1/sij for (i, j) ∈ E. (1.3)
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The MEN graph of AHP (with complete information) is a complete directed graph. Of
course, there is an AHP whose set of pairs of objects is a subset of the above E. Such an
AHP is called the incomplete AHP [13].

As for the ANP there are many types of MEN graph. The n × n matrix S, whose (i, j)
element is sij for (j, i) ∈ E and zeros otherwise, is the well-known supermatrix [7]. For the
ANP there is the restriction

n∑
i=1

sij = 1, j = 1, · · · , n, (1.4)

that is, the matrix S is a column stochastic.

Here we treat more general MEN methods without any restrictions such as (1.3) and
(1.4). Let us call the matrix S defined above as the matrix of MEN for the general case.
The structure of MEN is determined by its graph G or its matrix S, and it is well known
that the irreducibility of S is equivalent to the strong connectivity of G.

We note that we do not mean the hierarchy structure constructed from criteria and
alternatives of AHP by the MEN graph of AHP. For example, the set of nodes in the MEN
graph of AHP corresponds to the set of alternatives evaluated within a criterion.

We intend to show that as the analyzing method of MEN problems, the logarithmic
least square (LLS) method (see §2) and the weighted least square (WLS) method (see §2)
are superior to other methods. Both methods can be applied to any MEN problem almost
without any conditions, while the eigenvector method (see §2) cannot be directly applied to
a MEN problem whose graph is not strongly connected. Further, both methods always give
positive solutions and have error analyzing methods. We cannot analyze errors by almost
any other method.

The criticism that the LLS method is not sensitive to inconsistencies included in {sij} is
given in [6], but this is valid only for the case of AHP with complete information, and loses
grounds for general MEN problems.

The WLS method was proposed in [2] and the positivity of solutions was proved in [1],
but this proof is valid only for the case where the matrix XT X (see §3) is non-singular
and its off-diagonal elements are all negative. In §3 we prove the positivity for general
MEN problems. In §4, (§5) the error analysis on the LLS (the WLS) method is described.
We often encounter the case where errors have different weights (or variances). In §6 error
analyses for such cases are stated and this is applied to a typical ANP called the mutual
evaluation problem. We can solve an ANP with a reducible supermatrix, that is, whose
graph G is not strongly connected, by the general method [10, 14], but this structure is
rather complicated. But by the WLS method or the LLS method we can directly solve such
a reducible ANP. This is shown in §7 with the error analysis.

2. The Analyzing Methods of MEN

Here we state five analyzing methods of MEN problems; the minimax (or the eigenvector)
(MIN), the averaged least square (ALS), the LLS, the WLS and the minimum χ2 (chi square)
(MCS) method.

(i) The MIN method is well known and the most popular method, which was first proposed
by T. Saaty [5]. This gives the solution by the eigenvector method, and is proved to
be based on the mini-max principle by Frobenius [8, 9]. At first, this was used only for
AHP, but later has become applicable to general MEN problems.
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WLS and LLS for Mutual Evaluation System 223

The method of MIN is the following [9]; Averaging (1.1) on j for (j, i) ∈ E, we have

ui ;
∑

j

sijuj/ni (i = 1, · · · , n), (2.1)

where ni is the size of set {j|(j, i) ∈ E}.
The right-hand side of (2.1) is called the average of external evaluations for an object

i, which is denoted by ūi, and u1, · · · , un making ūi nearest ui on i (i = 1, · · · , n), are
desirable estimates of the weights of objects 1, 2, · · · , n. One principle for this is to
decide u1, · · · , un such that

min
u1,··· ,un

max
i

{ūi/ui}. (2.2)

If the matrix S̄ (= [sij/ni]) of this MEN problem is irreducible, the solution of (2.2)
is the principal eigenvector of S̄ [8, 9]. (In the field of ANP they take the principal
eigenvector of S itself as the solution. If ni is constant on i (i = 1, · · · , n), this coincides
with that of S̄.) When S̄ is reducible, the solving method of MIN is not so simple, but
is carried out by the general method shown in [10,14].

(ii) The ALS method is another method [9] to make ūi near to ui (i = 1, · · · , n), which is
to minimize the sum D of squares of differences di of ūi − ui,

di = ūi − ui =
∑

j

sijuj/ni − ui (i = 1, · · · , n). (2.3)

This is a kind of least square (LS) method, but ūi is the averaged data, so we call
this method “the averaged least square method.” To minimize D =

∑
i d

2
i we have only

to take ui = 0 (i = 1, · · · , n), to have a non-sense solution. So we set the condition

u1 + u2 + · · · + un = 1. (2.4)

After all the ALS is the method to take u1, · · · , un minimizing D subject to (2.4).
But we have no guarantee that the solution is positive, which is a fatal defect for our
evaluation problem. The condition that the ALS method gives a positive solution is
that S̄ (= [sij/ni]) is irreducible and has the maximal eigenvalue less than 1 [9]. But
there are many problems without this condition. Thus the ALS method is not well used
by OR workers.

(iii) The LLS method is well known [6,13]. Taking the logarithm of (1.2) we have

u̇i − u̇j ; ṡij (u̇i = loge ui, ṡij = loge sij). (2.5)

Let the error of ṡij − (u̇i − u̇j) be ėij, that is,

ėij = ṡij − (u̇i − u̇j). (2.6)

So the LLS is a method to minimize

Q̇ =
∑

(j,i)∈E

ė2
ij =

∑
(j,i)∈E

(ṡij − (u̇i − u̇j))
2,

under the condition
u̇1 + · · · + u̇n = 0. (2.7)

c© Operations Research Society of JapanJORSJ (2009) 52-3



224 K. Nishizawa & I. Takahashi

On the evaluation problem u1, · · · , un have an arbitrary (positive) constant, so we
can set u1 · u2 · · · · · un = 1 whose logarithm is (2.7).

The LLS is a very natural method, and for an AHP with complete information, the
solution of LLS is equivalent to that of the geometric mean method. This of course gives
a positive solution, because exponential values obtained by the inverse transformation
of logarithm are always positive.

