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Abstract A pairwise comparison matrix in the Analytic Hierarchy Process (AHP), which was proposed by
Saaty in 1970s, consists of elements expressed on a numerical scale. The purpose of this paper is to propose
a consistency test for ordinality of items in the pairwise comparison matrix. The original of this test is in a
sensory test. In a sensory test we use a pick-the-winner ordinal scale to obtain the table of preferences for
objects. In 1940 Kendall and Babington Smith proposed a consistency test for the preference table, using
the number of circular triads in it. In this paper we show how to apply their test to a pairwise comparison
matrix in the binary AHP and to one without a tie for up to nine items in the AHP. This is to test, using a
pairwise comparison matrix, whether or not we can accept that items which are factors or alternatives are
sufficiently ranked linearly before calculating weights of these items.
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1. Introduction

The Analytic Hierarchy Process (AHP), which was proposed by Saaty in 1970s, consists
of roughly three steps. The first is structuring a hierarchy to clear structure of a given
problem. The second is calculating weights of all items which are factors or alternatives.
The final step is calculating weights which are overall evaluations of alternatives for the
main objective. Pairwise comparisons are used in the second step and in this paper we deal
with pairwise comparison matrices by them.

In many literatures methods of checking consistency of a pairwise comparison matrix
have been discussed. In general these are called consistency tests. As Monsuur pointed out
in [9], one of the advantages of the AHP is that it is equipped with such measures. For
instance, C.I. and C.R. are well-known as the reference values for consistency tests. The
purpose of this paper is to propose a new consistency test for the ordinality of items in a
pairwise comparison matrix in the binary AHP and to one without a tie for up to nine items
in the AHP with slight modification of a consistency test for a preference table in a sensory
test.

Now let O; (1 <i <n, n > 3) be objects. If O; is preferred to O;, we describe O; — O;
according to [7]. Then a directed graph G is made from these arrows between each two
objects. When we have O; — O;; for any integer i (1 <i<n—1) and O, — O; in G, the
pair of these objects 0105 - - - O,,, which is a pair of vertices in G, is called a circuit of length
n or a circular n-ad. In particular a circuit of length 3 is called a circular triad. Kendall and
Babington Smith in [7] showed that a circular n-ad contains at least n — 2 circular triads
and drew attention to the number of circular triads included in G on the ranking problem
by pairwise comparisons.
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A Consistency Test in the AHP 175

We construct a directed graph Mg from a pairwise comparison matrix M in the AHP
and circular triads of items in M is defined as ones of items in M. Then, as is well-known,
some circular triads included in M cause inconsistency of itself. In this paper we show the
maximum number of circular triads in M that we can accept in which items are sufficiently
ranked linearly in the sense of ranking problems (cf. [6,7]) and propose a test using this
number. This is equal to a test whether M is consistent as measured by the number of
circular triads and is also a consistency test for a pairwise comparison matrix in the AHP.

In Section 2 we review the coefficient of consistency ¢ used in a sensory test to test
consistency of a complete directed graph according to [7]. This coefficient in the AHP was
mentioned in [12]. We don’t deeply refer to it in this paper. In Section 3 we show the
distributions of the number of circular triads for up to nine objects. Kendall and Babington
Smith in [7] presented them for up to seven objects and Alway carried out for eight and
nine objects in [1]. In Section 4 we review the test whether or not an observer is sufficiently
capable of comparing objects pairwisely by using the number of circular triads included in
a preference matrix according to [11], which is used in a sensory test.

In Sections 5 and 6 we show how to apply this test to a pairwise comparison matrix in
the binary AHP and to one without a tie in the AHP. The proposal in that case is to test
whether or not we can accept that items are ranked linearly. We don’t deal with a pairwise
comparison matrix with a tie between different items in the AHP in this paper. Jensen and
Hicks researched in [5] the relationship between the number of circular triads in a pairwise
comparison matrix and inconsistency of the matrix in the AHP. Though the purpose of their
paper is different from one of this paper, they dealt with a pairwise comparison matrix with
a tie between different items in their paper.