(iv) The WLS method is also a very natural method. The principle is very simple; let

eij = ui − sijuj , (j, i) ∈ E (2.8)

and the sum Q of squares of eij ,

Q =
∑

(j,i)∈E

e2
ij =

∑
(j,i)∈E

(ui − sijuj)
2 (2.9)

is minimized under the condition (2.4) on u1, · · · , un.
We must insist that it is proved that the solution of WLS is always positive without

any conditions such as irreducibility and others like in the ALS, so we can use the WLS
method without any apprehensions.

The name “WLS” (weighted LS) cannot be considered to be appropriate, because
the meaning of “weight” is not so clear. But in [1] and [2] this nomenclature was already
used, so we also use it.

(v) The MCS method is to minimize

χ2 =
∑

(j,i)∈E

(sij − ui/uj)
2uj/ui (2.10)

on the positive u1, · · · , un. Formally (2.10) is the same formula as χ2-statistics, which
is the source of this name. At a glance it is difficult for us to minimize such a non-linear
function as (2.10), but very simple algorithms such as the scaling method [3,4] can solve
MCS problems, and further this does not need any conditions about S [4, 15]. ¤
We reviewed five methods for the MEN system. There may not be any other important

ones except those five methods. For example, the geometric mean method is equivalent
to the LLS (for the AHP with complete information) and the direct least square method
(min

∑
(sij − ui/uj)

2) may have multiple solutions requiring non-linear computations to be
hardly useful. And we would like to insist that the LLS and the WLS method are superior
to others.

In the AHP and the ANP field, the MIN method is the most popular and may be
the most frequently used. The reason may be that this is the first method proposed by
the renowned T. Saaty, the pioneer in these fields. But we think that if S is reducible
the analysis developed in [10, 14] is rather complicated and is not based on one principle
throughout the series of process. As for the ALS method, it cannot give unconditionally
positive solutions of weights as stated above.

On the other hand, the LLS and the WLS can be applied to any problems of MEN
without any conditions except that the graph G is connected, and these have the analyzing
methods of errors of estimates which are described in §4 and §5. The MCS almost uncon-
ditionally gives positive solutions like the LLS and the WLS, but we cannot analyze errors
of estimates by the MCS.

The LLS and the WLS have almost the same merits, and also their analyzing processes
are carried out by almost the same way. The difference is only the structure of errors. That

c© Operations Research Society of JapanJORSJ (2009) 52-3



WLS and LLS for Mutual Evaluation System 225

of the LLS is based on the logarithmic transformation of (1.2) and that of the WLS is on
(1.1).

Here we solve two examples by the WLS method. The solving method of the WLS is
well known and is stated in §3.

Example 1.

Consider a simple example of AHP with a comparison matrix A given by

A =

 1 5 9
1/5 1 3
1/9 1/3 1

 .

To solve this by the WLS we take E = {(2, 1), (1, 2), (3, 1), (1, 3), (3, 2), (2, 3)}. From (3.2)
we have

X =


1 −5 0

−1/5 1 0
1 0 −9

−1/9 0 1
0 1 −3
0 −1/3 1

 ,

the normal equation (3.1) is

u1 u2 u3 -λ
2.052346 -5.200000 -9.111111 1 0
-5.200000 27.111111 -3.333333 1 0
-9.111111 -3.333333 92.000000 1 0

1 1 1 0 1

,

and the solutions are û1 = 0.7622, û2 = 0.1565, û3 = 0.0813, λ̂ = 0.0099. The solutions by
the eigenvector method for this example are û1 = 0.751, û2 = 0.178, û3 = 0.070, which are
very close to those of the WLS. It is well known that the LLS solution coincides with that
of the eigenvector method, in the case with n=3.

Here we note that sji is determined by sij from (1.3), so the data in the AHP are not
independent. This recognition is very important for the error analysis in §5.

Example 2.

Consider a typical ANP with the supermatrix S given by

S =

[
0 W
U 0

]
, U =

 1/6 0.6
1/3 0.3
1/2 0.1

 , W =

[
0.4 0.7 0.2
0.6 0.3 0.8

]
.

For this ANP, E = {(3, 1), (4, 1), (5, 1), (3, 2), (4, 2), (5, 2), (1, 3), (2, 3), (1, 4), (2, 4), (1, 5),
(2, 5)}, and the matrix X in (3.2) and the normal equation in (3.1) are shown in Table 1.

The solutions are û1 = 0.188906, û2 = 0.210889, û3 = 0.215728, û4 = 0.195837, û5 =
0.188640 and λ̂ = 0.183522.

On the other hand, the elements of eigenvector of the matrix S are û1 = 0.175701, û2 =
0.224299, û3 = 0.245794, û4 = 0.188785, û5 = 0.165421.
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Table 1: A structure matrix and its normal equation

u1 u2 u3 u4 u5

(3,1) 1 0 -0.4 0 0
(4,1) 1 0 0 -0.7 0
(5,1) 1 0 0 0 -0.2
(3,2) 0 1 -0.6 0 0
(4,2) 0 1 0 -0.3 0
(5,2) 0 1 0 0 -0.8
(1,3) -1/6 0 1 0 0
(2,3) 0 -0.6 1 0 0
(1,4) -1/3 0 0 1 0
(2,4) 0 -0.3 0 1 0
(1,5) -1/2 0 0 0 1
(2,5) 0 -0.1 0 0 1

u1 u2 u3 u4 u5 −λ
3.3889 0 -0.5667 -1.0333 -0.7000 1 0

0 3.4600 -1.2000 -0.6000 -0.9000 1 0
-0.5667 -1.2000 2.5200 0 0 1 0
-1.0333 -0.6000 0 2.5800 0 1 0
-0.7000 -0.9000 0 0 2.6800 1 0

1 1 1 1 1 0 1

3. The Positivity of Solutions by the WLS

Why has the least square (LS) method, the most popular and the most powerful in the
statistical field, not been used in the field of our AHP and ANP? This may be due to the
eigenvector method of T. Saaty as mentioned before. Another reason is that the ALS does
not always give as positive solutions.

We think that these are the origins of distrust in the LS method in our field. So the
positivity of solutions by the WLS is profoundly important in our field. But the proof in [1]
is valid only in the case where XT X (see (3.1)) is non-singular and its off-diagonal elements
are all negative, which holds only for the AHP with complete information. Here we complete
the proof for general XT X.

Let the Lagrange function of WLS ((2.9) and (2.4)) be Q− 2λ(u1 + · · ·+ un − 1). Then
the normal equation is given by

XT Xu = λd (with (2.4)), (3.1)

where d is the all-one column vector and the (ν, k) element Xνk of X is given by

Xνi = 1, Xνj = −sij for ν = (j, i) ∈ E, (3.2)

and other elements of X are equal to zero. Note that ν denotes arc (j, i) ∈ E, and letting
r be the number of arcs of E, that is, r = |E|, X is an r × n matrix. The matrix X is

called the structure matrix of WLS. Of course, the solutions û = [û1, · · · , ûn]T , λ̂ of (3.1)
and (2.4) are estimates of weights of the objects.
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Example 3.

We select a simple problem of MEN defined by the graph in Figure 1. As a matter of
fact, this example has peculiar significance for our research (see Example 4). The structure
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Figure 1: A graph of MEN problem

matrix X and XT X are given as follows.

X =



ν \ 1© 2© 3©
(2, 1) 1 −4 0
(3, 1) 1 0 −1/3
(1, 2) −4 1 0
(3, 2) 0 1 −6
(1, 3) −1/8 0 1
(2, 3) 0 −1/2 1


,

XT X =

 18.015625 −8.000000 −0.458333
−8.000000 18.250000 −6.500000
−0.458333 −6.500000 38.111111

 .¤

It is clear by the structure of WLS that XT X is non-negative definite and the off-
diagonal elements are all non-positive, and if XT X is non-singular, it is positive-definite.

First we prove the positivity of Lagrange multiplier λ in (3.1).

Lemma 1. The solution λ̂ of Lagrange multiplier in the normal equation (3.1) and (2.4) is

non-negative. Moreover, we have λ̂ = 0 if and only if

Xu = 0 or sijuj = ui for all (j, i) ∈ E. (3.3)

Proof. From (3.1) and (2.4) we have

XT Xu = λ̂d, (3.4)

uT d = 1. (3.5)

Multiplying (3.4) by uT from the left, we get uT XT Xu = λ̂uT d. Then, from (3.5) we have

λ̂ = uT XT Xu. (3.6)

Letting e = Xu, we have λ̂ = eT e, which shows that λ̂ = 0. From (3.6), if λ̂ = 0, then
Xu = 0, and vice versa.¤
Lemma 2. If XT X is non-singular, then λ̂ > 0.

c© Operations Research Society of JapanJORSJ (2009) 52-3
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Proof. If λ̂ = 0, then XT Xu = 0, so that XT X cannot be non-singular (if XT X
has its inverse matrix, then u = 0, which contradicts (2.4)). Hence, Lemma 2 follows.¤

Summarizing Lemma 1 and Lemma 2, we have the following theorem.
Theorem 1. If XT X is non-singular (that is, positive-definite), then λ̂ > 0, and if XT X

is singular, then λ̂ = 0. ¤
Furthermore, we have the following theorem on linear algebra.

Theorem 2. If an n × n matrix A = [aij] is positive-definite and its off-diagonal elements
are all non-positive, then the solution x = [x1, · · · , xn]T of

Ax = b (> 0) (3.7)

is positive (xi > 0 for all i).
Proof. Let us solve (3.7) by the sweep-out operation. Take circled diagonal elements

as pivots in Table 2.

Table 2: Sweep-out operation (n=3)

x1 x2 x3

a11© a12 a13 b1

(i) a21 a22 a23 b2

a31 a32 a33 b3

1 a′
12 a′

13 b′1
(ii) 0 a′

22© a′
23 b′2

0 a′
32 a′

33 b′3
1 0 a′′

13 b′′1
(iii) 0 1 a′′

23 b′′2
0 0 a′′

33© b′′3

It is well known that these pivots a11, a′
22, a′′

33, · · · are equal to the principal minors

a11,

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ,

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , · · · ,

respectively, and these are all positive for the positive-definite matrix A.
Furthermore, the rule of sweep-out operation we have for i 6= j

a′
ij = aij −

ai1a1j

a11

5 0 (because aij 5 0, ai1a1j = 0)

and

b′i = bi −
ai1bi

a11

> 0 (because bi > 0, ai1bi 5 0).

Hence in Step (ii) in Table 2 off-diagonal elements (of the coefficient matrix) are all non-
positive and the right-hand side constant vector satisfies b′ > 0. The situations of Steps
(ii), (iii), · · · are the same as (i). After all, we have a positive solution. ¤

Applying Theorem 2 for our problem with A = XT X and b = λd, from Theorem 1 we
have the following:
Theorem 3. If XT X is non-singular, the solutions û and λ̂ of WLS (3.1) and (2.4) are

positive, that is, û > 0 and λ̂ > 0. ¤
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In the case where XT X is singular, our problem results in

Xu = 0, (3.8)

dT u = 1, (3.9)

because of Theorem 1 and Lemma 1, where the rank of X is less than or equal to n − 1.
(i) The case where the graph corresponding to rows of X is a tree T : From the structure

(3.2) of X it is clear that the rank ρ(X) of X is equal to n − 1, and the non-zero
solutions u1, · · · , un of (3.8) have the same sign (see (3.3)), so that we can select u1 >
0, · · · , un > 0. The values of u1, · · · , un are uniquely determined by (3.9).

(ii) The case where the graph G corresponding to X is not a tree: Generally, the MEN
graph is assumed to be connected, so the number of arcs of G is greater than or equal
to n, and we can select a tree T from G. Since the changing of the order of rows of X
has no effect on our problem, we can write

X =

[
X0

X1

]
,

where X0 is the matrix composed of the rows corresponding to T and X1 is composed
of the rest of the rows of X. By the discussion in (i), we have the positive solution û of
X0u = 0, but û is at the same time the solution of X1u = 0. That is because we have
ρ(X) 5 n−1 and ρ(X0) = n−1, so ρ(X) = n−1. Hence any row of X1 is represented
by an appropriate linear combination of rows of X0, which shows that the solution of
û of X0u = 0 is the solution of X1u = 0. Consequently, we have the positive solution
of (3.8) and (3.9).