2. Coefficient of consistency in pairwise comparisons
Let O be the set of n objects O1,04,---,0,. If O, is preferred to O; (i # j), we set
a;j = 1 and aj; = 0. For the sake of convenience we set a;; = 1. Thus the preference matrix
A = (a;;) with the unity diagonal elements for O is obtained.

Now when a;; = 1 (i # j) we describe O; — O;. Thus the complex of preferences can
be represented by directed arrows in the corresponding complete graph in which any two
different points are connected by an arrow. For instance, the preference matrix

111011
010110
011111
A= 100100 (2.1)
000111
010101
generates the following graph Ag;
01 02
06 < Y OJ

Y

0, g o,

Figure 1: The directed graph Ag corresponding to A
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176 Y. lida

In [7] Kendall and Babington Smith considered the number of circular triads included
in a directed graph Ag, i.e., in a given preference matrix A. Let d be the number of circular
triads in Ag and a; (1 < i < n) be the number of arrows which leave the vertex corresponding

ny) nn-1)
)=

to O;. Then it is clear that Ag has n vertices and ( arrows. Furthermore,

it holds that

Zai — nn-1) (2.2)

and

g_nn=1)n-2) %Zai(ai - nin—1)(2n—-1) iza;_ (2.3)

Note 2.1 In [10] Nishizawa showed the method using the vertex matrix My corresponding
to a comparison matrix M = (m;;) in order to calculate the number of circular triads d,
which is called cycles of length 3 there, included in Mg in the binary AHP. A vertex matrix
My = (v;;) is defined as v;; = 1 if m;; > 1, and v;; = 0 otherwise. Then he showed that the
trace of the three power of My is three times d (see Theorem 1 in [10]). We can use this in
the replacement of Equation (2.3) when calculating d.

In [7] Kendall and Babington Smith showed the following useful theorem.

Theorem 2.1 Let G be a complete directed graph and n be the number of vertices in G.
Then the maximum possible number of circular triads in G is

nd—n

if n is odd,
24

(2.4)
n® —4n

24

and the minimum number is zero. In particular there exist always complete directed graphs
G with these limits. Moreover, for any integer k between the maximum and the minimum
there exists at least one complete directed graph in which the number of circular triads is
k.

if n is even,

They defined the coefficient of consistency ( for a given complete directed graph G of n
vertices with d circular triads based on the theorem as follows;

24d

l1—— , if n is odd,
n>—n
(= i (2.5)
1— m, if n 1S even.

It is easy to see from Theorem 2.1 that 0 < ( < 1 and { = 1 if and only if there is no circular
triad in GG. As ( decreases to zero, the inconsistency, which is measured by the number of
circular triads, increases. So ( can be used as measure of consistency in a preference matrix
A. Clearly the objects may be completely ranked linearly by A if and only if ( = 1. And
when ( is not unity, Kendall and Babington Smith considered the following possibilities:
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A Consistency Test in the AHP 177

(a) The observer may be a bad judge.
(b) Some of the objects may differ by amounts which fall below the threshold of distin-
guishability for the observer.
(c) The property under judgment may not be a linear variate at all.
(d) Several of the effects may be operating simultaneously.
For these possibilities they noted that if we have no prior knowledge of the observer’s
capability, it is not in general possible to apportion his or her inconsistency among these
causes except for the case that the inconsistency is of a marked and peculiar kind. So in
order to test the significance of a value of { they researched the distribution of the number
of circular triads it would have if all the preferences were allotted at random, and proposed
a method to test whether an observer is capable of consistent ranking or not under the
hypothesis that objects are ranked linearly. For example, there is an application of this
method to a sensory test on pp.351-353 in [11].
In the next section the distributions are showed and in Section 4 their test is explained.
In Sections 5 and 6 we modify the test to the case of testing whether or not we can accept
that items are ranked linearly by the pairwise comparison matrix under the hypothesis
that a decision maker has ability to rank items linearly in the binary AHP and the AHP,
respectively.