Theorem 4. Even if XT X is singular, the solution of WLS is positive. Hence the WLS
always has a positive solution.¤
Example 4.

The normal equation (3.1) with (2.4) for Example 3 is expressed as

u1 u2 u3 −λ
18.015625 -8.000000 -0.458333 1 0
-8.000000 18.250000 -6.500000 1 0
-0.458333 -6.500000 38.111111 1 0

1 1 1 0 1

.

The solutions are û1 = 0.395559, û2 =0.431769, û3 =0.172672 (λ̂=3.592943). So the
solutions by the WLS are all positive.

But if we apply the ALS to the data of Example 3, then we have

ū1 = (4u2 + u3/3)/2, ū2 = (4u1 + 6u3)/2, ū3 = (u1/8 + u2/2)/2.

The normal equation for this is expressed as

c© Operations Research Society of JapanJORSJ (2009) 52-3
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u1 u2 u3 −λ
5.003906 -3.984375 5.770833 1 0
-3.984375 5.062500 -2.916667 1 0
5.770833 -2.916667 10.027778 1 0

1 1 1 0 1

.

The solutions are û1 = 0.760316, û2 = 0.502763, û3 = −0.263079, which includes a
negative component.

This example reveals the defect of the ALS, which the WLS nicely corrects.

Example 5.

Figure 2 shows an example for a singular case.
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Figure 2: A singular case

We have

X =


u1 u2 u3 u4

(2, 1) 1 −2 0 0
(3, 1) 1 0 −2 0
(4, 3) 0 0 1 −2

 , XT X =


2 −2 −2 0
−2 4 0 0
−2 0 5 −2
0 0 −2 4

 .

XT X is singular and the graph corresponding to X is a tree. The solutions of Xu = 0
are; u2 = u1/2, u3 = u1/2, u4 = u3/2 = u1/4 which are determined by (3.9) as û1=0.444,
û2=0.222, û3=0.222, û4=0.111.

4. The Error Analysis on the LLS

The error analysis on the LS with the ordinary linear model is well known (for example,
see [12]). Here we extend this to the LLS (and the WLS in §5) by our specific devices. In
order to analyze the errors we make the following assumptions for the errors ėij in (2.6).
That is, ėij (for (j, i) ∈ E) are independent random variables such that

E[ėij] = 0 (the expectation of ėij is equal to zero),

V [ėij] = σ2 (the variance of ėij is a constant σ2). (4.1)

We note that for the AHP the independence of ėij (for (j, i) ∈ E) is not valid, because
we have ėij = −ėji due to (1.3). The error analysis for the AHP will be stated in “Remark”
in §5.
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Let the Lagrange function of the LLS be∑
(j,i)∈E

(ṡij − (u̇i − u̇j))
2 − 2µ(u̇1 + · · · + u̇n).

Then the normal equation is given by

Y T Y u̇ − µd = Y T ṡ (4.2)

with (2.7), where Yνk is the (ν, k) element of Y with

Yνi = 1, Yνj = −1, for ν = (j, i) ∈ E, (4.3)

and u̇ = [u̇1, · · · , u̇n]T and ṡ is the column vector whose ν = (j, i)-th element is ṡij . Then
the matrix form of (2.6) becomes

ė = ṡ − Y u̇ . (4.4)

The equations (4.2) and (2.7) are equivalent to

(Y T Y + J)u̇ = Y T ṡ, (4.5)

where J is the all-one matrix. Multiplying (4.2) from the left by dT , we have dT Y T Y u̇ −
nµ = dT Y T ṡ, but dT Y T = 0. Hence µ = 0. If u̇ satisfies (4.2) and (2.7), then u̇ also
satisfies (4.5). Conversely, if u̇ satisfies (4.5), then multiplying (4.5) from the left by dT ,
we have dT Ju̇ = 0, which is equivalent to (2.7). Hence u̇ satisfies (2.7), which leads to
Y T Y u̇ = Y T s.

Consequently, we have only to solve one equation (4.5), where its coefficient matrix

M = Y T Y + J (4.6)

can be shown to be non-singular (see Appendix 1). Hence (4.5) has the unique solution

̂̇u = M−1Y T ṡ. (4.7)

Substituting this ṡ for ṡ in (4.4), we have

̂̇u = M−1Y T (Y u̇ + ė) = M−1Y T Y u̇ + M−1Y T ė.

But since M−1Y T Y u̇ = u̇ (which is equivalent to Y T Y u̇ = Mu̇ = (Y T Y + J)u̇ =
Y T Y u̇), we have ̂̇u = u̇ + M−1Y T ė. (4.8)

Then, the covariance matrix of ̂̇u is given by E[M−1Y T ėėT Y M−1] (M is symmetric), so
that from (4.1) the variance of ̂̇ui is given by

V [̂̇ui] = (M−1Y T Y M−1)iiσ
2 (i = 1, · · · , n). (4.9)

Usually the error of ̂̇ui is measured by the standard error σ̇i(=

√
V [̂̇ui] ), that is, ̂̇ui ± σ̇i

is the error range of ̂̇ui (if we take the 1-sigma principle). Transforming inversely ̂̇ui and̂̇ui ± σ̇i, we have ûi = e
bu̇i . The upper limit of ûi is e

bu̇i+σ̇i , and the lower limit of ûi is e
bu̇i−σ̇i .
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The formula (4.9) includes an unknown parameter σ2, but we have an unbiased estimate

σ̂2 of σ2 by the following procedure. The residue (vector) is defined bŷ̇e = ṡ − Y ̂̇u, (4.10)

which is obtained by substituting ̂̇u for u̇ in (4.4), and̂̇Q = ̂̇eT ̂̇e =
∑

(i,j)∈E

̂̇eij

2
(4.11)

is the sum of squares of the residues. It is well known that

E[ ̂̇Q] = (r − (n − 1))σ2,

where r = |E| is the size of E, r − (n − 1) is often called the degree of freedom.

σ̂2 = ̂̇Q/(r − (n − 1)) (4.12)

is an unbiased estimate of σ2. If r − (n − 1) 5 0, we cannot estimate σ2.