3. Distributions of the number of circular triads

Let n (n > 2) be the number of objects and d be the number of circular triads in an
observed configuration of preferences, which is represented by a complete directed graph.
The maximum value of d for each n is obtained by Theorem 2.1. In this section we consider
the number of the graphs with a given pair of n and d according to [7] and [1].

Table 1: Frequency f of d and probability P that won’t exceed d for n objects

Values n =2 n=23 n=4 n=>5 n==~06 n=717
ofd | f P f P f P f P f P f P
0|2 1.000| 6 0.750 | 24 0.375| 120 0.117 720 0.022 5040 0.002
1 2 1.000 |16 0.625| 120 0.234 960 0.051 8400 0.006
2 24 1.000 | 240 0.469 | 2240 0.120 21840 0.017
3 240 0.703 | 2880 0.208 33600 0.033
4 280 0.977 | 6240 0.398 75600 0.069
5 24 1.000 | 3648 0.509 90384 0.112
6 8640 0.773 | 179760 0.198
7 4800 0.919 | 188160 0.287
8 2640 1.000 | 277200 0.420
9 280560 0.553
10 384048 0.737
11 244160 0.853
12 233520 0.964
13 72240 0.999
14 2640 1.000
Total | 2 -8 - | 64 - 11024 — | 32768 — | 2097152 —

The distributions of d have been given by Kendall and Babington Smith when 2 < n <7
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178 Y. lida

and by Alway when 8 < n < 10. According to their results we have Tables 1 and 2 with the
frequencies f of d and probabilities P that won'’t exceed values of d, which is Pr[ 0 < z < d |,
for n objects (2 < n < 9). Because we need the distributions of d for n = 3 to 9 when
dealing with the AHP (see Section 6), we didn’t make the table for 10 objects.

For example it is seen from Table 1 that if we make a complete directed graph for 5
objects at random, then the probability P that it has 2 or less circular triads is about
0.469(= (120 + 120 4 240)/1024).

Table 2: Frequency f of d and probability P that won’t exceed d

Values n==~, n=29
of d f P f P
0 40320 0.00015 362880 0.00001
1 80640 0.00045 846720 0.00002
2 228480 0.00130 2580480 0.00006
3 403200 0.00280 5093760 0.00013
4 954240 0.00636 12579840 0.00031
5 1304576 0.01122 19958400 0.00060
6 3042816 0.02255 44698752 0.00125
7 3870720 0.03697 70785792 0.00228
8 6926080 0.06278 130032000 0.00418
9 8332800 0.09382 190834560 0.00695
10 15821568 0.15276 361525248 0.01221
11 14755328 0.20773 443931264 0.01867
12 24487680 0.29895 779950080 0.03002

13 24514560 0.39027 1043763840 0.04521
14 34762240 0.51977 1529101440 0.06746
15 29288448 0.62888 1916619264 0.09535
16 37188480 0.76742 2912257152 0.13773
17 24487680 0.85864 3078407808 0.18253
18 24312960 0.94921 4506485760 0.24811
19 10402560 0.98797 4946417280 0.32009

20 3230080 1.00000 6068256768 0.40839
21 6160876416 0.49804
22 7730384256 0.61054
23 6292581120 0.70211
24 6900969600 0.80253
25 5479802496 0.88227
26 4327787520 0.94525
27 2399241600 0.98016
28 1197020160 0.99758
29 163094400 0.99995
30 3230080 1.00000
Total 268435456 - 68719476736 =

An algorithm to obtain the distributions of d with a computer was described in [1] in
detail. This time we calculated those for up to n = 9 using other algorithm with a computer
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A Consistency Test in the AHP 179

and obtained the same results with them. Indeed we made all cases of preference tables
A = (a;j) by setting a;; = 0 or 1 for a preference between different objects O; and O;
(i < j). And using the property that a triad O,0,0;, (i < j < k) is circular if and only if
a;j = a;, and a;j # a;,, we judged whether or not the triad O;0;0;, for all pairs of ¢, j and
k (i < j < k) is circular.