5. The Error Analysis on the WLS

In order to analyze the errors on the WLS we make the following assumptions for the errors
eij in (2.8): eij (for (j, i) ∈ E) are independent random variables such that

E[eij] = 0 (the expectation of eij = 0),

V [eij] = σ2 (the variance of eij is a constant σ2). (5.1)

These assumptions are often taken in the statistical field.
Furthermore, the following transformation of ui into vi is useful.

v = u − 1

n
d (vi = ui −

1

n
, i = 1, · · · , n), (5.2)

which leads to the condition for v1, · · · , vn given as follows.

dT v = 0 (v1 + · · · + vn = 0). (5.3)

The matrix form of (2.8) is e = Xu, which is transformed into

e = X(v +
1

n
d)

= Xv + x (x =
1

n
Xd). (5.4)

And the normal equation (3.1) is transformed into[
XT X d

dT 0

] [
v
−λ

]
=

[
−XT x

0

]
. (5.5)

Now if XT X has its inverse matrix (XT X)−1, then the inverse of coefficient matrix of
(5.5) is[

XT X d
dT 0

]−1

=

[
I + b−1(XT X)−1ddT −(XT X)−1d

−b−1dT 1

] [
(XT X)−1 0

0 b−1

]
(5.6)
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(b = −dT (XT X)−1d and I is the unit matrix of order n).

Then the solutions v̂ and λ̂ of (5.5) (that is, the WLS estimates of v, λ) are given by[
v̂

−λ̂

]
=

[
I + b−1(XT X)−1ddT −(XT X)−1d

−b−1dT 1

] [
(XT X)−1 0

0 b−1

] [
−XT x

0

]
.

(5.7)
So we have

v̂ = −(I + b−1(XT X)−1ddT )(XT X)−1XT x

= −(I + b−1(XT X)−1ddT )(XT X)−1XT (e − Xv) (see (5.4))

= −(I + b−1(XT X)−1ddT )(XT X)−1XT e + (I + b−1(XT X)−1ddT )(XT X)−1XT Xv

= v − (I + b−1(XT X)−1ddT )(XT X)−1XT e (5.8)

(because of (5.3)).

Let the coefficient matrix of e in (5.8) be W , that is,

W = −(I + b−1(XT X)−1ddT )(XT X)−1XT . (5.9)

Then the covariance matrix of v̂ is E[WeeT W T ], and by (5.1) the variance of v̂i is

V [v̂i] = (WW T )iiσ
2 (i = 1, · · · , n). (5.10)

Of course, the variance of ûi is the same as that of v̂i (i = 1, · · · , n).

We have an unbiased estimate of σ2 by the following procedure.

Let ê = [êij] be given by

ê = Xv̂ + x (see (5.4)), (5.11)

whose elements êij are often termed residues in the LS method, and

Q̂ = êT ê =
∑

(i,j)∈E

êij
2 (5.12)

is the sum of squares of the residues. It is well known that the expectation of Q̂ is given by

E[Q̂] = (r − (n − 1))σ2, (5.13)

where r is the number of paired comparisons, that is, r = |E|, and r− (n−1) is often called
the degree of freedom of error. So

σ̂2 = Q̂/(r − (n − 1)) (5.14)

is an unbiased estimate of σ2. If r − (n − 1) 5 0, that is, the degree of freedom is zero,
we cannot estimate σ2. In order that the error analysis is successful, the degree of freedom
must be large to some extent.
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Example 6.

The degree of freedom of Example 2 is r − (n− 1) = 12− 4 = 8. X is given in Table 1 and
b = −dT (XT X)−1d = −5.448926.

WW T =


0.215761 −0.092137 −0.070320 −0.008231 −0.045073

−0.092137 0.204414 −0.007064 −0.071104 −0.034109
−0.070320 −0.007064 0.292042 −0.113423 −0.101235
−0.008231 −0.071104 −0.113423 0.291859 −0.099101
−0.045073 −0.034109 −0.101235 −0.099101 0.279519

 .

So we have

V [v̂1] = (WW T )11σ
2 = 0.215761σ2,

V [v̂2] = (WW T )22σ
2 = 0.204414σ2,

V [v̂3] = (WW T )33σ
2 = 0.292042σ2,

V [v̂4] = (WW T )44σ
2 = 0.291859σ2,

V [v̂5] = (WW T )55σ
2 = 0.279519σ2. (5.15)

From (5.11) we have

ê = Xv̂ + x =



0.102615
0.051820
0.151178
0.081452
0.152138
0.059977
0.184244
0.089195
0.132868
0.132570
0.094187
0.167551



,

Q̂ =
∑

(i,j)∈E

êij
2 = 0.183522,

σ̂2 = Q̂/8 = 0.022940.

Estimating σ2 in (5.15) by σ̂2, we have

V [û1] = V [v̂1] = 0.004950,
√

V [û1] = 0.070354,

V [û2] = V [v̂2] = 0.004689,
√

V [û2] = 0.068479,

V [û3] = V [v̂3] = 0.006700,
√

V [û3] = 0.081851,

V [û4] = V [v̂4] = 0.006695,
√

V [û4] = 0.081825,

V [û5] = V [v̂5] = 0.006412,
√

V [û5] = 0.080076.

The estimates û1, · · · , û5 given in Example 2 have the standard errors
√

V [ûi] (i =
1, · · · , 5).

So the solutions of Example 2 have the following standard errors,
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i 1 2 3 4 5
ûi 0.188906 0.210889 0.215728 0.195837 0.188640√
V [ûi] 0.070354 0.068479 0.081851 0.081825 0.080076

.

Considering these errors, we have no use for the evaluations on weights of objects which
are too minute.
Remark. The error analysis for the AHP.

We must pay special attention to the error analysis for the AHP. As for the LLS, we
have ėji = −ėij, so we can delete ėji in E. Let

Ē = {(j, i) ∈ E|i < j}, r̄ = |Ē|(= r/2). (5.16)

Then the independence and (4.1) of ėij (for (j, i) ∈ Ē) are valid. Let Ȳ be an r̄×n submatrix
of Y whose rows for (j, i) /∈ Ē are deleted. Then we have only to use Ē, r̄ and Ȳ instead
of E, r and Y , respectively.

As for the WLS, the situation is rather complex. First, from (2.8) and (1.3) we have

eji = (uj − sjiui) = −sjieij . (5.17)

Hence we cannot assume the independence and the equi-variance (5.1) of eij. Now we have

e2
ij + e2

ji = (
√

1 + s2
ji · ui −

√
1 + s2

ij · uj)
2, (5.18)

and Q of (2.9) is written as

Q =
∑

(j,i)∈E

e2
ij =

∑
(j,i)∈Ē

(
√

1 + s2
ji · ui −

√
1 + s2

ij · uj)
2. (5.19)

Let X̄ be an r̄ × n matrix with (ν, i) element of X̄νi where

X̄νi =
√

1 + s2
ji , X̄νj = −

√
1 + s2

ij , ν = (j, i) ∈ Ē. (5.20)

Then the normal equation for minimizing Q in (5.19) becomes

X̄T X̄u = λd (with (2.4)), (5.21)

whose solution û coincides with that of (3.1).
Now let

ēij =
√

1 + s2
ji · ui −

√
1 + s2

ij · uj . (5.22)

Then we can assume the independence and the equi-variance of ēij (for (j, i) ∈ Ē), that is,

E[ēij] = 0,

V [ēij] = σ̄2 for (j, i) ∈ Ē. (5.23)

Letting ē = [ē1, · · · , ēr̄]
T (eν = ej,i), we can write (5.22) in a matrix form as

ē = X̄u. (5.24)

We have only to use X̄, r̄ and ē instead of X, r and e, respectively, in order to have V [ûi]
(i = 1, · · · , n).
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Example 7.

The value of X̄ in Example 1 is given by

u1 u2 u3

X̄ =
(2, 1)
(3, 1)
(3, 2)


√

1 + 1/52 −
√

1 + 52 0√
1 + 1/92 0 −

√
1 + 92

0
√

1 + 1/32 −
√

1 + 32

 s12 = 5
s13 = 9
s23 = 3.

The solutions of (5.21) are

û1 = 0.7622, û2 = 0.1565, û3 = 0.0813, (λ̂ = 0.0099),

which of course coincide with those of Example 1. And the results of error analysis are

Q̂ = 0.018326 (by (5.12)),

̂̄σ2 = 0.018326 (by (5.13)),

V [û1] = 0.000537,
√

V [û1] = 0.023184,

V [û2] = 0.000459,
√

V [û2] = 0.021429,

V [û3] = 0.000151,
√

V [û3] = 0.012300 (by (5.10)).

6. The Analysis of the MEN Problem with Errors of Different Weights

The simplest structure of ANP is shown in Figure 3. The set N of objects is decomposed
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Figure 3: MECA

into two parts. The upper part P = {p1, p2, · · · } is the set of criteria and the lower part
Q = {q1, q2, · · · } is the set of alternatives. Let the weight of pi be ui (i = 1, 2, · · · ) and that
of qj be vj (j = 1, 2, · · · ).

Depending on this decomposition, the supermatrix S = [sij] itself is decomposed into
R = [rij] and T = [tij], where rij is the evaluation of alternative qi ∈ Q by criterion pj ∈ P ,
and tij is the evaluation of criterion pi by qj. Then S is written as

S =

[
0 T
R 0

]
. (6.1)

Let us call this type of ANP as the mutual evaluation of criteria and alternatives
(MECA).
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As stated in [11], generally rij are stable, but tij are unstable, which is represented by
the value of variance of errors for rij and tij. Here after the set {(i, j)|qi ∈ Q, pj ∈ P}
({(i, j)|pi ∈ P, qj ∈ Q}) is denoted by R(T ), which is the same symbols as the submatrix
of S, but we can distinguish them by the context.

Let the structure of errors be the WLS type of (2.8). Then the error of MECA are
defined as

eij = vi − rijuj for (i, j) ∈ R,

dij = ui − tijvj for (i, j) ∈ T , (6.2)

and the variance of dij is larger than that of eij, that is, we assume,

V [eij] = σ2 for (i, j) ∈ R,

V [dij] = ασ2 (α > 1) for (i, j) ∈ T . (6.3)

Here we treat α as a known parameter whose value is pre-determined by the decision maker.

Generally if the errors eij have different variances ανσ
2 (ν = (i, j)) instead of (5.1), then

we can represent this by the error vector e as follows

E[eeT ] = Λσ2, Λ = diag[α1, α2, · · · , αr] (6.4)

(where diag[α1, α2, · · · , αr] denotes the diagonal matrix whose i-th diagonal element is
αi(i = 1, · · · , r), and (6.4) is valid because of the independence of errors.)

Multiplying (2.8) or its matrix form e = Xu by
√

Λ−1 = diag[
√

α−1
1 ,

√
α−1

2 , · · · ,
√

α−1
r ]

from the left, we have
√

Λ−1e =
√

Λ−1Xu. (6.5)

Then clearly the elements of ε =
√

Λ−1e have the same variance σ2. So if we use
√

Λ−1X
instead of X, we can solve WLS problem with the different variances of errors. Its normal
equation is

XT Λ−1Xu = λu (with (2.4)). (6.6)

For the MECA we have

Λ−1 = diag[1, · · · , 1, α−1, · · · , α−1], (6.7)

where the first |R| (the next |T |) elements of (6.7) are equal to 1 (α−1).

Example 8.

Consider the following data of MECA

R =

 1/6 0.6
1/3 0.3
1/2 0.1

 , T =

[
0.4 0.7 0.2
0.6 0.3 0.8

]
.
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The structure matrix X is

X =



u1 u2 v1 v2 v3

(p1, q1) −1/6 0 1 0 0
(p1, q2) −1/3 0 0 1 0
(p1, q3) −1/2 0 0 0 1
(p2, q1) 0 −0.6 1 0 0
(p2, q2) 0 −0.3 0 1 0
(p2, q3) 0 −0.1 0 0 1
(q1, p1) 1 0 −0.4 0 0
(q1, p2) 0 1 −0.6 0 0
(q2, p1) 1 0 0 −0.7 0
(q2, p2) 0 1 0 −0.3 0
(q3, p1) 1 0 0 0 −0.2
(q3, p2) 0 1 0 0 −0.8



. (6.8)

Selecting α = 2, we have its normal equation by (6.6),

u1 u2 v1 v2 v3 −λ
1.888889 0 -0.366667 -0.683333 -0.600000 1 0

0 1.960000 -0.900000 -0.450000 -0.500000 1 0
-0.366667 -0.900000 2.260000 0 0 1 0
-0.683333 -0.450000 0 2.290000 0 1 0
-0.600000 -0.500000 0 0 2.340000 1 0

1 1 1 1 1 0 1

.