Note 3.1 Kendall in [6] established the x2-approximation to the distribution of the number
of circular triads d for any n objects (n > 8). Alway in [1] showed an algorithm using
Equation (2.3) to obtain the distribution of d for any n objects and presented concretely
that of d for n = 10.

4. Consistency test of a pairwise comparison matrix in a sensory test

We can use Tables 1 and 2 in order to check whether the number of circular triads could
have arisen by chance if the observer were completely incompetent, or, alternatively, whether
there is some degree of consistency in the observer’s preferences notwithstanding a lack of
perfection as in [7]. Kendall and Babington Smith showed the following example in [7]. The
chances that if the preferences are made at random there will be more than two circular
triads are 983 in 1000 for n = 7 by Table 1, so if we find such two or less triads, it is
improbable that the observer is completely incapable of judgment. Then we might be led
to suppose the observer’s small deviation from internal consistency is due to fluctuation of
attention, very close resemblance to the objects giving rise to the inconsistencies, or both.

Thus Tables 1 and 2 are used to check whether or not an observer who pairwisely
compares n objects is sufficiently capable of making judgments. At the rest of this section
we review the consistency test for a preference table in a sensory test using Tables 1 and
2 according to [11]. For this test we need Table 3, which has the maximum values dy o5,
of the number of circular triads d for each n (3 < n < 10) satisfying that probability
Pr[ 0 <2 <d] < a = 0.05, which is gotten from Tables 1 and 2. Though Kendall and
Babington Smith in [7] seemed to have adopted the significant level o = 0.01, we adopt
a = 0.05 due to practicalities in use. Indeed Table 3 without n = 8 to 10 is in Appendix 24
on p.870 in [11].

Table 3: The values of dj s, in a sensory test

The number of objectsn |3 4 5 6 7 8 9 10
The value of dy 5., - - - 1 3 7 13 21
The total number of triads | 1 4 10 20 35 56 84 120

Remark 4.1 (1) There exists no value of d for n = 3 to 5 satisfying that Pr[0 < x <d | <
0.05. So symbol “-”is filled in each cells of d g5, for n = 3 to 5 in Table 3.

(2) Though Pr[0 <z <1]=0.051 for n = 6 by Table 1, we set dy 56 = 1 in consideration
of the distribution of d being discrete as in [11].

(3) It follows from the table in [1] that Pr[ 0 <z <21 | = 0.052 for n = 10.

We now address the issue of whether an observer is sufficiently capable of making judg-
ments by using the number of circular triads d included in a preference matrix A according
to [11]. It is easy to see that in this test we need more than 5 objects from Remark 4.1 (1).
This method does not require a directed graph A corresponding to A.
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180 Y. lida

We set the hypothesis that the observer pairwisely compares n objects (6 < n < 10)
which could be completely ranked linearly, but cannot construct a pairwise comparison
matrix which is consistent as measured by the number of circular triads. On this assumption
the observer compares n objects pairwisely in practice. We set a;; = 1 and aj = 0 if the
observer prefers the object O; to the object O; (i # j), and a; = 0 to get the preference
matrix A = (a;;).

(S1) Count the cardinal number of integers j such that a;; = 1 for each i-th row, which is
denoted by a;.

(S2) Substitute these a; for a; in Equation (2.3) to calculate d.

(S3) If d < dygs,n from Table 3, then we reject the hypothesis and think that the observer
is sufficiently capable of making judgments.

If the preference matrix A doesn’t pass this test, then we may refer the coefficient of
consistency ( for A using Equation (2.5). If  is near enough to 0 when it is compared
with 1, then we reject the hypothesis and think that the observer is sufficiently capable of
making judgments. We note whether it is accepted with the numerical value of { of which
extent is entrusted to the observer’s judgment in the end. In fact the reference value to ¢
isn’t showed in [11] and [6].