The solutions are

û1 = 0.225540, û2 = 0.240508, v̂1 = 0.192585, v̂2 = 0.173989, v̂3 = 0.167378. (6.9)

This problem is the same as Example 2, which is solved on the assumption of constant
variance (5.1) and the results are

û1 = 0.188906, û2 = 0.210889, v̂1 = 0.215728, v̂2 = 0.195837, v̂3 = 0.188640.¤ (6.10)

These results (û1 and û2 in (6.9) are higher than those in (6.10)) are interpreted by the
following claim. If we have the assumption that evaluation from criteria (C) to alternatives
(A) has higher accuracy than that from A to C, the estimation (û1 and û2) of weights of C
becomes higher than that without such an assumption.

We have the variances of estimates ûi for the general problem by only using
√

Λ−1X
instead of X in (5.9) and (5.10), that is, V [ûi] = (UUT )iiρ

2 (i = 1, · · · , n),

U = (I + β−1(XT Λ−1X)−1ddT )(XT Λ−1X)−1XT
√

Λ−1,
β = −dT (XT Λ−1X)−1d,

}
(6.11)

ρ̂2 = ε̂T ε̂/(r − (n − 1)),

ε̂ =
√

Λ−1Xû.

}
(6.12)
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Example 9.

The estimates û1, û2, v̂1, v̂2, v̂3 in (6.9) have the variances

V [û1] = (UUT )11ρ
2 = 0.365310ρ2,

V [û2] = (UUT )22ρ
2 = 0.348378ρ2,

V [v̂1] = (UUT )33ρ
2 = 0.339792ρ2,

V [v̂2] = (UUT )44ρ
2 = 0.335089ρ2,

V [v̂3] = (UUT )55ρ
2 = 0.328917ρ2.

where ρ2 is estimated by ρ̂2 (6.12).

ρ̂2 = ûT XT Λ−1Xû/(12 − 4) (X is in (6.8))

= 0.017011.

Table 3 is the comparison of estimates and its standard errors of solutions on the
constant-variance and the different-variance assumption;

Table 3: The comparison of solutions on constant and different variance

i 1 2 i 1 2 3
constant ûi 0.188906 0.210889 v̂i 0.215728 0.195837 0.188640

variance
√

V [ûi] 0.070354 0.068479
√

V [v̂i] 0.081851 0.081825 0.080076
different ûi 0.225540 0.240508 v̂i 0.192585 0.173989 0.167378

variance
√

V [ûi] 0.078830 0.076982
√

V [v̂i] 0.076027 0.075499 0.074801

.

7. The Solution Method of a Reducible ANP by the WLS and the LLS

In [14] there is an ANP problem, whose supermatrix is

S =



1© 2© 3© 4© 5© 6©
1© 0 0 0 0 0 0
2© x 0 0 1/4 3 2
3© y 0 0 1 1 1
4© 0 1 1 0 0 0
5© 0 2 1/2 0 0 0
6© 0 3 1/6 0 0 0


, (7.1)

and its graph G is shown in Figure 4. (S is not stochastic, so that it may be correct for us
to call this a MEN rather than an ANP.) Note that x and y in S are treated as parameters
in [14].

S is a reducible matrix, so we cannot solve this by the simple eigenvector method. In [14]
this is solved by the general solution method for the ANP, which we think, however, is a
rather complex method. Here we would like to solve this problem by the WLS and the LLS.
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Figure 4: A reducible ANP

7.1. The solution method by the WLS

The structure matrix X for this problem is

X =



u1 u2 u3 u4 u5 u6

(1, 2) −x 1
(4, 2) 1 −1/4
(5, 2) 1 −3
(6, 2) 1 −2
(1, 3) −y 1
(4, 3) 1 −1
(5, 3) 1 −1
(6, 3) 1 −1
(2, 4) −1 1
(3, 4) −1 1
(2, 5) −2 1
(3, 5) −1/2 1
(2, 6) −3 1
(3, 6) −1/6 1



. (7.2)

(Blank elements are zeros)

For x = y = 0.5, the normal equation is

u1 u2 u3 u4 u5 u6 −λ
0.500000 −0.500000 −0.500000 0 0 0 1 0
−0.500000 18.000000 0 −1.250000 −5.000000 −5.000000 1 0
−0.500000 0 5.277778 −2.000000 −1.500000 −1.166667 1 0

0 −1.250000 −2.000000 3.062500 0 0 1 0
0 −5.000000 −1.500000 0 12.000000 0 1 0
0 −5.000000 −1.166667 0 0 7.000000 1 0
1 1 1 1 1 1 0 1

, (7.3)

and the solutions are û1 = 0.442035, û2 = 0.072213, û3 = 0.163276, û4 = 0.169826, û5 =
0.059104, û6 = 0.093546 (λ̂ = 0.103273).
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Here we compare these results with those by the generalized ANP [14]. Neglecting û1

and standardizing û2, · · · , û6, we have

û2 û3 û4 û5 û6

.129 .293 .304 .106 .168 (WLS)

.338 .312 .089 .114 .146 ( [14])
.

We recognize two kinds of differences between the WLS and the method by [14].

The first: the values of û2 and û3 (in the second stratum of Figure 4) by the WLS are
lower than those by [14].

The second: û2 < û3 by the WLS but û2 ; û3 by [14].

The method in [14] is based on the MIN whose principle (2.1) makes ûi to be near to the
average of evaluations from only other objects. But the WLS considers the evaluations of
object i to other objects, too. So if an object i gives higher evaluations to inferior objects,
this makes ûi to be lower, which [14] does not consider.

Consider the evaluations of objects 2 and 3 from other objects in this example which are
given by

û2 ; 1

4
û4, û2 ; 3û5, û2 ; 2û6, and û3 ; û4, û3 ; û5, û3 ; û6.