5. Consistency test of a pairwise comparison matrix in the binary AHP

As a special case of the AHP we know the case where elements m;; (i # j) of a pairwise
comparison matrix M take one of only two intensity scale of importance values. In fact let 0
be an integer such that § > 1. If a decision maker prefers the item O; to the item O; (i # j),
then we set m;; = 0 and m;; = 1/6, and m;; = 1 as is usual. We use items and pairwise
comparison matrices in the AHP as the technical terms, while we do objects and preference
matrices in a sensory test. Thus we obtain a pairwise comparison matrix M = (m;;) that
is called a binary comparison matrix. This kind of the AHP is called the binary AHP and
researched in [2—4, 10, 13] and so on.

When we describe O; — Oj for m;; = 0, we have the complete directed graph Mg for
M (see [13]). Thus a circular triad in a binary comparison matrix M in the binary AHP
is defined. Here we recall the definition of consistency for a binary comparison matrix M
according to [13]. If the following condition for M in the binary AHP holds;

m;; > 1 and my, > 1 imply my >1 for any ¢, j and k, (5.1)

then M is called logically consistent. Logically consistent is regarded as consistent in the
binary AHP. Then it is easily seen that a test of consistency is useful for a decision maker in
the binary AHP. We note that the definition of consistency in the binary AHP is different
from one in the AHP. Indeed the condition of the consistency of a pairwise comparison
matrix in the AHP is that m;; x mj, = my; for any ¢, j and k, which is insignificant in the
binary AHP.

In this section we show how to apply the consistency test in a sensory test, which is
reviewed in Section 4, to a pairwise comparison matrix in the binary AHP. In order to do
so we consider the consistency test in a sensory test from a different point of view.

In fact we suppose that if n items are ranked linearly, the decision maker can make
a consistent pairwise comparison matrix as measured by the number of circular triads by
comparing items pairwisely. On this assumption we test whether or not we can accept that
items are sufficiently ranked linearly. This test is useful because one purpose of pairwise
comparisons in the binary AHP is to rank items linearly.
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A Consistency Test in the AHP 181

For this consistency test in the binary AHP we replace any symbols “-” in Table 3 with
0 and have Table 4. It is natural that M without a circular triad is consistent in the binary
AHP and it is very useful for a decision maker that there is a standard for the number of
circular triads that are able to be disregarded in M.

Table 4: The values of dj g5, in the binary AHP

The number of objectsn |3 4 5 6 7 8 9 10
The value of dy g5, o o o0 1 3 7 13 21
The total number of triads | 1 4 10 20 35 56 84 120

Now we show how to apply the consistency test in Section 4 to the binary AHP in order
to test whether we can accept that items are sufficiently ranked linearly. It is easy to do so
because a binary comparison matrix has no tie.

We set the hypothesis that n items aren’t ranked linearly for some n (3 < n < 10).
On this assumption the decision maker compares n items pairwisely to make a binary
comparison matrix M = (m;;) in practice.

(B1) Count the cardinal number of integers j such that m;; > 1 for each i-th row, which is
denoted by m;.

(B2) Substitute these m; for a; in Equation (2.3) to calculate d.

(Bs) If d < dygs, from Table 4, then we reject the hypothesis and think that the items are
sufficiently ranked linearly. It is noted that we have supposed that the decision maker
can make the binary comparison matrix which is consistent as measured by the number
of circular triads.

If the binary comparison matrix M doesn’t pass this test, then we refer the coefficient
of consistency ¢ for M using Equation (2.5). If ¢ is near enough to 0 when it is compared
with 1, then we reject the hypothesis and think that items are sufficiently ranked linearly.
We note that the extent to which it is accepted by the numerical value of ( depends finally
on the decision maker’s judgment.

Essentially we supposed that the decision maker is capable of comparing items pairwisely,
because we shouldn’t use the binary AHP if it is not so. If we have d > dy 95, + 1 and the
hypothesis isn’t rejected by the value of ¢, the followings are considered according to [7].
(a) Some of the items may differ by amounts which fall below the threshold of distinguisha-

bility for the decision maker.

(b) The property under pairwise comparisons may not be a linear variate at all.

(c) Several of the effects may be operating simultaneously.

So in this case we accept one of these and use other decision making support system,
otherwise we need to change some values of elements in M in order to pass that consistency
test. For instance, see [10] for a method of searching such elements. Nishizawa proposed a
consistency improving method in the binary AHP and applied it to the AHP.

Note 5.1 If we have n items (n > 11) in the binary AHP, then we need to calculate dg g5,
by a computer as in [1] .
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182 Y. lida

Example 5.1 We use the following table in [10] to explain our method in the binary AHP.

Table 5: Results of matches (Application 2 in [10])

O1 Oy 03 04 O5 Og
O, 1 6 6 1/6 0 0
O, (16 1 6 6 0
Os[1/6 16 1 6 1/8
Os] 6 1/6 1/6 1 1/8
Os|1/6 106 ¢ 6 1
O¢ | 1/60 1/0 1/0 1/6 1/0

_ D D

Now we use the procedure (B1)—(Bj) in this section in order to see whether or not items
O; (1 <i < 6) are ranked linearly. We have Table 6 about m; in (By).

Table 6: The cardinal number m; of integers j such that m;; > 1

Ol 02 03 04 05 06
m; | 4 4 2 2 3 0

In (Bg) the number of the circular triads d in Table 5 is calculated from Table 6 as follows;
1 1 o
d:Fx6x5x4—7;mi(mi—1):3. (5.2)

In (Bj3) because d = 3 > dpos6 = 1, we cannot think that these items are ranked linearly.
We calculate the coefficient of consistency ¢ as follows;

24 x 3
=1 - —— =0.625. .
¢ PR 0.625 (5.3)

It is following from d > dpgs6 + 1 and the value of ¢ that it is difficult to rank items
O; (1 <i <6) in Table 5 linearly by the binary AHP. Certainly it is no problem to apply
the binary AHP to the table under a rule of ranking by the binary AHP (see Remark 5.1).

Remark 5.1 The consistency test in this section should be used in order to rank some
items subjectively by a decision maker. For instance, the binary AHP is also used for sport
games or matches among n teams (see [10,13]). In such case the information taken from a
match between team O; and O; is only “a victory”or “defeat”, without a tie. Let § (> 1) be
a fixed. We set m;; = 6 and m;; = 1/0 when O; wins O; (i # j), and m;; = 1 to obtain the
binary comparison matrix M = (m;). If M = (m;;) is not completely logically consistent
according to the above test, we think that these teams cannot be ranked linearly basically,
but we don’t need to completely reject the ranking by the binary AHP. In fact we can use
it as a ranking by the binary AHP, though it is difficult for a team to plan a strategy when
using this ranking.
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A Consistency Test in the AHP 183

6. Consistency test of a pairwise comparison matrix without a tie in the AHP

According to Section 5 we apply the consistency test in a sensory test, which is reviewed in
Section 4, to the AHP. We use the scales {1/k, k| 1 < k <9, k an integer} to compare
items pairwisely in the AHP. So we deal with up to 9 items for this test. Furthermore, we
deal only with a pairwise comparison matrix without a tie between different items.

When m;; > 1, we describe O; — O;. Thus we construct a complete directed graph Mg
which is identified with M when discussing circular triads in it. We consider a test using M
whether or not we can accept that items are ranked linearly as mentioned at the beginning
of Section 5. This is a part of consistency test in the AHP and a test of logically consistency
on a term of the binary AHP.