This shows object 2 has rather higher evaluation from others than object 3. But evaluations
of others by these two objects are

û4 ; û2, û5 ; 2̂u2, û6 ; 3̂u2, and û4 ; û3, û5 ; 1

2
û3, û6 ; 1

6
û3.

This shows object 2 gives higher evaluation to others than object 3. This causes the second
fact, as mentioned above.

The reason of the first fact is that objects 2 and 3 have the evaluations from object 1,
but objects 4, 5 and 6 have not.

By (5.10) the variances of ûi (i = 1, · · · , 6) are

V [û1] = 0.839007σ2, V [û2] = 0.062586σ2, V [û3] = 0.156707σ2,

V [û4] = 0.297168σ2, V [û5] = 0.086199σ2, V [û6] = 0.151517σ2.

By (5.14) σ̂2 is given by

σ̂2 = 0.011475.

So the standard errors are√
V [û1] = 0.098119,

√
V [û2] = 0.026799,

√
V [û3] = 0.042405,

√
V [û4] = 0.058395,

√
V [û5]

= 0.031450,
√

V [û6] = 0.041697.

7.2. The solution method by the LLS

As mentioned in §2, although the LLS is a natural method, this is not used so often in the
fields of the AHP and the ANP. The LLS can solve even reducible ANP problems by almost
the same way as the WLS.
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Now we solve the ANP with S in (7.1) and the graph G in Figure 4. From (2.5) and
(4.3) we have the structure matrix Y and ṡ as follows.

Y ṡ
u̇1 u̇2 u̇3 u̇4 u̇5 u̇6

(1, 2) −1 1 log x
(4, 2) 1 −1 − log 4 = −1.386294
(5, 2) 1 −1 log 3 = 1.098612
(6, 2) 1 −1 log 2 = 0.693147
(1, 3) −1 1 log y
(4, 3) 1 −1 log 1 = 0
(5, 3) 1 −1 log 1 = 0
(6, 3) 1 −1 log 1 = 0
(2, 4) −1 1 log 1 = 0
(3, 4) −1 1 log 1 = 0
(2, 5) −1 1 log 2 = 0.693147
(3, 5) −1 1 − log 2 = −0.693147
(2, 6) −1 1 log 3 = 1.098612
(3, 6) −1 1 − log 6 = −1.791759

(7.4)

(Blank elements are zeros and the base of log is e)

For x = y = 0.5, the normal equation (4.2) is

u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 −µ
2 −1 −1 0 0 0 1 1.386294

−1 7 0 −2 −2 −2 1 −2.079442
−1 0 7 −2 −2 −2 1 1.791759

0 −2 −2 4 0 0 1 1.386294
0 −2 −2 0 4 0 1 −1.098612
0 −2 −2 0 0 4 1 −1.386294
1 1 1 1 1 1 0 0

, (7.5)

and the solutions are ̂̇u1 = 0.623398, ̂̇u2 = −0.346263, ̂̇u3 = 0.206765, ̂̇u4 = 0.276825,̂̇u5 = −0.344402, ̂̇u6 = −0.416323, and û1 = 0.287435, û2 = 0.108998, û3 = 0.189495,
û4 = 0.203247, û5 = 0.109202, û6 = 0.101623. (where ûi is standardized by

∑
i ûi = 1).

By (4.9) the variances of ̂̇ui (i = 1, · · · , 6) are

V [̂̇u1] = 0.368056σ2, V [̂̇u2] = 0.106151σ2, V [̂̇u3] = 0.106151σ2,

V [̂̇u4] = 0.201389σ2, V [̂̇u5] = 0.201389σ2, V [̂̇u6] = 0.201389σ2,

and σ2 is estimated by (4.11) and (4.12) as

σ̂2 = 0.739376.

So the standard error, σ̇i =

√
V [̂̇ui] (i = 1, · · · , 6), are σ̇1 = 0.521662, σ̇2 = 0.280152,

σ̇3 = 0.280152, σ̇4 = 0.385878, σ̇5 = 0.385878, σ̇6 = 0.385878. Therefore the upper (lower)
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limits of ûi , e
bu̇i+σ̇i (e

bu̇i−σ̇i), are given by

the upper limit the lower limit
û1 3.142631 1.107091
û2 0.936027 0.534504
û3 1.627293 0.929241
û4 1.940029 0.896682
û5 1.042348 0.481774
û6 0.970015 0.448341

.

8. Conclusion

This paper insists that the WLS and the LLS are superior to other methods (the MIN, the
ALS and the MCS) to solve MEN problems (§2). Both methods can solve MEN problems
without any restrictions about the matrix S. (The MCS has this property, but it does
not have the error analyzing methods.) This is based on mainly that the WLS always
gives positive solutions, which is proved in §3. (The proof in [1] is restricted to the case
where XT X is non-singular.) Another reason is that the WLS and the LLS have the error
analyzing methods which are stated in §4 and §5. Furthermore, the WLS and the LLS can
solve MEN problems with the different variances of errors (§6). In §7, the ANP problem
with the reducible supermatrix is solved by the WLS and the LLS, and is compared with
the generalized ANP method [14].

A. Appendix 1

Here we prove

M = Y T Y + J (for Y in (4.3)) (A.1)

is non-singular. Firstly we write

M = Y T Y + J =
[

Y T d
] [

Y
dT

]
. (A.2)

So in order to prove that M is non-singular,

[
Y
dT

]
is required to have the rank equal to

n, which is equivalent to that the solution x of[
Y
dT

]
x = 0 (A.3)

is a zero vector. Note that the number of rows of

[
Y
dT

]
is r + 1 (r = |E|).

The structure of Y in (A.3) is diverse, but the least value of r is equal to n − 1 (this is
the least number of graph G of this MEN to be connected), when G becomes a tree. So if
the solution of (A.3) is shown to be zero for Y whose graph is an arbitrary tree, then it is
valid for Y with any graph.

When the graph corresponding to Y is a tree, any two elements of solution x =[
x1, · · · , xn

]T
are the same, that is, x1 = · · · = xn from the structure (4.3) of Y .

So dT x = 0 requires x = 0.
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