When a pairwise comparison matrix M = (m;;) has no tie between each different items,
then we can consider that the probability of O; — O; is equal to that of O; — O; when
we decide a direction of the arrow between O; and O; on the scale {1/k, k|1 < k <
9, k an integer} at random. So we can use the procedure (B;)—(Bj3) in Section 5 in this case
for replacing Table 4 with Table 7 on the same hypothesis in the binary AHP.

Table 7: The values of dy g5, in the AHP

The number of objectsn |3 4 5 6 7 8 9
The value of dy o5, o 0o o 1 3 7 13
The total number of triads |1 4 10 20 35 56 &4

Moreover, we have the following theorem to easily test whether or not items are com-
pletely ranked linearly without the consistency test in the AHP.

Theorem 6.1 Let n be an integer such that n > 3, M = (m;;) be a pairwise comparison
matrix for n items in the AHP. For any integer ¢ (1 < i < n), we set m; the cardinal number
of {m;; |1 <j<n, j#i,m; >1}. Let S={m; |1 <i<n}. Then S={0, 1, ..., n—1}
if and only if there exists no tie and no circuit in M.

Proof. Let Mg be the complete directed graph corresponding to M. When S = {0, 1, ..., n
1}, it is clear that there exists no tie in Mg. Since S = {0, 1, ..., n — 1} and Equation
(2.3), the number of noncircular triads in Mg is
n—1
Ox(0—-1 Ix(1-1)
(2 ) 4 ) 4 < ) (6.1)
k=2

It follows that the number of the circular triads in Mg is

() (24 () (3) £

which means that there exists no circuit in M.

On the other hand since any circular n-ad contains at least one circular triad, it follows
easily from the assumption that all items are ranked linearly without a tie. So we have
clearly S =40, 1, ..., n—1}. O

We give an example to understand Theorem 6.1.
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Example 6.1 It follows from Theorem 6.1 that the following pairwise comparison table

has no circular triad. In fact we have n =7 and S = {0, 1, ..., 6} in Theorem 6.1. There
were numerous similar patterns when we researched the cases in the AHP.

Table 8: Trivial example of a pairwise comparison table without a circular triad

O Oy O3 04 Os O O7|m

O, 1 2 3 4 5) 7 9 6
O 1/2 1 2 3 3 4 5) 5
Os 1/3 1/2 1 2 2 3 3 4
Oy 1/4 1/3 1/2 1 2 2 3 3
Os 1/5 1/3 1/2 1/2 1 2 2 2
Og 1/7 1/4 1/3 1/2 1/2 1 2 1
O- 1/9 1/5 1/3 1/3 1/2 1/2 1 0
C.1.=0.023

7. Conclusions

In this paper we proposed a test, using the pairwise comparison matrix in the binary AHP
or one without a tie between different items in the AHP, to ascertain whether or not we
can accept that the items which are factors or alternatives are ranked linearly, respectively.
Originally, this consistency test is a consistency test used in a sensory test. Indeed since
elements of a pairwise comparison matrix M in these AHPs are expressed on a numerical
scale and a numerical scale are considered as an ordinal scale, items in M can be ranked
linearly by it which is sufficiently consistent if those items are essentially ranked linearly.

On the other hand, the purpose of making a pairwise comparison matrix in these AHPs
is to calculate each weight of items. As a result items are ranked linearly by the weights.
So it is useful that before calculating weights of items we test whether or not these items
are ranked linearly using the pairwise comparison matrix in the sense of ranking by a pick-
the-winner ordinal scale. We think that this test enhances the utility of these AHPs that
deal with ranking problems. For instance, we recommend using this test after we checked
that the consistency index C.I. is less than 0.1.

In this paper we used the significant level « = 0.05 in the consistency tests as in a
sensory test, but a decision maker can suitably decide any significant level by using Tables 1
and 2. The general value in these AHPs might be requested. And in this paper we couldn’t
apply the test to items in a pairwise comparison matrix with a tie in the AHP. It is very
hard to interpret a tie between two different items in the sense of inconsistency by circular
triads. These are research topics which remain to be investigated.
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